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and Amir Amedib,c,∗
aInstitute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw, Poland
bDepartment of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine,
Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
cThe Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract.
Background: Hearing loss is becoming a real social and health problem. Its prevalence in the elderly is an epidemic. The risk
of developing hearing loss is also growing among younger people. If left untreated, hearing loss can perpetuate development
of neurodegenerative diseases, including dementia. Despite recent advancements in hearing aid (HA) and cochlear implant
(CI) technologies, hearing impaired users still encounter significant practical and social challenges, with or without aids.
In particular, they all struggle with understanding speech in challenging acoustic environments, especially in presence of a
competing speaker.
Objectives: In the current proof-of-concept study we tested whether multisensory stimulation, pairing audition and a minimal-
size touch device would improve intelligibility of speech in noise.
Methods: To this aim we developed an audio-to-tactile sensory substitution device (SSD) transforming low-frequency
speech signals into tactile vibrations delivered on two finger tips. Based on the inverse effectiveness law, i.e., multisensory
enhancement is strongest when signal-to-noise ratio is lowest between senses, we embedded non-native language stimuli in
speech-like noise and paired it with a low-frequency input conveyed through touch.
Results: We found immediate and robust improvement in speech recognition (i.e. in the Signal-To-Noise-ratio) in the
multisensory condition without any training, at a group level as well as in every participant. The reported improvement at the
group-level of 6 dB was indeed major considering that an increase of 10 dB represents a doubling of the perceived loudness.
Conclusions: These results are especially relevant when compared to previous SSD studies showing effects in behavior only
after a demanding cognitive training. We discuss the implications of our results for development of SSDs and of specific
rehabilitation programs for the hearing impaired either using or not using HAs or CIs. We also discuss the potential application
of such a set-up for sense augmentation, such as when learning a new language.

Keywords: Speech understanding in noise, sensory substitution device, vibrotactile stimulation, cochlear implants, multisen-
sory training, hearing impairment, multisensory rehabilitation

1. Introduction

Over 5% of the world population has disabling
hearing loss (i.e., a loss <40 dB in the better hearing
ear; World Hearing Organisation 2018). Furthermore,
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its prevalence is expected to grow in the society,
both among the elderly, where it is already the most
common sensory deficit, as well as among younger
people due to heavy noise exposure (World Hearing
Organisation 2015). People affected by hearing loss,
including age-related hearing loss (presbyacusis),
experience specific difficulties with understanding
rapid speech, speech presented with background
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noise or in case of two or more speakers talk-
ing simultaneously (Schneider et al., 2010; Agrawal
et al., 2008; Imam et al., 2017; Davis et al.,
2016). In the elderly, a hearing deficit not only
impairs exchange of information, causing isolation
and depen-dency on others, but its presence has been
found to correlate with cognitive decline related to
aging (Uchida et al., 2019; Davis et al., 2016; For-
tunato et al., 2016). Recent studies even showed that
hearing impairments increase the chance of develop-
ing dementia and other neurodegenerative diseases
(Ford et al., 2018; Gurgel et al., 2014; Livingston et
al., 2017; Loughrey et al., 2018; among others).

Hearing function and hearing-related quality of life
have been shown to improve by using both hearing
aids (HAs) and/or cochlear implants (CIs). Hearing
aids only improve audibility of sound and thus can
provide benefit to patients with mild to severe hear-
ing loss. Nevertheless, severe damage to the inner
ear, namely sensorineural hearing loss (SNHL), is
not compensated by a hearing aid. Patients with
severe to profound SNHL can receive a cochlear
implant, an invasively inserted neuronal prosthesis
that bypasses damaged hearing cells in the inner ear
and directly stimulates auditory nerve fibers (Gay-
lor et al., 2013). Nevertheless, a number of patients
are unwilling to use hearing devices [the numbers
range from 4.7% (Hougaard & Ruf, 2011) to 24%
(Hartley et al., 2010), due to problems with han-
dling and maintaining them, as well as the related
social stigma. Invasiveness of the cochlear implanta-
tion procedure is another reason why some patients
are reluctant towards this solution (e.g, Maki-Torkko
et al., 2015). Among actual users of HAs and CIs
the most fundamental problem that is reported is not
being able to understand speech, especially when
presented in background noise (McCormack and
Fortnum, 2013; Hickson et al., 2014). Patients have
difficulty perceiving speech in acoustically hard con-
ditions despite their good performance in quiet.
Noisy environments are specifically challenging due
to patients’ inability to segregate different speech
streams and thus discriminate among talkers (Gay-
lor et al., 2013; Carol et al., 2011; Moradi et al.,
2017). In all these populations, the underlying rea-
son for struggling in noisy environments is that the
auditory input reaching the brain is deprived of tem-
poral fine structure information: in hearing loss due
to the damage to the inner ear, and in CI-users
due to the limitations of the algorithms applied for
speech coding (Moore et al., 2008; Moon and Hong,
2014).

The abovementioned difficulties, with understand-
ing speech in challenging acoustic situations, are
however also experienced by healthy adults. Indeed,
many of us have been in a situation when we were
unable to understand the person speaking on the
other end of the phone line, especially when using
a language that is not our native. Many of us had
struggled to understand a person talking to us if
there was another person talking at the same time.
All these occurrences are very demanding for the
central nervous system as they require “glimpsing”
in the impoverished acoustic signal to recover the
information, and such process engages a consider-
able amount of cognitive effort, also in the hearing
impaired (Rosen et al., 2013; Erb et al., 2013; Huyck
and Johnsrude, 2012; Banks et al., 2015; Wendt et al.,
2018; Rosemann et al., 2017; Krueger et al., 2017).

In the current study we hypothesized that we would
be able to improve speech understanding in noise by
applying multisensory input combining auditory and
tactile stimuli. To enhance the multisensory benefit
of our set up we designed our experiment accord-
ing to two fundamental rules governing multisensory
integration, i.e. the temporal rule (stimuli are tem-
porarily congruent) and the inverse effectiveness rule.
The latter rule states that the size of the multisensory
enhancement is inversely proportional to the signal
to noise ratio (SNR) between the two senses; clear
stimuli are more reliable and thus information from
another sensory modality is redundant, resulting in
reduced benefit from multisensory stimulation (see
e.g., Meredith and Stein, 1986; Holmes, 2007; Otto
et al., 2013).

To deliver tactile stimulation, we designed a
minimalistic auditory-to-tactile Sensory Substitution
Device (SSD) which transforms auditory signal into
tactile vibration. Indeed, SSDs are ideal tools to test
the benefits of multisensory stimulation on percep-
tion, as they can convey specific features typically
provided by one sensory modality using a different
one (Heimler & Amedi, in press; Heimler, Striem-
Amit & Amedi, 2015). There have been many works
showing that blind people are able to perform a great
variety of visual tasks when visual input is con-
veyed via visual-to-tactile SSD, namely via mapping
images from a video camera to a vibrotactile device
worn on the subject’s back, forehead or tongue (Bach
Y Rita, 2004; Chebat et al., 2011; Kupers and Ptito,
2011). However, to observe benefits of SSD stimu-
lations in performance, extensive training programs
had to be implemented or at least prolonged use
was necessary, due to the complexity of the SSD
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algorithms and the cognitive load required from new
SSD users (Striem-Amit et al., 2012; Bubic et al.,
2010; Maidenbaum et al., 2014; Kupers and Ptito.
2011; Yamanaka et al., 2009). Here we hypothe-
sized that due to the numerous similarities between
the auditory and the tactile system (see Discussion)
our set-up would require minimal training in order to
observe improvement in performance (and in fact we
started testing with no training whatsoever).

Several attempts have already been undertaken
to improve speech understanding in patients with
hearing loss, and mainly children, with the use of
tactile devices. The aids provided single- or multi-
channel electric pulses or vibrations and were worn
on various parts of the body (Galvin et al., 2000;
Plant and Risberg, 1983; Weisenberger and Percy,
1995; Bernstein et al., 1998; Galvin et al., 1991).
All these early studies demonstrated that the whole
complex speech signal cannot be effectively trans-
lated into tactile vibration. With that in mind and
also following some more recent findings in that
field (Carol et al., 2011; Young et al., 2016; Huang
et al., 2017), we decided to convey via touch only
the low-frequency (<500Hz) information which is
shared by touch and audition. Specifically, we trans-
formed the auditory speech fundamental frequency
(f0), namely the lowest frequency of a periodic wave-
form which is typically in the range of 80-250 Hz, into
the corresponding vibrotactile frequency. Availabil-
ity of fundamental frequency in the speech signal has
been found crucial for understanding speech in noise,
as well as segregation of talkers (Carol et al., 2011;
Young et al., 2016). In addition, adding it as a tactile
input has already been shown to have an enhancing
effect on recognition of speech in cochlear implant
users (Huang et al., 2017).

In sum, we performed a proof-of-concept study
first in normal hearing individuals, by 1) applying
a very degraded auditory input, deprived of tempo-
ral fine structure information and 2) using non-native
speech. This procedure was selected to increase the
difficulty of the task, and thereby increase the chance
of taking advantage of the inverse effectiveness law
for multisensory integration. Only one study thus
far applied a similar multisensory audio-tactile set-
up but only in the native language of a group of
normal hearing participants (Fletcher et al., 2018).
Participants showed minor improvement of 10% in
sentence-in-noise recognition but only at fixed SNR
rates and, moreover, only after a dedicated training.
Demonstrating that our multisensory set-up pair-
ing impoverished auditory signal with a vibrotactile

input, delivered via a minimalistic auditory-to-tactile
SSD, would enhance perception of speech-in-noise
even without specific training, would have crucial
implications for a number of domains. These would
include research in sensory perception and inte-
gration, design of SSDs, as well as rehabilitative
programs tailored for auditory recovery. In addition,
showing an improvement in normal hearing non-
native speakers would mean we could offer our set-up
as a sensory augmenting technology to normal hear-
ing individuals struggling in challenging acoustic
situations.

2. Methods

2.1. Subjects

Twelve normal-hearing individuals participated in
the proof-of-concept study (3 male, 9 female; age
29 + /–7 years). None of the subjects participated
in a hearing test to objectify their normal hearing,
which can be considered a study limitation. However,
all of them reported never having been diagnosed
with or having experienced any hearing problems.
Participants were not native English-speakers but
were fluent in English. They reported having learned
English since the mean age of 7.8 years (SD = 1.6
years), for 12.2 years on average (SD = 5.1 years).
Most of them now use English regularly to commu-
nicate at work and/or with relatives living abroad, as
well as international friends. All participants were
right-handed. Each provided an informed consent
and they were not paid for participation. The experi-
ment was approved by the Ethical Committee of the
Hebrew University (353-18.1.08).

2.2. Preparation of stimuli

For the experiment we used recordings of the Hear-
ing in Noise Test (HINT) sentences (Nilsson 1994).
The set is composed of 25 equivalent lists of ten
sentences that have been normed for naturalness, dif-
ficulty, and intelligibility, and 3 lists of 12 sentences
for practice. All sentences are of similar length and
convey a simple semantic content, such as e.g. “The
boy fell from the window” or “It’s getting cold in
here”. The duration of each recorded sentence was
approximately 2.6 seconds. They were spoken by a
male.

In the first step of stimuli preparation, the energy
of all sentences was normalized with a standard RMS
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procedure and peaks of energy were leveled to –6 dB.
The specialist sound engineer made sure that all
sentences sound similar in terms of the conveyed
energy. All sounds were stored as 16-bit 44.1 kHz
digital waveforms. Next, the sentences were vocoded
using an in-house algorithm developed at the Insti-
tute of Physiology and Pathology of Hearing (IPPH).
The algorithm involved the following steps: band-
pass filtering of the input signal to 8 channels, signal
rectification, low-pass filtering for envelope wave
extraction (100–7500 Hz) with a 6th-order bandpass
filter, modulation with a narrowband noise, adding
electrode interactions, summation of all channels.
The amount of channel interactions, which usually
limits benefit from cochlear implant systems was sim-
ulated through spread of excitation (SoE) profiles
which were measured in a representative group of
cochlear implant users (Walkowiak et al., 2010). A
number of works have already showed that normal
hearing listeners are able to learn such manipu-
lated auditory input (but not with our tactile pairing
approach) (Lee et al., 2017; Erb et al., 2013; Casserly
and Pisoni, 2015; Rosemann et al., 2017).

For vibratory stimulation, the refined fundamen-
tal frequency structure for each sentence was first
extracted using the STRAIGHT algorithm, as origi-
nally described in (Kawahara et al., 1999). The output
signal contained information during voiced speech;
the rest was represented as silence. The amplitude
information for the f0 contour was extracted by low-
passing the original signal with a 3rd-order bandpass
digital elliptical filter with cut-off frequencies equal
to the highest and the lowest frequency in the f0 con-
tour. Finally, the amplitude of the outcome signal was
normalized to its maximum digital value (0 dB atten-
uation) to provide maximum intensity of vibration
across the whole f0 frequency range. It was made
sure that all participants feel the vibration and find it
pleasant.

2.3. Experimental set-up

A dedicated 3T MR-compatible Vibrating
Auditory Stimulator (VAS) was developed
by the Warsaw-based Neurodevice company
(http://www.neurodevice.pl/en) The main parts of
the system were a vibrating interface with two
piezoelectric plates to simultaneously stimulate two
fingers (Fig. 1 A) and a controller. The controller was
powered from a socket of 230V, and vibration was
delivered from a PC via an audio input. The vibration
frequency range of the device is 50–500 Hz.

The auditory stimulation was delivered via
noise-cancelling headphones (BOSE QC35 IIA).
Noise-cancelling was needed to attenuate noise
produced by the tactile device when vibrating. Nev-
ertheless, a follow-up study is envisaged with a
free-field sound presentation, which set-up would be
more ecologically valid for the hearing impaired pop-
ulation using hearing aids and/or cochlear implants.
Headphones and the VAS system were connected
to a PC via a sound-card (Creative Labs, SB1095).
Sound intensity and harmonic distortions were reg-
ularly monitored with a GRASS calibration system
(Audiometer Calibration Analyzer HW1001).

A MatLab (version R2016a, The MathWorks Inc.,
Natick, MA, USA) application with a user-friendly
GUI was developed by dr Tomasz Wolak to provide
very precise auditory and/or vibratory stimulation
(Fig. 1 B). The application offers a number of param-
eter configurations to be used, including, type of
stimulation to be presented (an earlier defined tar-
get vs noise), type of background noise (eg. speech
or white noise), channel of stimulation (headphones
vs VAS), type of the adaptive procedure to be applied
to estimate SNR (for 25%–75% understanding) and
the step size (1–4 dB), among others.

2.4. Procedure

First, five sentences from the HINT set were used
for participants to practice. They were presented
one after another, first unmodified, then vocoded
and finally vocoded with simultaneous background
noise, specifically the International Female Fluctuat-
ing Masker (IFFM; Ehima 2016). This type of noise,
a mix of 6 female speakers, was chosen to reflect
a real-life challenging auditory situation, but also to
limit informational masking which has been found
to require high amounts of cognitive effort (Rosen
et al., 2013). The participants were asked to repeat the
sentence they have just heard or at least the parts they
were able to. After practice participants took part in
a test. The aim was to establish the Speech Reception
Threshold (SRT), i.e. speech-to-noise ratio (SNR) for
50 % understanding. This procedure is typically used
in the clinical ENT setting when assessing speech
understanding of HA/CI users (Levitt, 1978). Partic-
ipants listened to HINT sentences (target) presented
against the IFFM noise. The initial SNR was set at
0 which corresponded to 65 dB for both target and
noise. For each presentation, an algorithm randomly
selected a 3 s excerpt of noise from a 1 min-recording.
Noise started several seconds before the target

http://www.neurodevice.pl/en
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Fig. 1. A) vibrating interface of the Vibrating Auditory Stimulator; B) Matlab GUI for stimuli presentation and control; C) Speech Reception
Threshold values obtained for auditory and auditory-tactile speech in noise stimulation, at the group level and in individual subjects [subject
6 showed an improvement from 0.3 to –3.0 SRT(dB)].

sentence. An adaptive procedure was applied to esti-
mate the SRT for each participant, increasing the SNR
by 2 dB when the person was unable to repeat the
whole sentence, and decreasing the SNR by 2 dB if
he/she responded correctly. The response was deter-
mined correct only if the person repeated each word
of the sentence exactly, apart from cases such as using
the verb in a wrong tense or using an in/definite article
instead of an in/definite one. The adaptive procedure
and the way of response evaluation was adapted from
the original paper on the HINT test (Nilsson, 1994).

Each participant took part in two study conditions,
one with sentences presented only via headphones

(A) and one when the auditory signal was accompa-
nied with tactile vibration representing f0 extracted
from sentences (AT). The tactile stimulation was
delivered on the index and middle finger of the dom-
inant hand. Sentences from two 10-sentence lists
(List 1 and List 2) were presented in the A con-
dition, and other 20 sentences were used in the
AT condition (List 3 and List 4), or the other way
around (counterbalanced across participants). For
each participant the same sentence lists were used and
sentences were always presented in the same order.
The test for SNR estimation took approximately
10 minutes.
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Apart from the Speech-in-Noise test, all partici-
pants listened to different 20 HINT sentences (List 5
and List 6) in Quiet; half of participants before and
half of them after the test for SNR estimation, and
were asked to repeat as much as they were able to.
This part took approximately 5 minutes.

3. Results

The results of the experiment are presented in
(Fig. 1 C-D). The mean SNR for 50% understand-
ing (SRT) of speech in noise for the A (auditory
only) condition was 18.6 dB (SD = 7.9 dB), and for
the AT (auditory-tactile) condition it improved to
12.6 dB ( + /–8.5 dB). The mean benefit of adding
vibration in terms of the SRT value was 6 dB (SD = 4
dB). The outcomes in the two experimental con-
ditions were compared using the non-parametric
Wilcoxon Signed-Ranks test. It was found that when
vocoded sentences were accompanied with vibration,
the SNR for 50% understanding was significantly
lower (z = –3.06; p < 0.005) (IBM SPSS Statistics 20).
Participants were able to correctly repeat on average
21.25% ( + /–9%) of the sentences in the A condition
and 25% ( + /–9.3%) in the AT condition (per-
cent of understood sentences out of 20) (Wilcoxon,
p = 0.047). The outcomes of speech understanding
in noise, with and without accompanying vibra-
tion, were found significantly correlated (Spearman’s
Rank-Order correlation; rho = 0.6; p < 0.05). In terms
of understanding vocoded sentences presented in
quiet (Audio in Q; percent of understood sen-
tences out of 20) participants obtained a mean of
55% (SD = 19%). There was no correlation found
between these latter outcome and the outcomes
obtained when listening to sentences presented in
noise (Spearman’s Rank-Order correlation; A and
Audio in Q: rho = 0.18; p = 0.57; AT and Audio in
Q: rho =&thinsp-0.08; p = 0.82).

4. Discussion

The present study shows that when an auditory sig-
nal is degraded, understanding of speech in noise can
be significantly improved by adding complementary
information via tactile vibration, thus ultimately pro-
viding further support to the inverse effectiveness law
(Otto et al., 2013; Meredith & Stein, 1986; Holmes,
2007). One crucial aspect of the current result is the
automaticity of such improvement, which has very

interesting consequences both for rehabilitation as
well as for basic research on multisensory process-
ing and its benefits on perception. Our results were
obtained by using a minimal custom-made auditory-
to-tactile Sensory Substitution Device (SSD) that
conveys extracted fundamental frequency (f0) of the
speech signal through vibration. All our subjects
showed automatic and immediate improvement when
perceiving speech-in-noise with tactile stimulation,
compared to when perceiving speech-in-noise alone,
resulting in a significant group mean benefit of 6dB.
This effect is quite remarkable if one considers that:
(1) every increase of 3 dB represents a doubling of
sound intensity and every increase of 10 dB represents
a doubling of the perceived loudness (Stevens, 1957),
(2) no training aimed at matching audition and touch
was applied, (3) the direction of the effect was consis-
tent across all individuals. To our knowledge, this is
the first study to show such a systematic improvement
across participants during multisensory audio-tactile
perception of speech-in-noise.

Two other recent studies tested a similar question,
though both obtaining somewhat less convinc-
ing results (Huang et al., 2017; Fletcher et al.,
2018). Specifically, Huang and colleagues (2017)
tested cochlear implant patients and showed an
improvement in speech-understanding when adding
low-frequency vibration corresponding to the f0
extracted from the presented sentences, without any
specific training. The improvement was, however,
significantly more modest (mean 2.2 dB) than in our
experiment. Fletcher and colleagues (2018) com-
plemented vocoded speech with tactile vibration in
normal hearing subjects using their native language.
After a dedicated training, participants showed an
improvement of only 10% in sentence-in-noise
recognition. In addition, Fletcher and colleagues used
fixed SNRs, as opposed to an adaptive procedure
for SNR estimation as we applied in our study. The
latter is more optimal as it matches task difficulty
across participants preventing the floor and the ceil-
ing effects (Levitt, 1978). We hypothesize that the
fact that we used non-native and thus less intelligi-
ble auditory input enhanced the effects of the inverse
effectiveness law. Nevertheless, future studies should
investigate which experimental settings used in the
other two works made their outcomes less impressive.

The findings of the current study are especially
interesting if embedded within the more general lit-
erature regarding the benefits in behavior when using
SSDs. Most SSD solutions have been thus far aimed
for the blind population, with visual input conveyed
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via audition or touch (Bach-Y-Rita et al., 1969; Mei-
jer, 1992; Bach-y-Rita et al., 2004; Abboud et al.,
2014). All these works showed that blind participants
can perform a variety of ”visual” tasks with SSDs but
only after an extensive training (e.g., Striem-Amit
et al., 2012; Bach-Y-Rita, 2004; Chebat et al., 2011;
Chebat et al., 2015). Training was also needed to
observe benefits in the sighted popultion learning to
perceive visual information via SSDs (e.g., Amedi
et al., 2007; Hamilton-Fletcher et al., 2016).

Why did the current SSD set-up show such an
automatic effect? One possible reason might be that
the aforementioned SSD solutions use quite com-
plex algorithms to convey a variety of visual features
simultaneously, such as shape, location and even col-
ors of objects (Striem-Amit et al., 2012; Maidenbaum
et al., 2014; Levy-Tzedek et al., 2014; Abboud et
al., 2014). Indeed, when the amount of information
was reduced, also visual SSDs required shorter train-
ing programs (e.g., for navigation with the EyeCane;
Maidenbaum et al., 2014). The current auditory-to-
tactile SSD transfers “only” the fluctuating frequency
information, and therefore maybe requires less cog-
nitive effort from the user, ultimately speeding the
learning process.

In addition, in many everyday situations the audi-
tory and the tactile system often work together (e.g.
when a mobile phone is ringing and vibrating at
the same time or when listening to music), thus
potentially increasing the chances of an immediate
multisensory integration. Furthermore, audition and
tactile vibration share several physical properties. In
both types of stimulation information is conveyed
through mechanical pressure generating oscillatory
patterns, ultimately constructing frequency percepts
(e.g., Soto-Franco and Deco, 2009; Ro et al., 2013;
Good et al., 2014; Auer et al., 2007). Moreover,
within a certain frequency range, the very same oscil-
latory pattern can be perceived simultaneously by
the peripheral receptors of both sensory modalities
(i.e., the basilar membrane of the cochlea and the
skin, respectively; e.g., Von Békésy, 1959; Geschei-
der, 1970; Soto-Franco & Deco, 2009; Heimler et al.,
2014). Finally, there seems to be a privileged neu-
ronal coupling between auditory and sensory-motor
brain regions (Suarez et al., 1997; Burton et al., 2004;
Kayser et al., 2005; Beauchamp et al., 2008; Bellido
et al., 2018; Arenada et al., 2017; Igucji et al., 2007;
Caetano and Jousmaki, 2006; Auer et al., 2007; Fu
et al., 2003; Hoefer et al., 2013). All these similarities
probably contribute to why both hearing and deaf par-
ticipants consistently report to perceive simultaneous

vibrotactile and auditory stimulation as an interleaved
signal (Wilson et al., 2012; Bernstein et al., 1998;
Russo et al., 2012). Future studies may further eluci-
date the easiness and intuitiveness of SSD learning in
multisensory contexts, thus unraveling rules of mul-
tisensory integration depending on the used sensory
modalities.

Our results carry important implications for further
research, as well as possible clinical and practical
solutions. In rehabilitation, benefits of unisensory
task-specific trainings for recovery of sensory or cog-
nitive functions have been demonstrated in a number
of domains, such as in the ageing brain (Cheng
et al., 2017; Smith et al., 2009; Anderson et al., 2013;
Bherer, 2015) or following brain lesions occurred
during adulthood (Kerr et al., 2011; Xerri et al., 1998).
In addition, successful multisensory interventions
have been reported in patients after stroke (Tinga
et al., 2016), as well as in hemianopia (i.e., with loss
of vision in only one part of the visual field and/or one
eye) and spatial neglect (Keller and Lefin-Rank 2010;
Bolognini et al., 2017). Importantly, improvements
in speech skills have been reported in CI patients
following extensive audio-visual trainings combin-
ing the restored auditory input with speech-reading
or sign language (Leybaert and LaSasso, 2010; Fu
and Galvin, 2007; Stevenson et al., 2017).

The present work extends the current approaches
in rehabilitation even further, by showing benefits
of multisensory stimulations on performance even
without any training. This is an important advantage
because training programs are generally time con-
suming to both patients and caregivers and discourage
potential users to adopt SSDs in everyday life (Elli
et al., 2014). Our minimal set-up that requires only
two fingertips is also especially attractive in relation
to the more cumbersome tactile SSDs described in
literature (Kupers and Ptito, 2011; Novich and Eagle-
man, 2015).

We suggest that the designed auditory-to-tactile
SSD could serve as a valid assistive technology for
several populations with various degrees of hear-
ing deficits, either with or without a hearing aid/a
cochlear implant. As an example, CIs provide great
benefits for understanding speech in quiet but do not
transmit the low-frequency cues effectively, thereby
making speech comprehension in noise extremely
hard. The latter is related to inherent technological
limitations of the device, i.e. the restricted number of
independent frequency-specific channels, spread of
excitation, as well as the fixed rate of pulses deliv-
ered to the auditory nerve (Wilson, 2012; Cullington
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and Zeng, 2010). Therefore, conveying the missing
low-frequency information through vibration seems
a promising approach to improve speech understand-
ing in this population (e.g., Huang et al., 2017). This is
even more convincing, if one considers patients with
partial deafness who use an electro-acoustic hearing
prosthesis, combining electrical hearing via partially
inserted CI electrode array with low-frequency acous-
tic signal delivered naturally or via a HA in the
same ear. This population consistently shows supe-
rior speech performance in noise, when compared to
profoundly deaf users of CIs, probably due to the
access to low-frequency acoustic cues (Skarzynski
et al., 2003; Gstoetner et al., 2004; Gifford et al.,
2013; Skarzynski et al., 2009; von Illberg, 2011;
Zhang et al., 2010).

Although the current results show an immediate
benefit of speech in noise perception with audio-
vibratory stimulation, we suggest that perhaps some
specific training might be required when aiming at
achieving an improvement in unisensory auditory
performance. In this case, we predict that multisen-
sory stimulation might facilitate understanding of
the auditory signal, ultimately boosting its further
recovery (see Isaiah et al., 2014 for a success-
ful example in deaf ferrets). Such an approach
may be most effective if training is started before
cochlear implantation by delivering stimulation via
touch that, nevertheless, maintains features typical
of the auditory modality (i.e. periodic information
with fluctuating frequency and intensity). We sug-
gest that such a training could prepare the auditory
cortex for future reafferentation of its natural sen-
sory input (Heimler et al., 2018; see analogous
suggestions for the blind population in Heimler and
Amedi in press). Interestingly, even though conclu-
sive research data supporting this approach are still
lacking, some hearing aid manufacturers already pro-
pose solutions delivering vibration to profoundly deaf
individuals prior to cochlear implantation (see, e.g.,
http://www.horentekpro.com).

Importantly, we also predict that our proposed
SSD might serve as an assistive aid for the elderly
population whose both cognitive and sensory abil-
ities (and most often hearing) have deteriorated
(Amieva et al., 2015; Murray et al., 2018). Solu-
tions for the elderly seem crucial in the nowadays
aging society, with hearing loss becoming an epi-
demic. Since this population might have issues
with complying with extensive training programs,
we believe that our intuitive set-up might prove
helpful.

Finally, we see the potential use of our device
to support second language acquisition, as we have
shown in the current experiment that users do benefit
from vibration when trying to decipher sentences in a
non-native language. The device we have developed
provides low-frequency tactile stimulation which
conveys much of the cues that have been shown
hardest to detect in a foreign speech signal, such
as e.g. duration, rhythm and voicing (Kuhl et al.,
1992; Riviera et al., 2005). Interestingly, multi-
sensory approaches have already been successfully
applied in foreign language teaching, such as e.g.
within the Multisensory Structural Language Educa-
tion framework, which combines visual, auditory and
tactile modalities (Schams and Seitz, 2008; Lidestam
et al., 2014). Other possible applications of our setup
in normal hearing subjects (but also the hearing
impaired) can include voice rehabilitation, improv-
ing appreciation of music, as well as assistance when
talking on the phone.

Future studies should investigate the feasibility of
our set-up for all the aforementioned applications and
potentially implement slight modifications to adapt it
to the needs of the specific population of interest.
Our aim in describing possible applications of our
multisensory audio-tactile set-up was to highlight its
flexibility and therefore, the wide spectrum of reha-
bilitative conditions it can be used for. On a final note,
we are planning to elucidate the neural correlates
of the demonstrated improved speech understanding
during multisensory stimulation. Indeed, our SSD has
been designed to be MR-compatible, thus making it
immediately suitable for testing in the scanner with
functional magnetic resonance imaging (fMRI).
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