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Is the data normally distributed?
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1. Introduction

The normal distribution is the foundation of many
statistical analysis techniques. These so called ‘para-
metric methods’ use the parameters of the distribution
(mean, standard deviation) as part of the calculations.
When data is analysed using parametric statistics, cer-
tain conditions should be met to apply those statistics
correctly. One of these conditions is that data are nor-
mally distributed, and some suggest that this should
be determined early in any analysis [1, 2]. But others
suggest it is unnecessary [3], as normality is not an
important assumption [4] and many parametric tests
are ‘robust’ and can deal with non-normal data dis-
tributions [3]. Yet, readers of research papers seek
assurances that the data analysis is appropriate [5].

In spite of authors discussing their need, Thode [6]
described approximately 400 methods to test for nor-
mality. So, many options are available to researchers
which range from informal plotting through to formal
hypothesis testing which tests the null hypothesis of
‘the variable being examined follows a normal distri-
bution’ [1]. So, a P value below a given significance
level, suggests departure from normality.

Researchers need to be aware of these techniques, so
that they can determine their analysis options, and to
make sure the data contains no surprises. The purpose
of this paper is to outline some of the techniques that
can be used.

2. Plotting data

Healy [4] suggested that looking at your data is
the best way to determine non-normality. A researcher
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Fig. 1. Distribution of 90/90 test results (n=96).

should visually inspect their data first, [1, 7] and not
doing so is according to Tukey [8], inexcusable. Hen-
derson [7] said that the first step in analysis was to
screen the data for outliers. The box plot in Fig. 1
shows a distribution, with two ‘extreme’ high values.
The researcher can determine if they are outliers or
typos.

Next, the data should be plotted in a histogram [1,
7]. This ‘eye balling’ enables assessing whether the
data approximates to a normal distribution, and if the
data has a tail. Figure 2 displays several histograms
of 90 90 test data scores. Selected parameters of the
distributions are shown in Table 1. In Fig. 2, the dis-
tributions of the samples are different, Fig. A and B
have much flatter distributions than C and D, which
is largely down to the respective sample sizes. Larger
samples will approximate more closely to a normal
distribution. Kim [9] suggests that using the histogram
of the distribution may be is best in a larger sample
(n>50). Certainly, the two distributions with smaller
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Fig. 2. Histograms of four different samples of 90 90 test scores.

Table 1
Parameters of the four sample distributions
n Mean SD Skew S Eskew Z
A 28 92.1 12.4 0.14 0.463 0.302
B 39 88.3 16.2 -0.71 0.392 -1.810
C 65 86.7 13.9 -0.33 0.304 -1.086
D 80 88.9 13.8 -0.39 0.274 —-1.424

sample sizes in Fig. 1 (A & B) are flatter and lack the
distinctive shape that is beginning to emerge in Figs.
A and D.

Data distributions could also be examined using a
graphic called a normal probability plot, sometimes
know as a Q-Q probability plot. If the data approxi-
mates to a normal distribution, it should form a straight
line along the upward diagonal [1, 9, 10]. Any depar-
tures from the line are evidence of a non-normal data
distribution, for example Healy [4] stated that skew-
ness can be seen if the data forms a curve. The normal
probability plots for each of the samples are shown
in Fig. 3. Each sample approximates quite well to the
straight line. At either end of the four distributions,
there is some departure from the diagonal. In each case
it is not large, but it is most marked in the smaller sam-
ples (A & B). Figure 4 shows plots for positive and
negative skewed distributions. Their departure from the
diagonal is marked, and they are clearly non-normal.

3. Summary statistics

Skewness is a measure of the asymmetry of the sam-
ple distribution [11, 12]. Itis offered by many statistical
packages and is also a function included in Excel
[skew()]. So, it is readily accessible to researchers.
For a true normal distribution the skewness parameter
would be zero. A distribution is said to have a positive
skew, when more data is in the right side of the distri-
bution. A distribution is said to have a negative skew
when most of the data values are on the left of the dis-
tribution. From the sample distributions in Fig. 1 and
Table 1, A has a positive skew and B, C and D all have
a negative skew. However, none of the values, exceed
a value of = 2, which is considered as the point where
the distribution departs substantially from normality
[9]. Another measure of departure from normality is a
Z test as defined in Equation 1.

Skewness
= (D
SESkew
6
SESkew = N (2)

For this calculation the standard error of the skew
is needed, the estimate [13] is given in Equation 2. As
with any Z test the critical cut off at P <0.05 is 1.96.
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Fig. 3. Normal probability plots of four different samples of 90 90 test scores.
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Fig. 4. Normal probability plots of a positive(E) and a negative(F) skewed distribution.

4. Significance tests

Researchers can apply significance tests to deter-
mine if there the data depart from normality. Two
popular tests are the Shapiro-Wilk test, and the
Kolmogorov-Smirnoff test. The statistics for the six
samples studied are in Table 2. The results for the first
four (A, B, C & D) all recorded data above P>0.05
and indicate normality, whereas for samples E and

F, the low P values indicate that the data is not nor-
mally distributed. Sainani [1] regards using these tests
as optional, and if used they should accompany graph-
ical techniques. While the Shapiro-Wilk test is more
powerful than the Kolmogorov-Smirnoff test [9], it is
best used with samples of under 300 [9]. With samples
larger than this, it is unreliable [9] as it emphasises
unimportant deviations [1]. In contrast, important devi-
ations may be disregarded in small samples [1].
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Table 2
Shapiro-Wilk tests for normality

n w P
A 28 0.959 0.33
B 39 0.946 0.06
C 65 0.981 0.39
D 80 0.978 0.19
E 34 0.832 0.001
F 34 0.877 0.001

Just because a variable is continuous (an interval
or ratio scale) does not mean the data is normally
distributed. This is especially true when dealing with
small samples. Any data set should be examined for
normality before applying a test for differences or
associations. Many techniques are available to assess
normality, and researchers are urged to use a variety
of methods to assess their data. Frequently in physio-
therapy research, relatively small sample sizes are used
(n<50). Examine your data and avoid surprises.
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