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Abstract. The concept of frailty refers to heterogeneity in the risk of adverse outcomes for people of the same age. It
is traditionally thought of as the inability of the body to maintain homeostasis. It can help explain differences between
chronological and biological age and can quantify healthspan in experimental studies. Although clinical studies have developed
tools to quantify frailty over the past two decades, preclinical models of frailty have only recently been introduced. This
review describes the notion of frailty and outlines two commonly used clinical approaches to quantify frailty: the frailty
phenotype and the frailty index. Translation of these methodologies for use in animals is introduced and studies that use these
models to evaluate interventions designed to attenuate or exacerbate frailty are discussed. These include studies involving
manipulation of diet, implementation of exercise regimens and tests of pharmaceutical agents to exacerbate or attenuate
frailty. Together, this body of work suggests that preclinical frailty assessment tools are a valuable new resource to quantify
the impact of interventions on overall health. Future studies could deploy these models to evaluate new frailty therapies, test
combinations of interventions and assess interventions to enhance the ability to resist stressors in the setting of ageing.
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1. Introduction

The number of people aged 60 and older is incre-
asing worldwide at an unprecedented rate, so that
between 2015 and 2050 the percentage of people in
this age group will rise from 12 to 22% [1]. Older
individuals accumulate health deficits with age, from
the subcellular and cellular levels through to the
organ and system levels [2]. These deficits increase an
individual’s susceptibility to environmental and phy-
siological stressors, which can affect their overall
health [3, 4]. In other words, this can compromise
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healthspan, which can be defined as the portion of
an individual’s life spent in generally good health
[3]. Vulnerable older people pose challenges in terms
of health management, as they have higher rates of
adverse health outcomes than do people of the same
age who do not have multiple health deficits [4-6].
This is an emerging global health challenge.

The notion that there is heterogeneity in the risk of
death in people of the same age was termed “frailty”
by demographers in the 1970’s [7]. In clinical prac-
tice, the term frailty refers to variability in the risk of
adverse outcomes for people of the same age. Since
2001, two approaches to its measurement predomi-
nate, with frailty as either a specific syndrome [8] or
as a vulnerability state arising from a range of health
deficits [9]. The latter can be quantified across the
life course as the age-related accumulation of health
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deficits [2, 10]. The ability to measure frailty provides
a valuable tool to quantify underlying heterogeneity
in individual health status and predict mortality risk
[11]. Because frailty can increase the risk of adverse
outcomes including death in older people, strategies
that can delay or prevent frailty can improve the qual-
ity of life and life expectancy in older people.

Interventions including drug therapies, exercise,
and dietary modifications have been proposed to att-
enuate ageing, frailty and associated mortality [12—
14]. These strategies have recently been investigated
in various preclinical models, especially rodents as
they are mammals with a relatively short lifespan
[15, 16]. Rodents exhibit many deleterious changes
in physical appearance, activity levels, strength, cog-
nitive function and behaviour patterns with age [17-
22]. These characteristics make them a good choice
for preclinical studies designed to investigate frailty
and its prevention. In addition, anumber of preclinical
frailty models have now been developed [15] and used
in intervention studies [23]. These investigations have
begun to shed light on novel interventions that may be
translated to humans [23]. Here we will first review
animal models of frailty and then focus on interven-
tions tested in these models that have the potential to
treat frail older adults in the future.

2. Frailty Measurement
2.1. Frailty assessment in humans

Efforts to quantify frailty in clinical practice have
used two distinct operational approaches [8, 9]. The
frailty phenotype approach was first proposed by
Fried and colleagues in 2001 [8]. This approach
assesses an individual’s frailty level based on the
presence of five criteria: unintentional weight loss,
self-reported exhaustion, low grip strength, slow
walking speed, and low physical activity [8]. An
individual is considered “frail” if they show poor per-
formance in three or more of these criteria [8]. Those
with poor performance in one or two criteria are
deemed “prefrail” and those with good performance
on all measures are considered “robust” [8].

A second common clinical method evaluates frailty
with a frailty index. This approach measures the num-
ber of health deficits accumulated with increasing age
[9, 24]. A frailty index score is created by measuring
the number of health deficits in an individual and
dividing this by the total number of health deficits

considered. If a sufficiently large number of deficits is
considered (e.g.>30), the score becomes independent
of the precise nature of the items considered [25]. It
produces a numerical score between 0 to 1, where val-
ues close to “0” indicate low frailty and higher values
denote increasing levels of frailty [9]. A frailty index
is created from clinical signs and symptoms that can
be viewed as health deficits, although a frailty index
based solely on standard laboratory tests (called the
FI-Lab) has also been developed [26]. There is a sub-
maximal limit to frailty, and those with scores near
0.7 cannot survive additional deficits [27].

Although the frailty phenotype and frailty index
predict mortality in older individuals [8, 9, 24], there
are differences in these two approaches [28]. A key
difference is that the frailty phenotype assesses phys-
ical frailty only [8]. In contrast, the frailty index
measures health deficits across a wide range of sys-
tems beyond just physical strength and activity [9,
24]. Still, these two approaches are widely used as
clinical frailty assessment tools [29-31]. Other clin-
ical frailty assessment tools including the Tilburg
Frailty Index, the FRAIL scale, the Frailty Trait Scale,
and the Groningen Frailty Indicator, are described
in a recent review [32]. However, only the frailty
phenotype and frailty index approaches have been
reverse-translated into animal models, as discussed
next.

2.2. Frailty assessment in laboratory animals

A range of approaches have been used to investi-
gate frailty in preclinical models. Some studies have
focused on physical frailty and sarcopenia to develop
specialized neuromuscular scoring systems for use
in mice [17]. Others have used genetically manipu-
lated animals such as interleukin-10 (IL-10"™/"™) and
Cu/Zn superoxide dismutase (Sodl KO) knockout
mice [33, 34]. In addition, the frailty phenotype and
frailty index approaches have been recently adapted
for use in ageing animals. These tools can not only
help us understand the biology of frailty, but they pro-
vide a platform for the development of new frailty
interventions.

2.2.1. The neuromuscular healthspan scoring
system
The loss of muscle mass and strength with age
is known as sarcopenia, a condition that is closely
associated with physical frailty in older people [35].
Graber and colleagues developed a neuromuscular
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healthspan scoring system (NMHSS) to quantify age-
related sarcopenia in ageing mice [17]. This scoring
system evaluates muscle contractility and physical
strength in individual mice; results show that force
production and strength decline with age although
there is considerable heterogeneity [17]. The authors
suggest that the NMHSS is a sensitive method
to assess physical frailty in ageing, where inter-
individual variation can limit the true evaluation of
neuromuscular health [17]. Although this is a useful
approach, the NMHSS is time-consuming, requires
specialized equipment and the evaluation of muscle
contractility is invasive [17]. Therefore, simpler, less
invasive approaches to frailty assessment in animals
have been developed.

2.2.2. Frailty assessment in animals based on the
frailty phenotype

The frailty phenotype was first operationalized in
27-28 month-old male C57BL/6 mice by employing
criteria similar to those used for human frailty pheno-
type assessment [36]. Grip strength, walking speed,
physical activity and endurance are assessed in indi-
vidual mice by setting a cut off value of 1.5 SD below
the cohort mean for each criterion. Animals that fall
below the cut-off for three of criteria are considered
frail, two criteria below are considered mildly frail
and fewer than two are considered robust. Compar-
ative analysis shows that the prevalence of frailty is
9% in mice at this age, which is comparable to the
prevalence in humans at similar survival ages [36].

These four physical frailty criteria (grip strength,
endurance, walking speed, and physical activity) have
also been used to quantify frailty in 17-month old
male Fischer 344 rats [37]. Rats in the lowest 20%
of performance on three or more tests are considered
frail. Those in the lowest 20% on two tests are con-
sidered mildly-frail and those in the lowest 20% on
fewer than two tests are non-frail [37]. The percent-
age of rats identified as frail (2.3%) in this study is
lower than that reported by Liu and colleagues [36,
37]. However, the rats were tested at an age with more
than 90% survival, while mice were tested at an age
with only 50% survival, so it is not surprising that
their frailty prevalence was lower [36, 37]. Thus, both
tools identify animals as frail consistent with studies
that use the phenotype approach in people [36, 37].

Interestingly, both of these rodent studies omit-
ted the clinically relevant criterion of weight loss
[36, 37]. It is possible that these studies did not
assess weight loss because they were cross-sectional
in design. However, even in a cross-sectional study it

may be possible to assess this outcome by comparing
an individual’s weight to mean values for mice of the
same age and sex. As weight loss is a key component
of the frailty phenotype in people [8, 9], other inves-
tigators have added this variable to frailty phenotype
scoring in animals. For example, the Valencia score is
a five-item frailty phenotype instrument for mice that
uses weight loss as one component of the scale [38].
These authors show that the Valencia score identifies
premature ageing as frailty and that Valencia scores
predict lifespan in ageing male mice [39].

Baumann and colleagues evaluated frailty in 14-37
month-old male C57BL/6 mice with a tool that in
cluded body weight as well as walking speed, stre-
ngth, endurance and physical activity [40]. However,
they used weight gain rather than weight loss as a
criterion for frailty [40]. Even with weight gain as a
criterion, they found that frailty could be seen as early
as 17 months, its prevalence increased with age, and
frailer mice had higher mortality [40]. Similar results
were seen in female mice, where the frailty pheno-
type also predicted mortality [41]. This work used
high body weight as a frailty criterion [40], unlike
human frailty phenotype studies where unintentional
weight loss is considered a key component of frailty
[8, 9]. With respect to weight gain and its relationship
to frailty, it is worth noting that some performance
measures in mice may need to be adjusted for body
mass prior to evaluating frailty with the frailty phe-
notype approach. Weight gain might also indicate
the development of maladaptive organ hypertrophy
and/or tumours, which could exacerbate frailty in
older animals. It also would be fascinating to com-
pare frailty in mice with low and high body weights,
by measuring frailty with a frailty index instrument
as outlined later in this review.

One limitation of the frailty phenotype studies in
rodents discussed so far is that they used only one sex,
typically males. Sex is an important factor that influ-
ences the degree of frailty observed in clinical studies
[42, 43]. For instance, although women have higher
frailty scores than men at any age, they live longer
[42, 43]. This so-called morbidity-mortality paradox
is compelling, although the underlying mechanisms
are unclear. To determine whether this could be
detected in animals, male and female C57BL/6 mice
were assessed with a five-parameter frailty phenotype
instrument [44]. They found that, although the preva-
lence of frailty increased with age in both sexes, it
was greater in 26-month-old females than in males
of the same age [44]. However, the females died
earlier than the males in this study, so when frailty
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scores were normalized by mean lifespan there were
no sex differences in frailty [44]. This may indi-
cate differences between humans and animal models,
although additional studies to explore this are cer-
tainly warranted.

The five component frailty phenotype approach
has been adapted for use in companion animals [45].
These investigators explored age-associated changes
and mortality in domestic dogs of both sexes [45]. The
five components modelled after the human instru-
ment include chronic undernutrition, exhaustion, low
physical activity level, poor mobility, and weakness
[45]. Dogs with two or more of these frailty compo-
nents are considered frail while those with 1 or less
are non-frail [45]. Critically, they show that higher
frailty scores increase the risk of death [45].

Together, these observations show that the frailty
phenotype is a flexible and potentially powerful
instrument that can be used for frailty assessment and
mortality prediction not only in humans but in other
species including rodents and dogs. As in human
work [46], preclinical studies with various modi-
fications to the frailty phenotype tool demonstrate
increased risk of adverse outcomes with higher levels
of frailty.

2.2.3. Experimental knockout models of frailty

The biological basis for frailty is not well under-
stood, although mechanisms involved in the ageing
process including inflammation and oxidative stress
have been implicated [16]. Indeed, genetically engi-
neered interleukin (IL)-10 (IL-10"™/"™) and Cu/Zn
superoxide dismutase (Sod1KO) knockout mice [33,
34] have been proposed as frailty models. These
models rely on the inflammation and oxidative stress-
associated mechanisms implicated in frailty [47] to
mimic aspects of age-associated frailty in people [33,
34].

In the IL-10"™/'™ mouse, the anti-inflammatory
cytokine IL-10 is knocked out, which results in en-
hanced circulating levels of the proinflammatory
cytokine IL-6 [33]. These mice exhibit muscle
weakness and changes in the expression of genes
associated with muscle energetics and apoptosis [33].
IL-10™/"™ knockout mice also exhibit abnormal
skeletal muscle energetics and cardiovascular dys-
function [48, 49]. Thus, inflammation, cardiovascular
abnormalities and skeletal muscle dysfunction con-
tribute to the phenotype seen in IL-10™/"™ mice.
Based on these data, strategies that reduce inflam-
mation may attenuate frailty in older individuals.

An increase in oxidative stress is implicated in
the development of frailty [47] so SodlKO mice
have been proposed as a frailty model [34]. These
mice lack the antioxidant enzyme Cu/Zn superoxide
dismutase, which reduces defence against oxidative
stress [34]. Although frailty has not been quantified in
these mice, they do exhibit phenotypic components of
frailty including weight loss, weakness, low physical
activity levels and reduced levels of endurance. More-
over, Sod1KO mice exhibit enhanced sarcopenia and
have an abbreviated lifespan [34]. These observations
suggest that increasing oxidative stress accelerates
frailty and increases mortality. Thus, interventions
that reduce oxidative damage, such as antioxidant
therapies, may reduce frailty in the setting of ageing.

Although both IL-10™/™ and Sod1KO models
have been developed to investigate frailty [33, 34],
there are limitations to their use as a model of frailty.
First, these genetically manipulated models do not
necessarily represent the natural ageing process and
the multitude of mechanisms implicated in the devel-
opment of frailty [16]. Second, frailty has not been
formally quantified in either IL-10™/"™ or Sod1KO
mice. It would be important to use either the murine
frailty phenotype tool outlined above, or the frailty
index approach described in the next section to quan-
tify frailty in these animals.

2.2.4. Frailty assessment based on the frailty
index approach in animals

Building on more than a decade of clinical work,
Howlett and colleagues first adapted the frailty
index for use in naturally ageing male and female
C57BL/6 mice [50]. This frailty index is based on
31 health deficits derived from open field activ-
ity data, body composition measures, hemodynamic
data, and serum markers of metabolism. To determine
the frailty level of each animal, each deficit is given
a score of 0, 0.25, 0.5 0.75 or 1 based on the num-
ber of standard deviations (SDs) each deficit differs
from mean reference values [50]. The scores for each
health deficit are summed and divided by the total
number of deficits (e.g. 31) to provide a frailty index
score between 0 and 1, as in humans [9, 10]. This
tool shows that 30-month-old mice have higher frailty
index scores than 12-month old mice [50]. This ini-
tial study demonstrates that a frailty index based on
deficit accumulation can be reverse-translated from
humans to experimental animals [50]. However, lim-
itations to this approach include the use of invasive
procedures, time-consuming nature of the techniques
used, and requirement for specialized equipment.
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To address these limitations, a non-invasive clin-
ical frailty index for mice was created by the same
group [51]. This frailty index evaluates 31 potential
clinical deficits that sample many systems includ-
ing the integument, musculoskeletal, vestibulococh-
lear/auditory, ocular/nasal, digestive/urogenital, and
respiratory systems, as well as signs of discom-
fort, body temperature and body weight parameters
[51]. Based on the presence of clinical deficits and
their severity, a numerical score is provided for each
deficit. Each deficit can be scored as 1 (severe), 0.5
(mild) or O (none present). The sum of these individ-
ual deficit scores is divided by the total number of
deficits measured (e.g. 31) to produce a frailty index
score [51]. Interestingly, the mouse clinical frailty
index shows a graded increase with age as seen clin-
ically [51]. This instrument also is flexible, as it has
recently been adapted for use in other species includ-
ing rats [52] and dogs [53]. Indeed, the age-associated
accumulation of health deficits increases the risk of
mortality in both species as well as in mice [53].

The mouse frailty index tool has been validated
against data obtained in people across the life course
[54]. Key features of deficit accumulation are simi-
lar in humans and mice, including the rates of deficit
accumulation, submaximal limit to frailty and abil-
ity to predict mortality [54]. In addition, a murine
frailty index based on laboratory data has been cre-
ated [55], similar to the human FI-lab [26]. This tool is
a collection of 23 standard laboratory tests related to
blood pressure, blood chemistry and echocardiogra-
phy. It has been used to explore mechanisms of frailty
development in mice, including studies of the pos-
itive relationship between frailty and inflammation
[55]. A frailty index based on laboratory plus clini-
cal frailty data showed that female mice have higher
frailty scores than males [55], similar to what is seen
in people [42, 43]. Thus, quantifying deficit accumu-
lation in mice provides a powerful new translational
tool for research on ageing.

The mouse frailty index can be used to evaluate
links between frailty and disease, including models of
neurodegenerative disease [56]. Todorovic and col-
leagues used a modified 24-item clinical frailty index
to assess the impact of age and sex on frailty in the
5xFAD mouse model of Alzheimer’s disease [56].
They show that frailty scores increase with age in
5xFAD mice and females have lower frailty scores
than males [56]. Females also have lower frailty
scores than males in the 3xTg-AD mouse model of
Alzheimer’s disease [57]. This study also reported
that the 3xTg-AD had higher frailty scores than

wild-type controls, and that frailty increased mor-
tality risk especially in female 3xTg-AD mice [57].
Together, these observations suggest that the frailty
index can be used to investigate the impact of over-
all health on neurodegenerative disease expression in
animal models.

The frailty index also can be used to evaluate the
relationship between frailty and cardiovascular dis-
ease in mouse models [58-61]. Indeed, the develop-
ment of age-related cardiac hypertrophy and contrac-
tile dysfunction is graded by frailty in ageing male
mice [59]. Further, these maladaptive changes in the
structure and function of the ageing ventricle are pro-
portional to, and graded by frailty index scores at
the organ, cellular and molecular levels [59]. More
recent work has shown that most of the relation-
ships between cardiac ageing and heart function are
graded by frailty in males, but not in females [58].
These findings are important as they suggest that
frailty promotes maladaptive changes in the heart that
may contribute to heart diseases in older males, while
females may be resistant to these deleterious effects
of frailty. Additional work in both sexes would be
important.

The concept of deficit accumulation has also been
used to explore the influence of frailty on heart rate
and sinoatrial node dysfunction in ageing male mice
[61]. This work shows that age-related sinoatrial node
(SAN) dysfunction is proportional to and graded by
the degree of frailty at the organ, cellular and sub-
cellular levels [61]. These observations indicate that
mice with the worst overall health had pronounced
changes in atrial structure and function that create the
ideal substrate for atrial arrhythmias [60]. Together,
these studies strongly suggest that disease expres-
sion is modified by overall health and that individuals
with high frailty scores exhibit marked signs of dis-
ease when compared to age-matched animals with
low frailty scores.

3. Frailty interventions

Animal models of frailty are an exciting new dev-
elopment that offer the chance to systematically in-
vestigate interventions that may delay or attenuate
the development of frailty. These can be broadly
categorized as either non-pharmacological or phar-
macological interventions. Interventions such as
diet management, calorie restriction (Table-1) and
exercise (Table-2) represent non-pharmacological



Table 1
Influence of diet and calorie restriction on frailty in animal models
Intervention' Frailty Age Sex Animal Outcomes Reference
assessment
Calorie restricted diet Frailty 19 mos M&F C57BL/6 Calorie restriction lowered frailty [64]
(40% fewer calories) index mice scores in males but not females.
for 13 mos.
Calorie restricted diet Frailty 19 mos M&F DBA/2 Calorie restriction reduced frailty [64]
(40% fewer calories) index mice scores in male mice with accelerated ageing.
for 13 mos
Calorie restriction Frailty 12-24 M Wistar Dietary restriction reduced frailty scores, [65]
(40% fewer calories) phenotype mos rats increased activity, and improved
for 6, 12 and 18 mos. (Valencia score) spatial memory.
Calorie restriction for Frailty ~37-39 M&F Adipose Calorie restriction enhanced longevity [66]
12 wks/or longer until index mos specific and improved fitness in wild-type and insulin-
~37-39 mos of age (modified) mTORC2 resistant adipose specific
(40% fewer calories) null mice mTORC?2 null mice of both sexes.
High-fat diet (HFD) Physiological 6.5-26 M&F NIH Both sexes gained weight but HFD- [67]
(35% Lard Diet) for frailty mos Swiss mice induced obesity enhanced frailty and
6.5-26 weeks. index reduced longevity in males only.

Females were protected from HFD-
induced effects on frailty
and longevity.

"High-fat diet (HFD).

(4
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Table 2
The impact of exercise on frailty in animal models

Reference
[70]

Outcomes

Animal

Age Sex

Frailty assessment

Treatment/regimen

Reversed frailty associated symptoms.
Enhanced aerobic capacity, improved

muscle mass and strength.

C57BL/6
mice

28-30
mos

Frailty phenotype,

Voluntary wheel
running (4 wks)

frailty intervention
assessment value

[38]

Longer period of voluntary wheel
running reduced detrimental

C57BL/6]
mice

17, 20,

Frailty phenotype
(Valencia score)

Voluntary wheel running
(3 mos of age until

23 & 28 mos

changes associated with frailty.

14, 17, 20 or 25 mos)
High-intensity interval
training (10-minute

[68]

Limits negative consequences of

C57BL/6
mice

24 mos

Frailty

frailty. Improved physical performance

phenotype
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and strength. Greater muscle mass, fiber

uphill treadmill, three
times/wks for 4 mos)

cross-sectional area and mitochondrial biomass.

Reduced frailty, enhanced physical
performance, increased strength,

and functional capacity
(nest-building ability).

[69]

C57BL/6J
mice

24 mos

Frailty phenotype,
clinical frailty
index, frailty
intervention

High-intensity interval
training (10-minute

uphill treadmill, three
times/wks for 2 mos)

assessment value

interventions, while drugs and antioxidants are con-
sidered pharmacological interventions (Tables-3 &
4). The efficacy of these interventions has been eval-
uated with the frailty phenotype and/or frailty index
in preclinical models, as discussed in the following
sections.

3.1. Diet and related interventions

Diet and calorie balance are important components
of daily life that can be manipulated to modify lifes-
pan in animal models [62, 63]. Therefore, studies
have explored whether these interventions can affect
“healthspan”, quantified as frailty, in preclinical mod-
els. These studies are summarized in Table-1.

Several investigations have explored the impact of
a low-calorie diet for frailty prevention (Table-1).
Kane and colleagues first reported that a calorie-
restricted diet (40% fewer calories) for 13 months
reduced clinical frailty index scores in older C57BL/6
mice and in DBA/2 mice, which are a model of accel-
erated ageing [64]. However, the benefits of dietary
restriction on frailty are only seen in male mice in both
strains [64]. Similar results have been reported in age-
ing male Wistar rats, where 40% calorie restriction
reduced frailty phenotype scores, enhanced physical
activity and improved spatial memory [65]. Whether
female rats benefit from this was not investigated.
Calorie restriction (40% fewer calories) also reduces
frailty index scores and enhances longevity in wild-
type mice and in insulin-resistant adipose-specific
mTORC?2 null mice of both sexes [66]. Thus, it seems
clear that fewer calories lead to improved overall
health as assessed by various frailty measures in mice
and rats, although whether this differs between the
sexes is controversial.

Only one study explored the influence of a dietary
“stressor” on frailty in animal models [67]. These
investigators showed that a high-fat diet (35% lard)
increased weight in both male and female mice, but it
enhanced frailty and reduced lifespan only in males
[67]. Thus unlike males, females are protected from
detrimental effects of a high fat diet on overall health
[67]. This ability to resist a stressor may contribute to
the morbidity-mortality paradox, where females have
higher frailty scores than males but they live longer
[42, 55].

Together, these observations suggest that calorie
restriction attenuates frailty progression in ageing
male rodents and calorie excess (at least in the form
of fat) exacerbates frailty (Table-1). Females may be



Table 3
Drug treatment regimens that attenuate frailty in animal models
Intervention! Frailty Age Sex Animal Outcomes Reference
assessment
Resveratrol (Antioxidant) Clinical 24 mos M C57BL/6 Resveratrol reduced frailty [64]
(100 mg/kg for 6 mos) frailty index mice scores in male mice.
Rapamycin (inhibitor of Physiological 6.5-26 M&F NIH Swiss Rapamycin increased lifespan of female [67]
mTOR complex 1; 7.5-12.5 pg/daily Frailty mos mice but not male mice when fed a standard diet.
in drinking water) in HFD Index (PFI) Rapamycin did not affect lifespan of mice
mice (35% Lard Diet) fed a HFD regardless of sex, but it did
from 6.5 to 26 mos of age. reduce frailty in HFD males only.
Diarylpropionitrile (estrogen Clinical 31 mos F OVX CD-1 Drug attenuated frailty in female mice. [79]
receptor-f3 agonist; frailty index female mice Improved feeding, reduced anxiety,
3 mg/kg/day in chow). improved spatial learning/memory, and
From 7 to 31 mos. running performance but did not affect lifespan.
Enalapril (angiotensin- Clinical 12-13 M&F C57BL/6 Enalapril reduced frailty in middle-aged [82]
converting enzyme inhibitor; frailty index mos and mice and older female mice and older male mice.
30 mg/kg/day in food; treated middle 21-25 Reduced pro-inflammatory cytokines
aged mice for 4 mos and mos in females and increased anti-
older mice for 5-9 mos). inflammatory cytokines in males.
Allicin (Garlic component) Clinical 13-21 M Fischer Allicin reduced frailty scores, [83]
(4, 8, & 16 mg/kg/day) frailty index months 344 rats attenuated age-associated bone deformation by
8 mos enhancing bone formation and bone
resorption, enhances bone mineral density
Alpha-ketoglutarate Clinical 18 M&F C57BL/6 Alpha-ketoglutarate reduces frailty index [84]
(metabolite in the TCA frailty index months mice scores in both sexes and high frailty scores

cycle; 2% supplement
w/w in chow)

are associated with reduced lifespan

!Physiological Frailty Index (PFT); High-fat diet (HFD); ovariectomized (OVX); tricarboxylic acid (TCA).

¥
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Table 4

Interventions that exacerbate frailty in animal models

Intervention' Frailty Age Sex Animal Outcomes Reference
assessment
Polypharmacy with simvastatin Clinical frailty 24 mos M C57BL/6J Polypharmacy resulted in a decline [85]
(20 mg/kg/day), metoprolol index mice in mobility, balance, and strength.
(350 mg/kg/day), omeprazole
(10 mg/kg/day), acetaminophen
(100 mg/kg/day), & citalopram
(10 mg/kg/day) for 2-4 wks
Monotherapy or polypharmacy for Clinical frailty 21-24 M C57BL/6] Polypharmacy with increasing drug [89]
9-12 mos with simvastatin, index mos (B6) mice burden index exacerbated frailty.
metoprolol, acetaminophen,
irbesartan & citalopram
(doses as above).
Single intraperitoneal injection Clinical frailty 2 mos M C57BL/6] Mice with pre-existing frailty were [90]
of lipopolysaccharide index (modified, mice frailer and more susceptible to
(LPS; 8 mg/kg) to model 8 components) postoperative complications (e.g.
pre-existing frailty. cognitive dysfunction, oxidative
damages and neuroinflammation).
Diarylpropionitrile (estrogen Clinical frailty 31 mos F OVX CD-1 Exacerbated frailty in aged, [79]
receptor-3 agonist; 3 mg/kg/day index female mice OVX female mice.
in chow from 7 to 31 mos).
Sublethal whole-body irradiation Clinical frailty 5-6 M C57BL/6 Irradiation caused premature frailty, [94]
3x3 Gray (NDT 320 or X-RAD225, index mos adverse cognitive changes,

225 kV; 3-times with 2
recovery days between doses
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resistant to both detrimental and beneficial effects
of dietary modifications, although this has not been
reported in all studies and additional experimental
work is required to explore this question.

3.2. Exercise and frailty interventions

Age-associated sarcopenia and physical inactivity
can lead to disability and death in older adults [14].
In consequence, there has been interest in the role of
exercise as an intervention for frailty prevention [14].
Studies in rodent models have explored the impact
of different types and intensities of exercise on the
development of frailty in the setting of ageing [38,
68-70]. These trials are summarized in Table-2 and
are discussed in detail below.

The first study to explore the influence of aerobic
exercise on frailty in a preclinical model examined
the effect of voluntary wheel running on frailty in
mice assessed with the frailty phenotype [70]. They
showed that even a brief (e.g. 4 weeks) trial of vol-
untary wheel running could reverse frailty, improve
muscle mass and increase strength in 28-30-month-
old male C57BL/6 mice [70]. A much longer duration
of voluntary wheel running was also effective at
preventing frailty in ageing male C57BL/6 mice eval-
uated with a modified frailty phenotype instrument
called the Valencia Score [38]. One limitation of these
studies is that they only used male animals; studies
of voluntary exercise in females would be important.

Other studies have assessed the ability of high-
intensity interval training to attenuate frailty in ageing
animals of both sexes. These studies found that as lit-
tle as ten minutes of high-intensity interval training
three times per week for 8—16 weeks enhanced physi-
cal performance and attenuated frailty in ageing male
mice [68, 69]. Although the duration of exercise was
different for males (16 weeks) and females (8 weeks),
high-intensity interval training attenuated frailty as
quantified with the both phenotype and frailty index
approaches [68, 69]. High-intensity interval training
alsois associated with greater muscle mass, increased
fibre cross-sectional area, and more mitochondrial
biomass in males, and improved nest-building activ-
ity in females [68]. These studies demonstrate that
exercise can attenuate frailty in older male and female
rodents (Table-2). However, studies conducted so far
have used only one sex to explore effects of exercise
on frailty. The impact of various exercise regimens on
ageing mice of both sexes in the same study, evaluated
with the same frailty tool, could be instructive.

3.3. Drugs as frailty interventions

Although drugs that target fundamental ageing
mechanisms have been shown to affect lifespan in
experimental models [12, 71], less is known about
effects on overall health. The recent development of
preclinical models of frailty has now allowed inves-
tigators to determine whether these agents can affect
healthspan. The results of studies testing interven-
tions designed to attenuate frailty are summarized in
Table-3. Interventions that can be considered stres-
sors and may exacerbate frailty are summarized in
Table-4.

3.3.1. Drug interventions that attenuate frailty in
animal models

The first study to demonstrate that drug treat-
ment could attenuate the development of frailty used
the antioxidant “resveratrol” [64]. This compound
was selected as it is a known longevity intervention
that improves many aspects of health and increases
lifespan in mice fed a high calorie diet [72]. It
also enhances the activity of sirtuin 1, which medi-
ates physiological effects of calorie restriction [73].
Kane and colleagues showed that, when 18-month-
old male mice were treated with resveratrol at a
dose of 100 mg/kg for 6 months, their frailty index
scores were significantly lower than age-matched
controls [64]. This work represents the initial “proof-
of-concept” that the frailty index is responsive to
pharmacological interventions.

The drug “rapamycin” inhibits mammalian/mec-
hanistic target of rapamycin (mTOR), a key element
in cellular metabolism that regulates processes in-
volved in ageing including nutrient sensing, pro-
teostasis, autophagy and cellular senescence [74].
Rapamycin enhances lifespan in preclinical rodent
models [75-77] and improves physical strength and
endurance in middle-aged mice [77]. Rapamycin
treatment also attenuates the development of frailty in
NIH Swiss mice challenged with a high fat diet [67].
However, rapamycin reduced frailty index scores in
male but not female mice fed a high fat diet [67].
This indicates that rapamycin slows the development
of frailty, although reasons for underlying sex dif-
ferences in responsiveness to rapamycin in mice fed
high fat diets are unclear.

Other drugs with anti-ageing properties have been
evaluated for potential beneficial effects on frailty in
preclinical models. Diarylpropionitrile is an estrogen
receptor-[3-specific agonist that has anti-aging effects
including positive effects on energy metabolism and
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neuroprotection [78]. Based on these observations,
Said and colleagues [79] proposed that it might im-
prove healthspan. Indeed, chronic treatment with
diarylpropionitrile (3 mg/kg/day) attenuates frailty,
improves spatial learning and memory and enhances
running in adult, ovariectomized CD-1 female mice
[79].

Another approach is to inhibit the renin-angioten-
sin system with either angiotensin converting enzyme
(ACE) inhibitors or angiotensin II receptor block-
ers; these drugs can improve grip strength, enhance
activity and reduce inflammation in rodents [80, 81].
Interestingly, chronic treatment with the ACE in-
hibitor enalapril (30 mg/kg/day) reduces frailty index
scores in 12-month old female C57BL/6 mice and
in older mice (~24 months of age) of both sexes
[82]. These beneficial effects were attributable to sex-
specific effects on inflammation, including a reduc-
tion in pro-inflammatory cytokines in female mice
and an increase in anti-inflammatory cytokines in
male mice [82]. This study was the first longitudinal
study to assess drug treatment effects on frailty across
the life course.

Yet another approach has exploited the anti-inf-
lammatory and anti-osteoporotic properties of allicin,
a component of garlic, as a treatment for frailty. Liu
and colleagues showed that chronic administration
of allicin reduced frailty index scores and protected
against senile osteoporosis in ageing Fischer 344 rats
[83]. This suggests that chronic administration of
allicin may be beneficial in delaying the onset of
both frailty and osteoporosis in older adults. A recent
novel approach has investigated the impact of treat-
ment with alpha-ketoglutarate, a key metabolite in the
tricarboxylic acid (TCA) cycle [84]. This compound
was selected based on its positive effects on lifespan
in aging mice and other organisms. Results showed
that 18-month-old male and female mice treated
chronically with alpha-ketoglutarate had lower frailty
index scores than mice fed standard chow [84]. Taken
together, these studies show that the new frailty
assessment tools are useful in detecting beneficial
effects of drug treatments on overall health in pre-
clinical models. This should facilitate exploration of
novel drug treatments and the influence of combi-
nations of interventions, such as exercise plus drug
treatment and/or dietary supplements.

3.3.2. Drug interventions that exacerbate frailty
in animal models
While some studies have examined strategies to
mitigate frailty, others have looked at the impact of

stressors on frailty scores. The first study to subject
mice to stressors and quantify effects on frailty looked
at the ability of polypharmacy to promote frailty
and other geriatric outcomes [85]. Polypharmacy is
common in clinical practice and is associated with
adverse health-related outcomes in older individuals
[86, 87]. Huizer-Pajkos and colleagues used a poly-
pharmacy regimen based on five commonly pre-
scribed drugs including a lipid-lowering agent, a
beta-blocker, a proton pump inhibitor, an analgesic
and an antidepressant [85]. They treated 24-month-
old male C57BL/6 mice with simvastatin, metopro-
lol, omeprazole, acetaminophen, and citalopram (2—4
weeks). Short-term exposure to polypharmacy red-
uced strength and locomotion, but had no significant
effect on frailty index scores [85]. As polyphar-
macy impaired motor function and strength, it is
possible that a frailty assessment with the frailty
phenotype might have reached a different conclu-
sion. More recently the same group explored the
impact of various polypharmacy regimens charac-
terized by different drug burden indices (DBI) [88].
They administered different drug regimens to middle-
aged (12 months) male C57BL/6J mice for up
to one year [89]. Polypharmacy regimens with a
high DBI as well as monotherapy with citalopram
increased frailty when compared to zero and low
DBI polypharmacy [89]. By contrast, deprescribing
of high DBI drugs markedly reduced frailty index
scores [89]. These observations indicate that chronic
polypharmacy with increasing DBI increases frailty
and that drug withdrawal reverses this effect. This
suggests that deprescribing is a potentially useful
strategy to reduce the burden of frailty in older
adults.

The relationship between frailty and the ability to
tolerate a stressor has been investigated in young
mice where “frailty” was induced by an injection
of lipopolysaccharide (LPS; 8 mg/kg IP) [90]. This
study used a modified frailty index tool based on 8
frailty components to first show that LPS increased
frailty [90]. They also showed mice with pre-exi-
sting LPS-induced frailty were more susceptible to
postoperative complications including cognitive dys-
function, neuroinflammation and oxidative after a
partial hepatic lobectomy [90]. This suggests that pre-
existing frailty may reduce resilience to stressors such
as surgery. On the other hand, LPS injection in young
mice is not a model of frailty in the setting of natural
ageing. Additional studies on links between frailty
and tolerance to stressors in preclinical models of
both ageing and frailty are justified.
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Several other studies have looked at interventions
that exacerbate frailty. One recent study showed that,
although treatment with the estrogen receptor-f ago-
nist diarylpropionitrile attenuates frailty in young
adult ovariectomized CD-1 female mice it increases
frailty in older mice (17-33 months of age) [79].
The reasons for this age-specific differential effect are
unclear. However, this does demonstrate the need to

Frailty Phenotype
5-items (Physical frailty)

Endurance (usually treadmill)

Walking speed (usually rotorod)
Strength (grip meter or inverted cling)
Activity (usually running wheel)

Body mass (weight loss or gain if used)
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investigate frailty interventions across the life course
and not just in younger animals [79]. Another pre-
clinical study investigated the influence of radiation
therapy on frailty. The rationale is that radiation ther-
apy induces fatigue [91, 92] and reduces physical
activity [93], which would be expected to worsen
frailty. The impact of radiation on frailty index scores
was investigated in male C57BL/6 mice, starting at
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Fig. 1. Preclinical models of frailty. The development of frailty phenotype and frailty index assessment tools has motivated efforts to test

novel interventions that can attenuate or exacerbate frailty.
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20-24 weeks of age [94]. This work shows that mice
treated with sublethal irradiation exhibit premature
frailty, premature mortality, a decline in cognitive
function and early tumour development [94]. This
demonstrates that the frailty index may useful to test
and validate novel interventions to prevent premature
ageing in cancer survivors.

3.3.3. Emerging drug studies

Animal models of frailty provide an excellent
platform to assess the impact of potential new the-
rapies on healthspan in preclinical models. For exam-
ple, cellular senescence is a process of cell ageing
where cells stop dividing and secrete harmful
substances including proinflammatory cytokines,
chemokines and growth factors that disrupt nearby
healthy tissue [95]. The newly described senolytic
drugs act to kill senescent cells and suppress this so-
called “senescence-associated secretory phenotype”
(SASP) [95]. The impact of these agents on frailty
in animal models has not yet been investigated.
However, weekly treatment with a combination of
senolytic drugs (e.g. 5 mg/kg dasatinib and 50 mg/kg
quercetin) in the Erccl-/A mouse model of human
progeroid syndrome improves symptoms associated
with frailty including low grip strength, poor body
condition, gait disorders, kyphosis, and tremor [93].
In addition, intermittent treatment of Ercc1-/A mice
with an inhibitor of heat shock protein 90 (17-DMAG;
10 mg/kg; 3 times per week every 3 weeks) reduces
symptoms of frailty including low grip strength, poor
body condition, gait disorders, kyphosis, and tremor
[96]. As 17-DMAG is a potential senolytic drug [96],
these findings suggest that senolytic drugs may atten-
uvate frailty. It would be of interest to investigate this
directly with one of the new preclinical frailty assess-
ment tools.

Other anti-ageing interventions may attenuate the
development of frailty. For example, the anti-diabetic
drug metformin has anti-ageing effects such as
reducing inflammation and oxidative stress [97].
Observational studies in animals show that long-term
treatment with metformin mimics some benefits of
calorie restriction (e.g. improved metabolic status and
physical performance) [98]. Metformin also attenu-
ates high fat diet-induced deleterious effects on body
composition, metabolism, and motor function in mice
[99]. In addition, metformin reduces anxiety-like
behaviors and improves strength, behaviour, loco-
motion, memory, and antioxidant defence in various
mouse models [100-103]. These observations sug-
gest that metformin may attenuate frailty in ageing

models and studies that investigate this would be
informative.

4. Summary

Frailty is an emerging area in preclinical age-
ing research. The ability to quantify frailty with
frailty phenotype and frailty index approaches pro-
vides some powerful new translational tools for
geroscientists, as highlighted in Fig. 1. These instru-
ments already have facilitated the quantification of
beneficial effects of interventions including dietary
changes, exercise regimens and drug therapies in pre-
clinical models. They have also been used to measure
the ability of frail ageing animals to resist various
stressors, and thus potentially to estimate resilience.
There are now new opportunities to investigate novel
drug therapies, repurpose existing therapies and
explore the impact of combination therapies on frailty
in the setting of ageing. These are exciting times in
the emerging field of the biology of frailty.
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