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Abstract. Advancing age is the greatest single risk factor for numerous chronic diseases. Thus, the ability to target the
aging process can facilitate improved healthspan and potentially lifespan. Lack of adequate glucoregulatory control remains
a recurrent theme accompanying aging and chronic disease, while numerous longevity interventions result in maintenance of
glucoregulatory control. In this review, we propose targeting glucose metabolism to enhance regulatory control as a means to
ameliorate the aging process. We highlight that calorie restriction improves glucoregulatory control and extends both lifespan
and healthspan in model organisms, but we also indicate more practical interventions (i.e., calorie restriction mimetics) are
desirable for clinical application in humans. Of the calorie restriction mimetics being investigated, we focus on the type 2
diabetes drug acarbose, an �-glucosidase inhibitor that when taken with a meal, results in reduced enzymatic degradation
and absorption of glucose from complex carbohydrates. We discuss alternatives to acarbose that yield similar physiologic
effects and describe dietary sources (e.g., sweet potatoes, legumes, and berries) of bioactive compounds with �-glucosidase
inhibitory activity. We indicate future research should include exploration of how non-caloric compounds like �-glucosidase
inhibitors modify macronutrient metabolism prior to disease onset, which may guide nutritional/lifestyle interventions to
support health and reduce age-related disease risk.

Keywords: Glucose, aging, diabetes, disease, glucosidase inhibitor, insulin, calorie restriction

Non-Standard Abbreviations:

ACA acarbose
CR calorie restriction
CRM calorie restriction mimetic
T2D type 2 diabetes
PPG post-prandial glucose

∗Corresponding author: Daniel L. Smith, Jr., PhD, Department
of Nutrition Sciences, University of Alabama at Birmingham,
1720 2nd Ave S, WEBB 423, Birmingham, AL 35294, USA. Tel.:
+1 205 934 4086; Fax: +1 205 934 7050; E-mail: dsmithjr@
uab.edu.

1. Aging as a risk factor for disease

Aging is considered the largest risk factor for
a variety of chronic and metabolic diseases [1].
More than any other individual factor, advancing age
increases the risk for type 2 diabetes (T2D), neu-
rodegenerative diseases (i.e., Alzheimer’s disease,
Parkinson’s disease), cancer, heart disease, and stroke
[2–6]. Unlike many risk factors (i.e., smoking, diet,
weight gain), aging, by strict definition as the act
of growing old, has not historically been consid-
ered to be modifiable. Aging and risk of disease
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development are so well intertwined that skepticism
surrounding the idea of longevity extension persists,
as a longer lifespan is considered by some as sim-
ply a prolonged opportunity to develop additional
age-related diseases [7, 8]. Despite this concern, con-
temporary pursuit of methods to increase lifespan and
healthspan through the process of slowing the accu-
mulation of age-related damage to cells and tissues
continues [9].

Conceivably, an intervention to extend lifespan
and/or healthspan would act through slowing the fun-
damental aging process(es) rather than preventing a
single disease [10]. It is possible that interventions
to slow the aging process may result in an individ-
ual experiencing an extension of healthspan without
significant increases to lifespan, as it is currently
unknown if maximal lifespan can be extended in
humans. Therefore, an individual might experience a
compressed window of morbidity by living the great
majority or potentially the entirety of lifespan without
developing the disorders now commonly associated
with aging.

A common co-morbidity observed in aging is
metabolic dysfunction [11, 12]. While metabolic
(e.g., glucose and mitochondrial) dysfunction is fre-
quently associated with aging, the causal relationship
between aging and metabolic dysfunction remains
to be fully understood [13, 14]. The risk relation-
ships among age and metabolic associated diseases
suggest some factors may be better primary targets
for longevity interventions than others. For instance,
curing cancer may not necessarily be expected to
significantly affect the subsequent risk for T2D or
cardiovascular disease [15]. In contrast, cardiovascu-
lar disease and T2D are more widely recognized as
possible contributors to neurological disease risk and
when remediated, could reduce the risk of dementia
and neurodegenerative disease [16–18]. Considering
the coordinate increase in risk for a number of chronic
diseases with advancing age and given the unclear
interrelationship between these diseases, a stronger
case might be made for targeting glucoregulatory
control to decrease disease risk and consequently
improve longevity (Fig. 1). In fact, T2D is a signif-
icant risk factor for most other age-related diseases
(e.g., cardiovascular disease, neurodegenerative dis-
ease, cancer, kidney disease) [17, 19–22]. If glycemic
control were successfully maintained with advanced
chronological age, this might slow the aging process,
potentially delaying or preventing the development of
multiple age-related diseases, allowing an individual
to live healthier for longer (Fig. 1).

Exactly which cellular or molecular mechanism(s)
is primarily responsible for the associations of ele-
vated glucose with chronic disease risks is not fully
understood. Proposed causative mechanisms lead-
ing to accelerated aging include direct methods
such as amplified and inappropriate glycosylation
events, along with the production of advanced gly-
cation end products that damage cellular functions
from DNA repair to structural integrity [23] and
indirect contribution to the production of reactive
oxygen species [24, 25]. Alternatively, maintenance
of glycemic control may function as a biomarker
of health maintenance from the cell to the organ-
ismal level. As such, one might expect a range of
interventions targeting diverse mechanisms could
share this glucoregulatory phenotype, resulting from
some combination of maintained integrity of the cell,
organelles, hormonal signaling or other factors coor-
dinating metabolism and ultimately aging across the
organism. Thus by indirect means, changes in glucose
levels could significantly impact transcriptional pro-
grams or hormonal signaling to coordinately regulate
processes currently known (or unknown) to influ-
ence the aging process (e.g., mitochondrial function,
autophagy) [26–30].

2. Glucose regulation in aging

Glucose dysregulation, measured as either hypo-
glycemia or hyperglycemia, can result from problems
along the entire glucose uptake, production, and
metabolism spectrum. Hyperglycemia is commonly
associated with advancing age and can occur as a
result of decreasing insulin release in response to
glucose and/or increased insulin resistance by tissues
[31, 32]. T2D is diagnosed by chronically elevated
blood glucose, either as a fasting blood glucose level
greater than 126 mg/dL or a 2-hour post-oral glu-
cose tolerance test blood glucose level greater than
200 mg/dL, while impaired fasting glucose is the rec-
ommended diagnosis for elevated blood glucose from
110–125 mg/dL [33], both of which may be accom-
panied by hyperinsulinemia and/or insulin resistance.

Recent surveys of the adult population in the
United States suggest that ≥50% of individuals over
45 years of age have T2D or prediabetes [34]. This
prevalence is greater with increasing age, with ∼80%
of older adults (age > 65) showing glucose dysregula-
tion. Thus, impaired glycemic control is approaching
epidemic proportions both in the U.S. and through-
out the world [35–37]. Although the source of the
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Fig. 1. Aging as a risk factor for chronic disease. A. Aging is the number one risk factor for the most prevalent metabolic and chronic
diseases in developed countries. B. Glucose dysregulation, however, is also a major risk factor for many of these same “age”-related diseases,
suggesting interventions that maintain or improve glucoregulatory control to prevent, delay or treat T2D (e.g., acarbose, metformin) may
have manifold benefits related to other chronic diseases associated with aging.

metabolic imbalance driving glucose dysregulation
may have multiple contributors, a surfeit of energy
intake with increasing body weight and BMI are pro-
posed to contribute [38]. Considering the advancing
wave of senior adults in the “baby boomer” gen-
eration with their current health and fitness status,
interventions targeting protection and improvements
in glycemic control should hold high priority [39].

3. Glycemic control in nutrition and genetic
aging interventions

At a metabolic level, improved glucoregulatory
control is a hallmark of successful aging in multiple
nutrition and genetic models across model organ-
isms. Improved glycemic control is often present
despite no obvious or significant reductions in relative
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body fatness, suggesting, independent of adipos-
ity, glucose levels may serve as a biomarker of
factors downstream or in addition to the glucose
metabolism (e.g., insulin sensitivity and hormonal
signaling) which may be mediating a portion of
this relationship [40]. For instance, multiple pre-
clinical, rodent models with improved longevity
profiles have coincident improvements in glucose
levels or insulin responsiveness, despite the nutrition
or genetic interventions targeting a multiplicity of
alternative pathways. Table 1 presents an overview
of selected lifespan-extending interventions, sum-
marizing the diversity of interventions with similar
glucose responses. However, improved insulin sensi-
tivity is not universally the case, as a few genetic and
pharmaceutical models of increased longevity have
been observed to induce insulin resistance, albeit at
times still in the context of reduced circulating glu-
cose [41–45]. These less common exceptions where
longevity extension is uncoupled from improved glu-
cose metabolism include cases where the insulin
signaling pathway in the brain is disrupted result-
ing in increased longevity (relative to within study
controls) despite mild glucose intolerance, or where
downstream signaling is inhibited with normal glu-
cose metabolism, as compared with whole body
effects where insulin sensitivity is improved con-
comitant with increased lifespan [43, 46]. Similarly,
inhibition of TOR (target of rapamycin) activity
through rapamycin treatment and/or genetic means
has been reported to extend lifespan in healthy, non-
diabetic mice under normal laboratory conditions
despite inducing some level of glucose intolerance
and insulin resistance, particularly in male mice,
which may be moderated (glucose intolerance) or
corrected (insulin resistance) during 20 weeks of
rapamycin treatment [47–50]. Additionally, inter-
mittent rapamycin exposure may provide longevity
benefits without inducing insulin resistance or glu-
cose intolerance in mice [51]. However, other reports
suggest these glucose/insulin phenotypes progress to
diabetes and preempt any longevity benefit when
using healthy mice under alternative housing con-
ditions or genetic models of T2D [52–54]. Human
studies of rapamycin administration following organ
transplantation have also noted a predisposition to
development of diabetes and poor lipemic control
[55, 56]. If the results are consistent in individuals not
undergoing organ transplant, and given the hypothe-
sis that rapamycin may be particularly detrimental to
insulin regulation in conditions requiring an adaptive
�-cell response [57], the metabolic dysfunction as a

Table 1

Selected lifespan extending interventions and glucose response

Organism Intervention Glucose Level∗∗

Diet§ Genetic
Yeast GR � [189, 190]
Worms GR � [191]
Mice/Rats DR � [192, 193]

MR � [194, 195]
ADF � [196, 197]

Ames dwarf � [198]
Snell dwarf � [199, 200]
GHR mutant � [201]
FIRKO � [120, 202]
AC5 – KO � [203–205]
Atg5 OE � [206]
Fgf21 OE � [207]
�MUPA OE � [208]
S6K1 KO � [209]
RII� KO � [210]

§ GR = glucose restriction, MR = methionine restriction, DR =
dietary restriction, ADF = alternate day fasting. ∗∗Represents
either decreased glucose level or increased glucose tolerance/
clearance.

result of rapamycin treatment may limit its wider use.
To what extent the rodent model is more permissive
of glucose intolerance than the adult human and how
the interplay between glucose and insulin mediates
the longevity effects of these specific interventions
over the full life course remains to be fully quantified
and understood.

One of the most direct methods of maintain-
ing glucose homeostasis is through diet/nutritional
interventions. Paramount among these is the dietary
restriction (DR) or calorie restriction (CR) paradigm.
Generally speaking, CR-related increases in healthy
aging and lifespan are inversely related to the amount
of restriction (fewer calories = longer lifespan) and
positively related to the duration of the interven-
tion (longer duration = larger benefit) [58–60]. Within
the group of homeotherms (“warm blooded” organ-
isms), the magnitude of the benefit appears largest
in smaller organisms and when started in early life
[61]. While not all reports have shown longevity ben-
efits with CR, some even display negative health and
longevity responses [62–67], the majority of publi-
cations demonstrate within-study increases in both
health and longevity, albeit in laboratory strains that
are most often less genetically diverse than wild
populations, including humans. In most rodent CR
studies, CR initiation results in temporary negative
energy balance accompanied by body weight reduc-
tion (both lean and fat mass) with weight stabilization
occurring within the first one to two months after
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CR initiation. This re-establishment of energy bal-
ance is maintained for the majority of the lifespan,
albeit accompanied by chronic hunger, with a lower
restriction limit of ∼60% below ad libitum (AL) (up
to ∼80% below AL with essential dietary compo-
nent supplementation) before overt health detriment
is observed in the lab [58, 61, 68, 69].

Despite these reported health benefits, life-long
dietary restriction in humans remains challenging
given the current state of modern society in developed
countries that has shifted from a limited food supply a
century ago to nutritional excess today. Additionally,
it is ethically questionable whether, similar to proto-
cols in the majority of laboratory animal models, such
restriction could and/or should be enforced from a
young age in humans, particularly given more recent
results in non-human primate studies which provide
limited support for health benefits achieved relative
to a healthful diet consumed in moderation [70–72].
Therefore, the identification of interventions that pro-
mote health and longevity independent of obligatory
food intake reductions has been proposed as an alter-
native means to “mimic” the physiologic benefits of
CR and reap health and longevity gains – a hypo-
thetical class of compounds termed calorie restriction
mimetics (CRMs) [73–79].

Multiple compounds have been proposed as poten-
tial CRM, with many fewer demonstrating the unique
capacity to increase health and lifespan significantly
without inducing calorie intake reductions. Of poten-
tial CRMs targeting glucose metabolism, multiple
approaches might be pursued: 1) the reduction of cel-
lular glucose utilization with glycolytic inhibitors, 2)
the reduction of circulating glucose through increased
utilization or storage (e.g., insulin sensitizers) or 3)
the reduction of dietary glucose access and utiliza-
tion. Examples of tested glycolytic inhibitors include
2-deoxyglucose (2DG, a non-metabolizable glucose
analog) and glucosamine, both of which recapitulate
some of the cellular and physiologic effect of CR
[80–83]. However, the ability to successfully mod-
ulate cellular glycolysis without inducing toxic side
effects remains a hurdle for the non-metabolizable
inhibitors like 2DG [80]. Although these compounds
may have relevance to inhibiting tumor growth and
specific disease states [84, 85], alternatives like glu-
cosamine have shown promise for lifespan extension
[86]. While we might suspect many compounds
that modulate glucose metabolism could function
as CRM (natural compounds or pharmaceuticals for
T2D treatment), for the remainder of this review, we
will focus largely on the third category of potential

CRMs that reduce dietary access or utilization of
glucose.

4. Targeting glucoregulatory control in aging

The similarities between glucose dysregulation in
aging and glucose dysregulation with T2D have led
to the hypothesis that an effective CRM could be
found by targeting glucoregulatory control [87]. If
an intervention is able to improve glucose regulation
to treat or prevent T2D, it may prevent development
of glucose dysregulation commonly observed with
aging (Fig. 1). The most well-known T2D drug that
has been tested as a CRM is metformin [88]. Met-
formin is reported to act through multiple pathways;
however, the best-characterized pathway is through
the activation of the cellular energy regulatory sensor
AMP-activated protein kinase (AMPK) [89]. AMPK
has wide-reaching effects, including increasing fatty
acid oxidation, autophagy and glucose uptake by
skeletal muscle, as well as inhibiting gluconeogenesis
in the liver [89]. As such, metformin is a first-line drug
therapy in T2D hyperglycemia treatment, with over
50% of individuals receiving metformin when begin-
ning glucose-lowering treatment [90–92]. Metformin
has been shown to extend lifespan in some rodent
models [88], including a possible reduction in age-
related diseases with long-term use [93]. However,
the benefit of metformin has been most pronounced in
disease-prone, accelerated aging or short-lived mod-
els [94]. In longer-lived, non-disease rodent strains,
metformin has limited health and longevity bene-
fits, with potential dose-dependent toxicity (similar
results in Drosophila), suggesting metformin may be
more effective at suppressing diseases, such as can-
cer, than slowing aging and extending lifespan itself
[88, 95–97]. However, the extensive safety records,
widespread clinical use, low cost, and presence of
multiple chronic conditions with advancing age has
been used to support further testing of metformin
in individuals with accelerated aging or early-onset
aging-related disease risk. More recent pre-clinical
work has highlighted another class of diabetic control
agents that work upstream of insulin (and presumably
metformin-related targets) while providing health
and longevity benefits in lab models – namely the
�-glucosidase inhibitor acarbose.

5. An overview of acarbose

Acarbose (ACA), originally BAY 5421, was iso-
lated and identified from bacterial cultures in 1977
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by Bayer and is currently marketed in the United
States for T2D under the brand name Precose [98,
99]. ACA is produced commercially from bacterial
strains of Actinoplanes sp. SE50/110, though it is
also produced naturally by other strains of Strep-
tomyces and Actinoplanes bacterial species [100,
101]. ACA is a pseudo-tetrasaccharide composed
of an unsaturated cyclitol unit bound to a 4,6-
dideoxy-D-glucopyranose, followed by a chain of
three D-glucopyranose sugars connected via �-1,4
linkages [98]. The initial two sugars form the func-
tional inhibitory site of ACA, with the nitrogen
linkage preventing hydrolysis by �-1,4 linkage-
cleaving �-glucosidases and �-amylases. When
consumed with a complex carbohydrate-containing
meal, ACA acts as a competitive inhibitor to car-
bohydrate breakdown along the brush border of the
small intestine, with a 15,000x greater affinity than
sucrose for �-glucosidase, resulting in reduced enzy-
matic degradation and absorption of glucose from
complex carbohydrates [102]. This inhibitor effect
lowers the post-prandial blood glucose elevation
in a dose-dependent manner. ACA remains bound
to brush-border enzymes only transiently, then is
released and transits further down the gastrointesti-
nal tract, resulting in metabolism by microbiota in the
colon and cecum or elimination in the feces. No sig-
nificant metabolism of ACA appears to occur when
ACA is administered intravenously and 90% of ACA
in the bloodstream is excreted in urine within 24
hours, with an elimination half-life of approximately
30 minutes [103].

Studies with non-diseased humans and rodents,
as well as diabetic individuals, have described ben-
eficial metabolic effects, most notably as reduced
post-prandial blood glucose excursions with ACA
[104, 105]. Insulin sensitivity is slightly improved
with ACA, though post-prandial insulin levels do not
show a consistent significant decrease [104, 106].
Glucoregulatory outcomes are sufficiently effective
as to improve metabolic parameters in diabetic animal
models and to decrease the number of progressions
from pre-diabetes to T2D compared to a placebo
in human trials [107–109]. Additionally, in a large
placebo-controlled randomized clinical trial, ACA
reduced risk of cardiovascular events in patients with
impaired glucose tolerance, with specific decreases
in risks of myocardial infarction and development
of hypertension [110]. The most commonly reported
side effects, as might be expected based on the mech-
anism of action, are flatulence, abdominal distension,
and loose stools, though in rare cases ileus has been

reported as well [105, 111]. Many of these side
effects can be lessened through a gradual increase
in ACA administration or modification of complex
carbohydrate intake [112]. ACA administration typ-
ically involves a pill consumed at the start of each
meal, though the most effective administration (i.e.,
post-prandial blood glucose mediation) occurs when
powdered ACA is mixed directly into food [113].

While the molecular, inhibitory action of ACA is
well-detailed, fewer studies have attempted to explore
the effect ACA has on specific nutrient retention from
the diet and specifically if the weight loss some-
times reported with ACA administration is the result
of reduced overall energy retention from the diet.
Higher levels of starches have been observed in stool
of humans and animals receiving ACA compared to
placebo control [114, 115] and one non-controlled
feeding human study reported a slight, but non-
significant, increase in total energy, nitrogen, and fat
excreted [116]. Studies in our lab with mice have
confirmed increased excretion of calories and car-
bohydrates in the feces, including glucose; however,
this was balanced by increased food intake, result-
ing in a similar number of calories retained from
the diet both with and without ACA [117]. In con-
trast, no alteration to caloric intake nor percentage of
macronutrients utilized from the diet were observed
in humans [118]. Therefore, it is unlikely that ACA
acts through a simple reduction in calorie intake,
availability or retention. Instead, given the important
roles of insulin signaling and IGF1 in body weight
homeostasis [119] and longevity [120, 121], the ben-
efits of ACA are more likely a result of the slowed
uptake of sugars from the diet, resulting in lower post-
prandial glucose excursions and moderated insulin
responses.

6. Acarbose and aging – current evidence

In addition to the immediate, short-term effects on
postprandial circulating glucose and insulin levels,
long-term treatment with ACA produces physiologic
responses that are expected with reduced calorie
‘availability’ [104, 105]. In rats fed a standard chow
diet supplemented with ACA (0.15% w/w), a signif-
icant reduction in body weight gain occurred despite
a significant increase in food intake compared to the
controls [122]. The preponderance of reports for both
mice and rats suggest that food intake is increased
(or unchanged) while body weight is decreased (or
unchanged) compared to controls [104, 105, 115,
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122–125]. In contrast to some other T2D medica-
tions which result in weight gain, ACA has also
frequently been reported to reduce body weight in
human studies [126–130]. In addition to the post-
prandial response with ACA, some long-term reports
have shown that fasting glucose and insulin levels
are reduced by ACA supplementation (although the
duration of fasting and body composition should
be carefully considered in these relationships). Fur-
thermore, age-related dysregulation of glucose and
insulin is partially offset by ACA supplementation
[122, 131]. This parallels nicely with the effect of
CR on glucose and insulin responses in rodents and
primates [132–134]. The systemic effects of ACA
treatment on reduced glucose metabolism are further
supported by the commonly reported reduced lev-
els of glycated HbA1c [104, 105]. Thus, both short
and long-term treatment with ACA supplementation
appears to partially ‘mimic’ the glucose regulatory
benefit observed with CR.

In 2013, a longevity study of ACA administration
in healthy, non-diabetic mice was published using the
F1 generation of a four-way cross of BALB/cByJ,
C57BL/6J, C3H/HeJ, and DBA/2J strains (UM-
HET3 mice) [135]. Mice in the study received
0.1% ACA in chow, beginning at four months of
age. Median lifespan was significantly extended in
both sexes with ACA, with a greater effect size
in males (22% increase vs. controls) than females
(5% increase), but resulting in similar median lifes-
pans for both sexes (984 vs. 939 days, males vs.
females). Additionally, both male and female mice
exhibited ∼10% maximum lifespan increase (11%
and 9%, respectively) compared to controls [135].
The differences between sexes in the early- versus
late-life benefits and overall magnitude of the lifes-
pan extension in response to ACA may have several
contributing explanations. For instance, sex differ-
ences in natural longevity of UM-HET3 mice, where
control females generally achieve longer median
and maximum lifespans than males [135, 136] may
obscure early- to mid-life benefits in females. Addi-
tionally, fasting insulin and IGF-1 are noted to be
lower in females in this strain, along with better
glucose tolerance [48, 135]. These factors may sug-
gest females possess improved glucose handling, and
the margin for further improving glucose control
compared to males is reduced. Given the rela-
tive equivalence of longevity extension with calorie
restriction previously reported in both sexes of the
UM-HET3 strain [137], one might speculate a sex-
differential response to specific dietary components

like glucose for males and maybe protein/amino acid
levels for females. Whether other longevity extending
interventions that target specific pathways of nutrient
signaling which show the opposite sex-preferential
bias in effects (e.g., rapamycin with greater effects
in females) might be pointing to such an explanation
will require further study. Although a direct compar-
ison of longevity outcomes with metformin versus
acarbose has not be reported, a previous report test-
ing 0.1% metformin treatment in one of the founding
strains (C57BL/6) reported a small (5.8%), but statis-
tically significant benefit on mean lifespan in males;
however, female mice were not included in the report
[88]. Considered as a whole, even in the absence of
overt disease, these data suggest targeting glucoregu-
latory maintenance by acarbose or other means may
be a viable nutritional target for maintaining health
and delaying aging.

7. Possible alternatives to acarbose

With the primary indication of ACA for treat-
ment of glucose control and its mechanism of action,
other treatments acting through similar glucoregu-
latory effects may result in beneficial outcomes as
well. Three main effects of ACA include decreased
post-prandial glucose (PPG) response, increased car-
bohydrate fermentation, and increased short-chain
fatty acid (SCFA) production.

Post-prandial hyperglycemia is associated with
multiple negative macro- and microvascular com-
plications [138], thus a reduction in PPG may be
expected to protect against such negative effects.
ACA slows the breakdown of oligosaccharides and
polysaccharides, leading to slower uptake of dietary
carbohydrates and decreased PPG elevation. How-
ever, decreasing PPG can be achieved not only
through a slowing of carbohydrate uptake, but also
through increasing clearance or elimination rates of
blood glucose. For example, sodium/glucose cotrans-
porter 2 (SGLT2) inhibitors are able to decrease
recovery of glucose from the glomerular filtrate,
increasing glucose excretion [139]. They have also
shown potential for improving glucose control and
decreasing risk of cardiovascular disease [140, 141].
Whether an improved mechanism of glucose clear-
ance by SGLT2 inhibition will recapitulate the health
and longevity benefits observed with reduced glucose
uptake remains to be demonstrated.

The main side effects of ACA (i.e., gastrointesti-
nal discomfort, flatulence, loose stools) are due in
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part to increased microbial fermentation in the lower
gut [142]. Absent ACA, most intestinal fermenta-
tion occurs as a result of dietary fiber intake, with
soluble fiber generally the main source [143]. Mod-
erate levels of dietary fiber have been proposed to be
beneficial for both gut and overall organismal health
[144–146], and early work by McCay et al. demon-
strated extension of lifespan in rats when the diet was
supplemented with 10 to 20% cellulose [146].

Resistant starches, a group of starches indigestible
by human enzymes due to their structure [147], also
increase fermentation in the gut when included in the
diet [148]. When assessed in both pre-clinical and
clinical studies, resistant starches have been associ-
ated with decreased rates of colon cancer, decreased
cholesterol levels, and moderation of blood glucose
levels [149–151]. Additionally, resistant starch feed-
ing in aged mice results in improved performance on
functional assessments [152] and increases in pos-
itive health-marker associated gut bacterial genera
[153]. Several theories have been put forth regard-
ing mechanisms through which resistant starches may
act to improve healthspan [154] or lifespan, including
more beneficial gut microbiome profiles [153, 155]
and increased production of secondary metabolites
such as butyrate [156–159]. To what extent resistant
starches and fiber provide specific lifespan benefits
similar to ACA requires further investigation.

While not directly involved with glucoregulatory
control, recent studies have concluded that short
chain fatty acids (SCFA) may play an important role
in suppression of inflammation [160, 161]. Inflam-
mation has been proposed as a risk factor for both
aging and age-related diseases [162]; in particular,
T2D displays characteristics of being both induced
by and causing inflammatory states [163]. A main
source of SCFA in the body derives from the byprod-
ucts of carbohydrate fermentation by gut microbiota
[164]. Following production by fermentation, SCFA
can be used by colonic epithelial cells as a fuel source
and/or absorbed into the blood stream with sub-
sequent tissue distribution [165]. Therefore, SCFA
produced in the gut or supplemented in the diet
may activate suppressors of inflammation, leading to
decreased chronic inflammation and delayed devel-
opment of age-related diseases. The availability of
carbohydrates for fermentation in the colon may sup-
port shifts in gut microbial communities and facilitate
SCFA production. ACA treatment in rats leads to
increased levels of SCFA in the colon [115], and
shifts in microbial communities with increased Bifi-
dobacteria have been documented in T2D patients

receiving ACA supplement to anti-diabetic medica-
tions [166], as well as both increased Lactobacilli and
Bifidobacteria in hyperlipidemic patients with ACA
[167]. Additional human studies of ACA supple-
mentation have also demonstrated increased colonic
butyrate production, likely from the observed con-
current increases in starch-fermenting bacteria as
a percentage of total fecal anaerobes [114]. The
degree to which ACA alone (as a compound produced
by bacteria) or SCFA production drives changes in
the gut microbial community remains to be deter-
mined. However, reduced inflammatory cytokines
(i.e., LPS) have been noted in T2D patients given
ACA supplement to prescribed anti-diabetic medi-
cations [166]. It is becoming increasingly clear that
our understanding of interactions and dependence
of glucose-lowering drugs on the gut and resident
microbiota with health outcomes is still far from
complete. For instance, the longevity benefit of met-
formin in the C. elegans model depends on alterations
in bacterial metabolism ultimately affecting the host
lifespan [168]. Furthermore, the glucose-lowering
mechanism of metformin appears to be significantly
influenced by the lower gut and bacterial popula-
tions associated with SCFA production [169, 170].
Future studies using gnotobiotic or germ-free rodent
models may be able to further clarify the contri-
bution of microbial fermentation byproducts in the
health and longevity benefits of ACA and alternative
interventions.

8. Naturally-occurring acarbose mimetics

While ACA is bacterially derived and purified,
other compounds with similar �-glucosidase or �-
amylase inhibitory activity are found in multiple
naturally-occurring dietary sources. In particular,
a variety of leguminous plants contain inhibitory
activity against both �-glucosidases and �-amylases
[171]. Animal studies have confirmed the ability of
many of these naturally occurring �-glucosidase or
�-amylase inhibitors to reduce blood glucose levels
and improve overall health status [172–175]. In fact,
based on in vitro and ex vivo testing, plant-derived �-
glucosidase or �-amylase inhibitors from seeds, bark,
leaves, and fruits of many plant varieties often have
equivalent or greater inhibitory activity than ACA and
related pharmaceutical compounds [176–178]. Cin-
namon in particular has gained recent attention as an
effective �-glucosidase and �-amylase inhibitor sig-
nificantly reducing PPG in response to maltose and
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sucrose-load in diabetic rats [179, 180], with clinical
data showing similar possibilities [181].

Considering the number of �-glucosidase and �-
amylase inhibitors identified from such a diverse
selection of plants, it is likely additional compounds
with similar inhibitory properties may be present,
but currently unidentified, in many commonly eaten
foods. Eating a diet rich in foods containing
botanicals with sufficient concentrations/activity of
these phytochemicals may conceivably provide �-
glucosidase and �-amylase inhibitor outcomes equal
to or greater than those achieved through pharma-
ceutical interventions as monotherapies (e.g., ACA
at specific dosages). Anecdotal evidence potentially
supports this notion. For instance, Okinawan cohorts
recognized for exceptional health and longevity pre-
viously consumed high levels of sweet potatoes
in their diet relative to the general population in
Japan and other contemporary cohort countries, esti-
mated to previously constitute ∼69% of total daily
dietary calories [182, 183]. Sweet potatoes (Ipo-
moea batatas) are rich in fiber, with higher vitamin
and mineral concentrations than many other natural
starches such as rice or refined carbohydrates [184].
Additionally, sweet potatoes come in a variety of col-
ors with diverse phytochemicals (e.g., anthocyanins
and polyphenols), which have multiple proposed
biochemical and health benefits, with particularly
remarkable �-glucosidase and �-amylase inhibitory
activity [185–187]. Similarly, curcumin-rich foods,
best known for antioxidant properties, were also
a staple for the Okinawan cohorts [183], and also
contain �-glucosidase inhibitory properties [188].
Moving beyond the simple calorie, macronutrient,
and micronutrient composition of a given food to a
deeper understanding of the biologically active and
non-caloric compounds present in foods, as well as
how those modify nutrient access and utilization,
would build on longstanding knowledge and tradition
of healthy dietary components.

9. Conclusions

ACA has proven to be an effective means for
reducing PPG and improving glucose regulation in
individuals with T2D. Additionally, animal work
has demonstrated a role for ACA in extending
both healthspan and lifespan of non-diabetic models.
These positive outcomes with ACA may result from
a combination of several biological mechanisms;
however, multiple health and longevity extending

interventions (nutrition and genetic) support the
idea that the benefits of ACA reflect improved glu-
cose regulation. ACA trials in non-diabetic human
populations could be further explored, given the
potential for beneficial health and aging outcomes,
the limited side effects, extensive clinical history
of use for T2D, and minimal costs. Such trials
may be especially relevant to address the pre-
diabetic state of metabolic syndrome in middle
age or older populations. Additionally, as multi-
ple compounds in plants and foods exhibit similar
inhibitory properties, increased research into these
naturally occurring compounds seems warranted. A
greater understanding of how non-caloric compounds
like �-glucosidase or �-amylase inhibitors modify
macronutrient metabolism holds promise for nutri-
tional/lifestyle interventions as a form of preventative
medicine to support health and reduce age-related
disease risk.
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[119] Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M,
Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR.
Role of brain insulin receptor in control of body weight and
reproduction. Science. 2000;289(5487):2122-5.

[120] Bluher M. Extended longevity in mice lacking the insulin
receptor in adipose tissue. Science. 2003;299(5606):572-4.

[121] Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A,
Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates
lifespan and resistance to oxidative stress in mice. Nature.
2003;421(6919):182-7.

[122] Yamamoto M, Otsuki M. Effect of inhibition of �-
glucosidase on age-related glucose intolerance and pancre-
atic atrophy in rats. Metab - Clin Exp. Elsevier. 2006;55(4):
533-40.

[123] Paiva L, Binsack R, Machado UF. Chronic acarbose-
feeding increases GLUT1 protein without changing intesti-
nal glucose absorption function. Eur J Pharmacol. 2002;
434(3):197-204.

[124] Lee SM, Bustamante SA, Koldovský O. The effect of alpha-
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