
Neurosymbolic Artificial Intelligence -1 (2024) 1–13 1
DOI 10.3233/NAI-240767
IOS Press
CORRECTED PROOF

Machine learning with requirements:
A manifesto
Eleonora Giunchiglia a,*, Fergus Imrie b, Mihaela van der Schaar c,d and Thomas Lukasiewicz e,f

a Imperial-X, Department of Electrical and Electronic Engineering, Imperial College, United Kingdom
E-mail: e.giunchiglia@imperial.ac.uk
b Department of Electrical and Computer Engineering, University of California, Los Angeles, USA
c DAMTP, University of Cambridge, United Kingdom
d Alan Turing Institute, United Kingdom
e Institute of Logic and Computation, Vienna University of Technology, Austria
f Department of Computer Science, University of Oxford, United Kingdom

Editor: Annette Ten Teije, Vrije Universiteit Amsterdam, The Netherlands
Solicited reviews: Floris van der Hengst, Vrije Universiteit Amsterdam, The Netherlands; two anonymous reviewers

Received 10 July 2023

Revised 24 June 2024

Accepted 8 July 2024

Abstract. In the recent years, machine learning has made great advancements that have been at the root of many breakthroughs
in different application domains. However, it is still an open issue how to make them applicable to high-stakes or safety-critical
application domains, as they can often be brittle and unreliable. In this paper, we argue that requirements definition and satisfac-
tion can go a long way to make machine learning models even more fitting to the real world, especially in critical domains. To
this end, we present two problems in which (i) requirements arise naturally, (ii) machine learning models are or can be fruitfully
deployed, and (iii) neglecting the requirements can have dramatic consequences. Our proposed pyramid development process
integrates requirements specification into every stage of the machine learning pipeline, ensuring mutual influence between re-
quirements and subsequent phases. Additionally, we explore the pivotal role of Neuro-symbolic AI in facilitating this integration,
paving the way for more reliable and robust machine learning applications in critical domains. Through this approach, we aim to
bridge the gap between theoretical advancements and practical implementations, ensuring machine learning’s safe and effective
deployment in sensitive areas.

Keywords: Safe AI, machine learning, requirements, machine learning operations, software engineering

1. Introduction

In recent years, machine learning has made great advancements that have been at the root of many breakthroughs
in different application domains. For example, AlphaFold [63] is a deep learning model that solved the “protein
folding problem”, a grand challenge in the field of biology for more than half a century, while Halicin [71] is the

*Corresponding author. E-mail: e.giunchiglia@imperial.ac.uk.

2949-8732 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:e.giunchiglia@imperial.ac.uk
mailto:e.giunchiglia@imperial.ac.uk
https://creativecommons.org/licenses/by/4.0/


2 E. Giunchiglia et al. / Machine learning with requirements: A manifesto

first antibiotic discovered using machine learning, which could help in the battle against bacterial resistance. Results
like those above, though ground-breaking, overshadow the dangers that come with the careless use of machine
learning models in critical applications. Indeed, even though such models report an astonishingly high performance
in terms of accuracy (or alternatively chosen metric), they do not give any guarantee that the model will not have
any unintended behaviour when used in practice. Indeed, as pointed out by Rudin in [59], there have been several
notable instances of machine learning failures. For example, individuals have been wrongly denied parole [81],
deep learning models have inaccurately reported that highly polluted air was safe to breathe [47], and there has been
generally inefficient use of limited resources across fields such as medicine, criminal justice, and finance [76]. Such
problems in the behavior of the model are often rooted in the quality of the dataset used for training the model. This
is, for example, what happened in the early stages of the Covid-19 pandemic, where (as reported in [58]) a common
chest scan dataset from [35] made of pediatric scans, was used as control group against Covid-19 positive scans: as a
result, instead of Covid-19 detectors, adult/child classifiers were built. Unintended outcomes like the ones described
above (i) are particularly dangerous in safety-critical applications, where even a single unforeseen mistake can lead
to dramatic consequences, and (ii) undermine human confidence in the models themselves, thus slowing down their
adoption.

In this paper, we argue that requirements specification and verification can go a long way to make machine learn-
ing models even more fitting to the real world, by reducing the risk of getting potentially dangerous unintended
behaviors. We start from the simple observation that unintended behaviors correspond to the model violating some
requirements which may be known even before the data collection and model development start. To support this
claim, we consider two examples, one in healthcare, and the other one in autonomous driving, in which (i) some
requirements are known in advance, (ii) machine learning models have very high performance in terms of accuracy
(or other selected metric), and (iii) despite the positive performance, the outcome of standardly developed machine
learning models often violates the known requirements with possible dramatic consequences given the criticality of
the application domains. Although we consider just two examples, we believe that analogous considerations apply
to most application domains given (i) the body of knowledge developed over the years in many application domains,
which can be translated in corresponding requirements (see, e.g., [22,33,50,70]), (ii) the impressive results in per-
formance obtained by machine learning models, which will continue to push for their adoption despite the possible
unintended behaviors (see, e.g., [5,24]), and (iii) the fact that it is not surprising that the resulting model will violate
the requirements if they are not taken into account during data collection and model development. Refining the last
observation, it is not surprising that a machine learning model has an unintended behavior if, before its deployment,
the data and the model itself are not somehow verified against the requirement capturing the intended behavior.
We therefore claim that the requirements’ definition should precede and involve the entire machine learning model
development cycle, including the dataset construction. In particular, we propose a novel pyramid machine learn-
ing development process, which (i) highlights how the requirement definition can help improve every single step
of the standard machine learning model development process, and (ii) takes into account that some requirement
adjustment might be necessary because of difficulties and/or discoveries that emerge during the development pro-
cess of machine learning models, especially given their data-driven nature. In line with what has been argued in
the Machine Learning Operations (MLOps) field [7,25,32,36,74], the above proposal can be seen as a call to adapt
and adopt the general methodologies used in software engineering for generic system development, where it is well
known (i) that the later the requirement are taken into account the higher the cost is to repair the system, and also (ii)
that the requirement definition is an iterative process in which requirements affect the system development and vice
versa, given that during the system development some requirement may be newly discovered and/or adjusted if not
canceled (see, e.g., [52,67,68]). We will ground the above facts in the specific machine learning model development
pipeline, highlighting the benefits of adopting requirements in the different phases.

Our proposal represents a significant shift from the traditional “performance-driven” machine learning develop-
ment pipeline, which solely concentrates on how to get better performance, measured in terms of accuracy or alter-
natively chosen metric. Indeed, we are proposing a “requirements-driven” machine learning development pipeline
in which performance is just one of the many requirements that the model has to satisfy. This obviously might make
the development process more complex, because different requirements might be contradictory with one another:
a problem that is well known in software engineering [68]. For example, at a high level of abstraction, complex
models will likely have a better performance at the possible price of being less explainable and/or verifiable and/or



E. Giunchiglia et al. / Machine learning with requirements: A manifesto 3

sustainable. Analogously, it might be the case that satisfying certain fairness properties (e.g., equalized odds or
demographic parity) is preferable to a higher performance. Independently from the properties that we wish for the
model, it is clear that (i) the sooner the requirements are made explicit the better, and (ii) taking into account the
requirements in the dataset definition and model construction will likely lead to models that will be easier to verify
with respect to the stated requirements. This proposal thus aligns with the efforts in many other machine learning
fields (see, e.g., fairness, robustness, explainability, sustainability, and safety), where it is argued that performance
should not be the only factor to evaluate a model. However, in the aforementioned fields, there is often either no
formal or unique definition of what is the desired property (see, e.g., interpretable) and, even when there is, its
incorporation in the machine learning pipeline requires a customised loss/architecture that requires a lot of time and
knowledge to design. Here, on the other hand, we will take a step further and we will claim that the requirements
will ideally need to be formally expressed. This will be pivotal to their wide applicability in the machine learning
domain. If the requirements were to be formally defined, then we could not only assign a unique meaning to each
requirement, but also create automatic procedures to incorporate such requirements into the machine learning de-
velopment pipeline. To this end, the field of Neuro-symbolic AI is well-positioned to lead this research. Researchers
in this field possess the expertise to (i) encode background knowledge and desiderata formally, (ii) understand the
inner workings of machine learning models, and (iii) automatically integrate such requirements into the topology
and loss functions of various models. For example, in recent years researchers in the Neuro-symbolic AI field have
developed models that are guaranteed-by-design to be compliant with a set of given requirements expressed as logi-
cal constraints (see, e.g., [3,21,22,28]): in these works, it has been shown how the requirements can be incorporated
in the model, which automatically satisfies them, and have a positive impact also on performance.

Given the above, our proposal enjoys the same spirit of works such as [19,49,61], which advocate for a more
structured approach to machine learning model development. In particular, Gebru et al. in [19] propose documen-
tation guidelines for new datasets, Mitchell et al. in [49] advocate for standardized reporting of models, including
training data, performance measures, and limitations, while Seedat et al. [61] propose an actionable checklist-style
framework to elicit data-centric considerations at different stages of the development pipeline.

The remainder of the paper is structured as follows. First, in Section 2, we consider examples from the healthcare
and autonomous driving application domains in order to show that in these domains (i) requirements arise naturally,
(ii) machine learning models are or can be fruitfully deployed, and (iii) neglecting the requirements can have dra-
matic consequences. Secondly, in Section 3, we show how the requirements definition can be fruitfully integrated
into the standard machine learning development pipeline, impacting all the phases in the pipeline. Finally, we have
the conclusions and possible plans for the road ahead in Section 5.

2. The need for requirements

The standard machine learning pipeline naturally tends to have a sequential nature. The main steps that compose
it are:

1. Data curation, in which the dataset for training the model is created, encompassing the following phases: (i)
data collection, (ii) data pre-processing, (iii) data augmentation, and (iv) data quality evaluation;

2. Model Creation, in which the model is designed and built;
3. Model Training, in which the created model is trained and in which the right hyperparameters are chosen

(often through testing over a validation dataset);
4. Model Testing, in which the performance of the model is assessed (ideally using different metrics and test

sets).
5. Model Deployment, in which the model is actually deployed in the real world.

A visual representation of the standard sequential pipeline is given in Fig. 1. Even though we do not show them
in the figure, in practice loop-backs might be necessary in order to modify the dataset or, more often, the model.
Still, all such possible changes happen mostly between the model creation step and the model training step, as
they are usually driven by the desire to get a better performance, while the dataset is often considered a static
element of the pipeline. As we can see from the depicted pipeline, requirements do not appear anywhere. This



4 E. Giunchiglia et al. / Machine learning with requirements: A manifesto

Fig. 1. Visualization of the standard machine learning pipeline.

is even more disconcerting when we compare such development pipelines with the standard software engineering
pipelines, where requirements play a central role at every step of the process – no matter how small the project is.
The most surprising fact though is that the development pipelines that have been proposed to deal with big projects
in big companies either do not consider requirements at all (see, e.g., [6,12]) or when they do (see, e.g., [46,72])
they only mention data-centric requirements (e.g., the training dataset should have at least a certain number of data
points or the model should achieve a certain accuracy) or requirements that cannot be formally specified (e.g., the
model should be robust and/or interpretable). If formal requirements are considered at all, then they are normally
considered just at the very end of the pipeline, during the model testing phase, where the model gets verified and/or
tested against a set of properties [54,55]. As we can imagine, acting only at the very end of the pipeline can be very
costly, as one might have to re-start a project if the requirements are not satisfied. For this reason, our development
pipeline will consider the requirements from the very beginning and they will effect every step of the process.

We now focus on two application domains, healthcare and autonomous driving, and we show how requirements
arise naturally in both applications domains, how applying machine learning techniques has already brought and
can bring tremendous advantages to the fields, and how deploying machine learning models in these fields with-
out explicitly taking into account the requirements can lead to unexpected behaviors corresponding to violations of
the requirements. Though we consider just two application domains, we believe that analogous considerations and
results hold virtually in any application domain, given (i) the body of knowledge developed over the years in any ap-
plication domain, which can be translated in corresponding requirements, (ii) the impressive results in performance
obtained by machine learning models which will continue to push for their adoption despite the possible unintended
behaviors, and (iii) the impossibility to certify/rule out the absence of undesired behaviors without explicitly spelling
out the corresponding requirements and the testing/verification of the model against the requirements themselves.

2.1. Autonomous driving

In recent years, the developments in machine learning, and in particular in computer vision, have fuelled the
hopes of autonomous vehicles being finally in reach. However, every so often, such dreams are shattered by car
crashes that, in some cases, have injured or even killed people. For example, in March 2018, an autonomous vehicle
developed and tested on public roads by Uber’s Advanced Technologies Group fatally injured a pedestrian who was
pushing their bicycle across the street outside of a designated crossing area [51]. The most striking characteristic
of this accident is the fact that the car did not make any attempt to break and/or to avoid the pedestrian [40].
Unfortunately, this is not an isolated incident, as nearly 400 car crashes involving autonomous vehicles have been
reported in the United States over a period of only ten months in 2022 [9]. As reported in [9], these vehicles in
order to take their decisions rely, among others, on computer vision models, which if trained to simply maximise
their performance (following the standard machine learning development pipeline) might fail to abide to even the
simplest requirements.

To exemplify the problem described above, we consider the ROAD-R dataset [22], which consists of (i) 22
relatively long (∼8 minutes each) videos annotated with road events, i.e., a sequence of frame-wise bounding boxes
linked in time, each labelled with the agent in the bounding box, together with its action(s) and location(s), and
(ii) 243 requirements expressed in propositional logic stating what is an admissible road event.1 The possible labels
associated to each bounding box are 41, and the requirements state which combinations of labels a model can output.
Hence, for instance, a requirement states that a traffic light cannot be red and green at the same, while another
states that a traffic light cannot move. Given ROAD-R, six state-of-the-art temporal feature learning architectures
(I3D [10], C2D [79], RCGRU [29], RCLSTM [29], RCN [66] and SlowFast [16]) as part of a 3D-RetinaNet model

1Dataset available at: https://github.com/gurkirt/road-dataset. Requirements available at: https://github.com/EGiunchiglia/ROAD-R.

https://github.com/gurkirt/road-dataset
https://github.com/EGiunchiglia/ROAD-R


E. Giunchiglia et al. / Machine learning with requirements: A manifesto 5

Fig. 2. (a) and (b) show the predictions made by the I3D model (with θ = 0.5) for the same traffic light and just one frame apart. (c) shows the
number of predictions that violate at least one requirement when varying θ ; (c) is from [22].

[65] (with a 2D-ConvNet backbone made of Resnet50 [26]) for event detection, have been trained. These models
take as input a set of consecutive frames, and for each frame they output (i) a set of bounding boxes, and (ii) a
set of labels for each bounding box. Such labels are decided in the standard way: for each of the 41 labels the
model outputs a number o ∈ [0, 1], and if o > θ then the label is returned, otherwise it is not. θ is a user-
defined threshold. An example of prediction is given in Fig. 2a, where the prediction for the depicted bounding
box is {Traffic Light, Red Traffic Light}. The surprising finding of the work [22] is that, as shown in Fig. 2c, no
matter the chosen threshold θ , at least 89% of the predictions violate at least one requirement. Even more, some of
the predictions may violate requirements corresponding to common knowledge possessed by humans, making the
prediction difficult to interpret and manage. For example, if we consider the prediction in Fig. 2b, done by the same
model that made the prediction in Fig. 2a, for the same traffic light just one frame later, then we see that not only
the prediction is wrong, but it also violates the common knowledge (in this case corresponding also to a formally
stated requirement) that the traffic light cannot be red and green at the same time. Such prediction, if not further
elaborated by the system controlling the vehicle could indeed have dramatic consequences. For this reason, we
expect that any system controlling the vehicle will have mechanisms in place to handle the predictions that violate
the requirements. However, if the requirements are incorporated into and verified by the entire system (as must be
the case in this setting), it is far from clear why they are standardly neglected in the process of building the machine
learning component of the system. Indeed, none of the six evaluated systems is able to handle requirements on their
inputs and/or outputs. Even more, as reported in [22], the dataset used for training the model violates some of the
requirements (like the fact that it is not possible for a vehicle to be both incoming and outgoing), which surely will
have to be incorporated into any real application of the models.2

2.2. Healthcare

For our second example, we discuss healthcare. There is great hope that developments in machine learning will
revolutionize medicine and transform clinical practice [75]. The range of applications in medicine is vast, from
computer vision systems analyzing medical images in radiology and longitudinal monitoring of patient trajecto-
ries throughout a hospital stay, to genomic screening of future disease risk and much more. However, as with
many other high-stakes and safety-critical applications of machine learning, there are a number of requirements for
machine learning systems in healthcare. These include ethical considerations, such as fairness and bias; practical
considerations, such as controlling false positive rate to prevent alarm fatigue [62] and ensuring appropriate resource
allocation; and logical considerations, such as the example discussed below, among others.

As a concrete example, we consider clinical risk scores. Clinical risk scores estimate the likelihood of a specific
outcome occurring after a certain period of time, such as a patient developing a particular disease or condition in
the next ten years or experiencing an adverse event following a medical procedure. By definition, the chance of

2While it might be argued that it is normal to have errors in the dataset because of noise, it seems odd to train a model with known-to-be-
wrong-data and then correct the model outputs when they respect the known-to-be-wrong-data.



6 E. Giunchiglia et al. / Machine learning with requirements: A manifesto

Fig. 3. Fig. 3a shows two examples of the predictions made by different classification models for the same patient at different time horizons.
Figure 3b shows the proportion of samples for which the predictions violate the requirement for risk to be increasing for longer time horizons.

an outcome occurring within some time horizon t must increase with time, thus risk scores must be monotonically
increasing functions of time, i.e., the predicted n-year risk is greater than their m-year risk, for all n > m. However,
there are many studies that use classification models to predict risk after a specific time horizon, for example, 5-year
risk. Naturally, we can generalize this by predicting risk at multiple time horizons rather than just one. Often this is
very useful clinically, since patient trajectories can vary greatly and patients with equivalent long-term risks might
have divergent short-term risks. A straightforward way to achieve this is to train multiple classification models to
predict the risk at each time point of interest. However, there is no guarantee that the predicted risk will increase for
longer time horizons.

To illustrate the consequence of not incorporating the simple requirement described above into the machine
learning systems, we consider the problem of predicting the risk of developing diabetes. We construct a cohort
of patients from UK Biobank [73], a large-scale observational study with around 500,000 participants from 22
assessment centers across England, Wales, and Scotland enrolled between 2006 and 2010. We extracted a cohort of
participants who were 40 years of age or older at enrollment with no diagnosis or history of diabetes at baseline.
We considered the 18 features employed by QDiabetes [27]. We performed data imputation using HyperImpute
[31] and trained classification algorithms using AutoPrognosis [30] to predict n-year risk of developing diabetes for
n ∈ {1, . . . , 10}. We averaged results over five random initializations. Two examples are provided in Fig. 3a. For
the first patient (Fig. 3a, top), only the logistic regression models met the requirement that the risk of developing
diabetes should be monotonically increasing over longer time horizons, with the random forest, XGBoost, and neural
network models having at least one time horizon with lower predicted risk than the previous. A similar situation
can be seen for the second patient (Fig. 3a, bottom), where only the random forest model satisfies the requirement.
Considering the entire dataset and all ten time horizons, around 20% of patients have predictions that violate the
requirement for risk to monotonically increase at least once for the logistic regression and random forest models,
while for over 99% of patients XGBoost and neural networks issued predictions that violated the requirement. Note
that the number of violations made by the models was not necessarily correlated with performance, with the lowest-
performing model as measured by area under the receiver operating curve at the 5-year horizon exhibiting the fewest
violations (random forests). Such predictions, at best, are simply inaccurate but, at worst, can erode trust in machine
learning systems and have more serious consequences depending on the actions taken. There are several solutions to
satisfy this particular requirement, such as specialized functional forms [13,37], multi-task learning with specialized
loss functions [38], or bespoke architectures. However, the fact that even for such a specific requirement we need to
study and develop specialized loss functions and architectures clearly highlights the need for automatic requirements
parsing and incorporation procedures.



E. Giunchiglia et al. / Machine learning with requirements: A manifesto 7

Fig. 4. Visualization of the pyramid model. The full arrows stand for the standard procedural processes, while the dotted arrows show that the
requirements impact every stage of the process.

3. The pyramid model

In the previous section, we have shown the standard performance-driven machine learning development pipeline,
in which the requirements are traditionally neglected, and, with the means of two examples, we have highlighted
how such negligence can have dire consequences. This automatically calls for the inclusion of the requirements
in the development process, which are at the core of any development pipeline proposed in the field of software
engineering. We thus propose to adapt the general methodologies used in software engineering for generic system
development, where it is well known that the later the requirements are taken into account the higher the cost is to
repair the system. In order to adapt such methodologies, we need to take into account that, differently from standard
software, machine learning models are learnt from data, and thus we have less control over the behaviour of the
model, which entails not only that at design time it is impossible to predict the future behaviour of the model, but
also, at testing time, if a bug is found, then the steps necessary to fix it are entirely different. A development pipeline
for a machine learning model thus needs to take into account that:

1. data are central to the process, as the quality of the model heavily depends on the quality of the collected data,
2. the model is learnt from data, and thus it is not possible to fully know a priori its behaviour, and
3. if the model does not behave as expected, it is advisable to not only check the model but also check the data.

Further, it is unrealistic to expect that all requirements are always known a priori and that they remain immutable
throughout the development process. This is already known in the general software engineering field, and it has been
already specifically tested to be the case also in our field. Indeed, as highlighted by the survey conducted in [41],
some of the biggest problems that machine learning practitioners face on a daily basis include the accessibility
of data (which might not be known in the requirements definition phase) and the unrealistic expectations of the
stakeholders of the system (which might reveal themselves during the testing phase of the model). Thus, we also
need to take into account that the requirements might change at each stage of the development process.

Given the above, we propose the pyramid machine learning development model in Fig. 4, in which the requirement
definition phase is (as expected) put at the beginning of the development process and in which the pyramid shape
allows to better highlight the close relationship that must exist between the requirement definition phase and all
the others in the pipeline. Ideally, the requirements should be annotated in a formal way, to allow for automatic (i)



8 E. Giunchiglia et al. / Machine learning with requirements: A manifesto

parsing, (ii) integration in every step of the pipeline, and (iii) testing and verification. Consider the grey backward
lines. These represent the fact that if something unexpected happens at any point of the pipeline (e.g., the model does
have some unintended behavior during the testing phase), then it is necessary to go back and first check if the defined
requirements were suitable or need to be updated, then if the collected data are representative of the phenomenon
that we want to capture, and so on. Obviously, the later in the pipeline we realise that there is a bug, the more costly
it is, and this is captured in Fig. 4 by the length of the path to cover as we advance in the pipeline. Consider now the
dotted arrows, which illustrate the fact that the requirements can help in shaping each of the development steps, and
in particular:

1. Data Curation: the requirements on the data obviously define the data collection phase, as they state which
properties the dataset should have. This can positively impact this phase as it forces the stakeholders of the
system to carefully reflect on which aspects of the total population the dataset should capture and which should
be ignored. Furthermore, they can help reduce mistakes in the annotation phase (as any annotation that is not
compliant with the requirements has to be corrected) and they can even accelerate it (as the annotators can be
shown only those options that are compliant with the requirements, or they can be automatically corrected in
real-time).

2. Model Creation: the requirements over the model define how the model should behave, and thus they should
be taken into account at creation time. Following the same principles used for the data curation step, having
requirements can positively impact this phase, because it forces the stakeholders of the system to reflect upon
its expected behaviour and which outcomes must be avoided at all times. Such requirements can then be
mapped in the model itself. As an example, given a set of formal requirements, some works [4,21,28] in
the neuro-symbolic field were able to map the requirements directly to the topology of neural networks and
guarantee that the constraints are always satisfied, while exploiting the background knowledge expressed by
the requirements to even get better performance.

3. Model Training: the requirements over the model can again be used to define the objectives of our training.
This is what it is done for example in many works in the fairness field, where the model is trained with two
objectives: one to maximise performance and one to maximise the desired fairness definition (see, e.g., [1]).
Furthermore, if we map the requirements to the loss function, we can even use them to alleviate the need
for labelled data in semi-supervised settings (see, e.g., [8,14,83]). Indeed, given an unlabelled data point, the
model can be taught to simply return an output which is compliant with the requirements.

4. Model Testing: as done in standard software engineering, the requirements should guide the testing phase.
Each requirement should be checked to hold (eventually using formal verification techniques; see, e.g., [39,
55]) and in case it does not, then either the requirement has to be further analyzed and eventually modified
or some procedure has to be put in place in order to signal that the requirement has to be properly handled
outside of the machine learning model.

5. Model Deployment: requirements can also shape the deployment phase, especially if the stakeholders want
the model to retain certain properties even in the presence of data shift and/or drift.

4. The role of neuro-symbolic AI

As already stated in the introduction, researchers in the Neuro-symbolic AI field find themselves in the unique
position of being able to not only understand the deep impact that the violation of the requirements can have on the
trust the public poses in the AI models, but also leverage the techniques developed in the traditional AI field to fill
the gaps existing in the current state-of-the-art machine learning models.

As a testament of this fact, they have already been at the forefront of this line of research, with researchers
developing methods which are guaranteed to be compliant with a set of requirements over the output space expressed
as a logic program [42,43], in propositional logic [4,23], as linear inequalities [18,70] and even as quantifier free
linear arithmetic formula over the rationals [28]. If we think about it, this was already an incredible leap forward,
as up to that point specialised methods were being developed for different types of requirements. As an example,
we can think of the field of hierarchical multi-label classification, where the labels are organised in a hierarchy



E. Giunchiglia et al. / Machine learning with requirements: A manifesto 9

and every prediction had to be compliant with such hierarchy. Many different models (see, e.g., [60,64,77]) were
developed to deal with these very simple constraints. If the requirement were to be changed even in the slightest,
then those methods would no longer be applicable. On the contrary, thanks to Neuro-symbolic AI we can now build
models compliant by-design with any set of requirements which can be expressed with a pre-defined syntax (e.g.,
propositional logic).

We expect that in the future the expressivity of the requirements studied will increase and will thus encompass
more scenarios. For example, requirements expressing the relations existing over multiple data points might be ex-
pressed in first order logic (FOL) or requirements over the behaviour of an auto-regressive model might be expressed
in linear temporal logic over finite traces (LTLf ) [20]. Then, thanks to Neuro-symbolic AI, we will not have to study
each requirement singularly, but we will be able to develop novel models able to deal with entire classes of require-
ments altogether. Note, that a step in this direction has already been made, with Neuro-symbolic AI models able
to incorporate requirements expressed in FOL [8] and to deal with auto-regressive models [2]. Despite the fact that
these models cannot guarantee the satisfaction of the constraints, they denote the pro-activeness of Neuro-symbolic
AI researchers to tackle more and more complex problems. Further, Neuro-symbolic AI could even be used to ac-
celerate the phase of requirements elicitation, by using automatic methods able to discover constraints directly from
the data (see, e.g., [53,56]) thus making the integration of the requirements in any pipeline even easier.

Finally, Neuro-symbolic AI has already shown very promising results in dealing with even more complex cases
than the standard fully-supervised ones. For example, many works have been developed to be able to exploit
(and sometimes impose) the requirements in semi-supervised settings (see, e.g., [8]), in partial label settings (see,
e.g., [17]) and sometimes even in fully unsupervised settings (see, e.g., [69]). Naturally, these scenarios pose nu-
merous challenges, including the exploitation of reasoning shortcuts by Neuro-symbolic AI models [45]; however,
there is already research underway to mitigate this issue [44,78].

5. Summary and outlook

In this paper, we have shown that even though applying machine learning to a given problem can bring great
benefits, applying it without specifying and taking into account the requirements of the problem can lead to unex-
pected behaviors and, possibly, dramatic consequences. We have thus proposed a new machine learning development
pipeline in which the requirements definition phase is explicitly incorporated at the beginning of the process, caus-
ing a deep connection between the requirements definition and all the other phases in the development process, in
which (as standard in software engineering) the former may affect the latter and vice versa. From this perspective,
this paper can be seen as a call to adopt the general methodologies used in software engineering for generic system
development to the specific field of machine learning, highlighting the risks of not doing so. We believe that in
many cases the benefits of explicitly defining the requirements and taking them into account in the other phases
outweigh their cost. It is also clear that the requirement definition and exploitation is unavoidable when machine
learning models are used as stand-alone systems in domains with strict requirements to satisfy (e.g., in safety critical
domains) or when used as part of larger systems with a given set of stringent requirements (e.g., memory usage;
see, e.g., [57]). This view is supported by the recent trends in machine learning in which performance is just one of
the requirements to satisfy. In particular, work in the fields of interpretability (see, e.g., [11,15],Imrie2023multiple),
fairness (see, e.g., [48,82]) and robustness (see, e.g., [34,80]) all privilege certain characteristics of the model over
performance, and all these works roots their motivation in the necessity to take into account requirements emerging
from the respective application domain. However, how to define and fully exploit the domain knowledge expressed
by requirements in the development process is still largely an open question, as many technical challenges need to
be overcome. To this end, the Neuro-symbolic AI field can be seen as a bridge between standard machine learning
and software engineering, as researchers in the field have already started developing techniques to create models
that are built not only by the data, but that take explicitly as input also other types of knowledge, like formally stated
requirements and use them either to design the model (see, e.g., [21,28]), or to incorporate the requirements in the
loss function (see, e.g., [8,14]).

Despite the huge amount of work that can be categorized under the umbrella of “requirement-driven” machine
learning, this is the first paper which explicitly advocates for a general model development methodology in which



10 E. Giunchiglia et al. / Machine learning with requirements: A manifesto

the requirement definition is a first class citizen like the other phases in the pipeline. We believe that this corresponds
to a more structured approach to machine learning model development, which – as a general principle – has already
been advocated in [19,49,61].

References

[1] A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford and H.M. Wallach, A reductions approach to fair classification, in: Proc. of ICML,
PMLR, 2018, pp. 60–69.

[2] K. Ahmed, K. Chang and G.V. den Broeck, A pseudo-semantic loss for autoregressive models with logical constraints, in: Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10–16, 2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt and S. Levine, eds, 2023.

[3] K. Ahmed, S. Teso, K. Chang, G.V. den Broeck and A. Vergari, Semantic probabilistic layers for neuro-symbolic learning, in: Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28–December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh, eds, 2022,
http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html.

[4] K. Ahmed, S. Teso, K. Chang, G.V. den Broeck and A. Vergari, Semantic probabilistic layers for neuro-symbolic learning, in: Proc. of
NeurIPS, 2022.

[5] R. Ambadipudi, How Machine Learning Will Transform Your Industry, 2023, https://www.forbes.com/sites/forbestechcouncil/2023/02/27/
how-machine-learning-will-transform-your-industry/.

[6] S. Amershi, A. Begel, C. Bird, R. DeLine, H.C. Gall, E. Kamar, N. Nagappan, B. Nushi and T. Zimmermann, Software engineering for
machine learning: A case study, in: Proceedings of the 41st International Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP), Montreal, QC, Canada, May 25–31, 2019, H. Sharp and M. Whalen, eds, IEEE/ACM, 2019, pp. 291–300.

[7] R. Ashmore, R. Calinescu and C. Paterson, Assuring the machine learning lifecycle: Desiderata, methods, and challenges, ACM Comput.
Surv. 54(5) (2022), 111:1–111:39. doi:10.1145/3453444.

[8] S. Badreddine, A. d’Avila Garcez, L. Serafini and M. Spranger, Logic Tensor Networks, Artif. Intell. 303 (2022). doi:10.1016/j.artint.2021.
103649.

[9] N.E. Boudette, C. Metz and J. Ewing, Tesla Autopilot and Other Driver-Assist Systems Linked to Hundreds of Crashes, the New York Times,
2022, https://www.nytimes.com/2022/06/15/business/self-driving-car-nhtsa-crash-data.html.

[10] J. Carreira and A. Zisserman, Quo vadis, action recognition? A new model and the kinetics dataset, in: Proc. of CVPR, 2017.
[11] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin and J. Su, This looks like that: Deep learning for interpretable image recognition, in: Proc. of

NeurIPS, H.M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.B. Fox and R. Garnett, eds, 2019, pp. 8928–8939.
[12] I.B.M. Corporation, Agile Software Unified Process (ASUM), 2016, https://public.dhe.ibm.com/software/data/sw-library/services/ASUM.

pdf.
[13] D.R. Cox, Regression models and life-tables, Journal of the Royal Statistical Society: Series B (Methodological) 34(2) (1972), 187–202.

doi:10.1111/j.2517-6161.1972.tb00899.x.
[14] M. Diligenti, M. Gori, M. Maggini and L. Rigutini, Bridging logic and kernel machines, Mach. Learn. 86 (2012). doi:10.1007/s10994-011-

5243-x.
[15] F. Doshi-Velez and B. Kim, Towards a Rigorous Science of Interpretable Machine Learning, 2017.
[16] C. Feichtenhofer, H. Fan, J. Malik and K. He, SlowFast networks for video recognition, in: Proc. of ICCV, 2019.
[17] J. Feldstein, M. Jurcius and E. Tsamoura, Parallel neurosymbolic integration with Concordia, in: International Conference on Machine

Learning, ICML 2023, 23–29 July 2023, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett, eds, Proceedings of Ma-
chine Learning Research, Vol. 202, PMLR, Honolulu, Hawaii, USA, 2023, pp. 9870–9885, https://proceedings.mlr.press/v202/feldstein23a.
html.

[18] A.M. Ferber, B. Wilder, B. Dilkina and M. Tambe, MIPaaL: Mixed integer program as a layer, in: The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, the Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, the Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020, AAAI Press,
2020, pp. 1504–1511.

[19] T. Gebru, J. Morgenstern, B. Vecchione, J.W. Vaughan, H.M. Wallach, H. Daumé III and K. Crawford, Datasheets for Datasets, 2018,
CoRR, http://arxiv.org/abs/1803.09010 arXiv:1803.09010.

[20] G.D. Giacomo and M.Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in: IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, IJCAI/AAAI, Beijing, China, August 3–9, 2013, F. Rossi, ed., 2013, pp. 854–860,
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

[21] E. Giunchiglia and T. Lukasiewicz, Multi-Label Classification Neural Networks with Hard Logical Constraints, JAIR 72 (2021).
[22] E. Giunchiglia, M.C. Stoian, S. Khan, F. Cuzzolin and T. Lukasiewicz, ROAD-R: the Autonomous Driving Dataset for Learning with

Requirements, Machine Learning Journal (2023).
[23] E. Giunchiglia, A. Tatomir, M.C. Stoian and T. Lukasiewicz, CCN+: A neuro-symbolic framework for deep learning with requirements,

International Journal of Approximate Reasoning 171 (2024), 109124. doi:10.1016/j.ijar.2024.109124.
[24] F. Global, The Rise of AI in Manufacturing: Streamlining Processes Through Machine Learning, 2023, https://fintech.global/2023/06/02/

the-rise-of-ai-in-manufacturing-streamlining-processes-through-machine-learning/.

http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html
https://www.forbes.com/sites/forbestechcouncil/2023/02/27/how-machine-learning-will-transform-your-industry/
https://www.forbes.com/sites/forbestechcouncil/2023/02/27/how-machine-learning-will-transform-your-industry/
https://doi.org/10.1145/3453444
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
https://www.nytimes.com/2022/06/15/business/self-driving-car-nhtsa-crash-data.html
https://public.dhe.ibm.com/software/data/sw-library/services/ASUM.pdf
https://public.dhe.ibm.com/software/data/sw-library/services/ASUM.pdf
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1007/s10994-011-5243-x
https://doi.org/10.1007/s10994-011-5243-x
https://proceedings.mlr.press/v202/feldstein23a.html
https://proceedings.mlr.press/v202/feldstein23a.html
http://arxiv.org/abs/1803.09010
http://arxiv.org/abs/1803.09010
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1016/j.ijar.2024.109124
https://fintech.global/2023/06/02/the-rise-of-ai-in-manufacturing-streamlining-processes-through-machine-learning/
https://fintech.global/2023/06/02/the-rise-of-ai-in-manufacturing-streamlining-processes-through-machine-learning/


E. Giunchiglia et al. / Machine learning with requirements: A manifesto 11

[25] M. Haakman, L. Cruz, H. Huijgens and A. van Deursen, AI lifecycle models need to be revised, Empir. Softw. Eng. 26(5) (2021), 95. doi:10.
1007/s10664-021-09993-1.

[26] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in: Proc. of CVPR, 2016.
[27] J. Hippisley-Cox and C. Coupland, Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type

2 diabetes: cohort study, BMJ 359 (2017). doi:10.1136/bmj.j5019.
[28] N. Hoernle, R. Karampatsis, V. Belle and K. Gal, MultiplexNet: Towards fully satisfied logical constraints in neural networks, in: Proc. of

AAAI, 2022.
[29] Y. Hua, Z. Zhao, Z. Liu, X. Chen, R. Li and H. Zhang, Traffic prediction based on random connectivity in deep learning with long short-term

memory, in: Proc. of VTC-Fall, 2018.
[30] F. Imrie, B. Cebere, E.F. McKinney and M. van der Schaar, AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in

healthcare with automated machine learning, PLOS Digit. Health 2(6) (2023), e0000276. doi:10.1371/journal.pdig.0000276.
[31] D. Jarrett, B.C. Cebere, T. Liu, A. Curth and M. van der Schaar, HyperImpute: Generalized iterative imputation with automatic model

selection, in: Proceedings of Machine Learning Research, Vol. 162, PMLR, 2022, pp. 9916–9937.
[32] M.M. John, H.H. Olsson and J. Bosch, Towards MLOps: A framework and maturity model, in: Proc. of SEAA, IEEE, 2021, pp. 1–8.
[33] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang and L. Yang, Physics-informed machine learning, Nature Reviews Physics

3(6) (2021), 422–440. doi:10.1038/s42254-021-00314-5.
[34] G. Katz, C.W. Barrett, D.L. Dill, K. Julian and M.J. Kochenderfer, Towards proving the adversarial robustness of deep neural networks,

in: Proceedings First Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM 2017, Turin, Italy, 19th September 2017,
L. Bulwahn, M. Kamali and S. Linker, eds, EPTCS, Vol. 257, 2017, pp. 19–26. doi:10.4204/EPTCS.257.3.

[35] D. Kermany, M. Goldbaum, W. Cai, C. Valentim, H.-Y. Liang, S. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. Prasadha,
J. Pei, M. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar and K. Zhang, Identifying medical diagnoses and treatable diseases by image-
based deep learning, Cell 172 (2018), 1122–1131.e9. doi:10.1016/j.cell.2018.02.010.

[36] D. Kreuzberger, N. Kühl and S. Hirschl, Machine learning operations (MLOps): Overview, definition, and architecture, IEEE Access 11
(2023), 31866–31879. doi:10.1109/ACCESS.2023.3262138.

[37] C. Lee, W. Zame, J. Yoon and M. Van Der Schaar, DeepHit: A deep learning approach to survival analysis with competing risks, in: Proc.
of AAAI, Vol. 32, 2018.

[38] Y. Li, J. Wang, J. Ye and C.K. Reddy, A multi-task learning formulation for survival analysis, in: Proc. of ACM SIGKDD, 2016,
pp. 1715–1724.

[39] A. Lomuscio and L. Maganti, An approach to reachability analysis for feed-forward ReLU neural networks, 2017, CoRR, http://arxiv.org/
abs/1706.07351 arXiv:1706.07351.

[40] C. Macrae, Learning from the Failure of Autonomous and Intelligent Systems: Accidents, Safety, and Sociotechnical Sources of Risk, Risk
analysis: an official publication of the Society for Risk Analysis 42 (2022).

[41] S. Mäkinen, H. Skogström, E. Laaksonen and T. Mikkonen, Who needs MLOps: What data scientists seek to accomplish and how can
MLOps help? in: 1st IEEE/ACM Workshop on AI Engineering – Software Engineering for AI, IEEE, 2021, pp. 109–112.

[42] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester and L.D. Raedt, DeepProbLog: Neural Probabilistic Logic Programming, 2018,
CoRR, http://arxiv.org/abs/1805.10872 arXiv:1805.10872.

[43] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester and L.D. Raedt, Neural probabilistic logic programming in DeepProbLog, Artif.
Intell. 298 (2021), 103504. doi:10.1016/j.artint.2021.103504.

[44] E. Marconato, S. Bortolotti, E. van Krieken, A. Vergari, A. Passerini and S. Teso, BEARS Make Neuro-Symbolic Models Aware of their
Reasoning Shortcuts, 2024, CoRR arXiv:2402.12240.

[45] E. Marconato, S. Teso, A. Vergari and A. Passerini, Not all neuro-symbolic concepts are created equal: Analysis and mitigation of reasoning
shortcuts, in: Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10–16, 2023, 2023.

[46] F. Martínez-Plumed, L.C. Ochando, C. Ferri, J. Hernández-Orallo, M. Kull, N. Lachiche, M.J. Ramírez-Quintana and P.A. Flach, CRISP-
DM twenty years later: From data mining processes to data science trajectories, IEEE Trans. Knowl. Data Eng. 33(8) (2021), 3048–3061.
doi:10.1109/TKDE.2019.2962680.

[47] M. McGough, How bad is Sacramento’s air, exactly? Google results appear at odds with reality, some say, Sacramento Bee (2018), https://
www.sacbee.com/news/california/fires/article216227775.html.

[48] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman and A. Galstyan, A survey on bias and fairness in machine learning, ACM Comput. Surv.
54(6) (2022), 115:1–115:35. doi:10.1145/3457607.

[49] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I.D. Raji and T. Gebru, Model cards for model
reporting, in: Proc. of FAT*, D. Boyd and J.H. Morgenstern, eds, ACM, 2019, pp. 220–229.

[50] F.K. Nakano, M. Lietaert and C. Vens, Machine learning for discovering missing or wrong protein function annotations – a comparison
using updated benchmark datasets, BMC Bioinform. 20(1) (2019), 485:1–485:32.

[51] NTSB, Preliminary report: Highway HWY18MH010, 2018, Washington, DC: National Transportation Safety Board.
[52] B. Nuseibeh and S.M. Easterbrook, Requirements engineering: A roadmap, in: Proc. of ICSE, A. Finkelstein, ed., ACM, 2000, pp. 35–46.
[53] A. Paulus, M. Rolínek, V. Musil, B. Amos and G. Martius, CombOptNet: Fit the right NP-hard problem by learning integer programming

constraints, in: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, Virtual Event, 18–24 July 2021,
M. Meila and T. Zhang, eds, Proceedings of Machine Learning Research, Vol. 139, PMLR, 2021, pp. 8443–8453, http://proceedings.mlr.
press/v139/paulus21a.html.

https://doi.org/10.1007/s10664-021-09993-1
https://doi.org/10.1007/s10664-021-09993-1
https://doi.org/10.1136/bmj.j5019
https://doi.org/10.1371/journal.pdig.0000276
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.4204/EPTCS.257.3
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1109/ACCESS.2023.3262138
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1805.10872
http://arxiv.org/abs/1805.10872
https://doi.org/10.1016/j.artint.2021.103504
http://arxiv.org/abs/2402.12240
https://doi.org/10.1109/TKDE.2019.2962680
https://www.sacbee.com/news/california/fires/article216227775.html
https://www.sacbee.com/news/california/fires/article216227775.html
https://doi.org/10.1145/3457607
http://proceedings.mlr.press/v139/paulus21a.html
http://proceedings.mlr.press/v139/paulus21a.html


12 E. Giunchiglia et al. / Machine learning with requirements: A manifesto

[54] K. Pei, Y. Cao, J. Yang and S. Jana, DeepXplore: Automated whitebox testing of deep learning systems, Commun. ACM 62(11) (2019),
137–145. doi:10.1145/3361566.

[55] L. Pulina and A. Tacchella, An abstraction-refinement approach to verification of artificial neural networks, in: Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15–19, 2010, T. Touili, B. Cook and P.B. Jackson, eds, Lecture Notes in
Computer Science, Vol. 6174, Springer, 2010, pp. 243–257. doi:10.1007/978-3-642-14295-6_24.

[56] L.D. Raedt, A. Passerini and S. Teso, Learning constraints from examples, in: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018, S.A. McIlraith and K.Q. Wein-
berger, eds, AAAI Press, 2018, pp. 7965–7970.

[57] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar and S.W. Keckler, vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design, in: Proc. of IEEE/ACM MICRO, IEEE Computer Society, 2016, pp. 18:1–18:13.

[58] M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung, A.I. Aviles-Rivero, C. Etmann, C. McCague, L. Beer, J.R. Weir-
McCall, Z. Teng, E. Gkrania-Klotsas, A. Ruggiero, A. Korhonen, E. Jefferson, E. Ako, G. Langs, G. Gozaliasl, G. Yang, H. Prosch,
J. Preller, J. Stanczuk, J. Tang, J. Hofmanninger, J. Babar, L.E. Sánchez, M. Thillai, P.M. Gonzalez, P. Teare, X. Zhu, M. Patel, C. Cafolla,
H. Azadbakht, J. Jacob, J. Lowe, K. Zhang, K. Bradley, M. Wassin, M. Holzer, K. Ji, M.D. Ortet, T. Ai, N. Walton, P. Lio, S. Stranks,
T. Shadbahr, W. Lin, Y. Zha, Z. Niu, J.H.F. Rudd, E. Sala, C.-B. Schönlieb and AIX-COVNET, Common pitfalls and recommendations for
using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans, Nature Machine Intelligence 3(3)
(2021), 199–217. doi:10.1038/s42256-021-00307-0.

[59] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature
Machine Intelligence 1(5) (2019). doi:10.1038/s42256-019-0048-x.

[60] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev and S. Dzeroski, Predicting gene function using hierarchical multi-label decision
tree ensembles, BMC Bioinform. 11 (2010), 2. doi:10.1186/1471-2105-11-2.

[61] N. Seedat, F. Imrie and M. van der Schaar, DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning
systems, 2022, CoRR arXiv:2211.05764. doi:10.48550/arXiv.2211.05764.

[62] S. Sendelbach and M. Funk, Alarm fatigue: A patient safety concern, AACN Advanced Critical Care 24(4) (2013), 378–386. doi:10.4037/
NCI.0b013e3182a903f9.

[63] A.W. Senior et al., Improved protein structure prediction using potentials from deep learning, Nature 577(7792) (2020). ISBN 1476-4687.
[64] C.N.J. Silla and A.A. Freitas, A survey of hierarchical classification across different application domains, Data Min. Knowl. Discov. 22(1–2)

(2011), 31–72. doi:10.1007/s10618-010-0175-9.
[65] G. Singh, S. Akrigg, M.D. Maio, V. Fontana, R.J. Alitappeh, S. Saha, K.J. Saravi, F. Yousefi, J. Culley, T. Nicholson, J. Omokeowa,

S. Khan, S. Grazioso, A. Bradley, G.D. Gironimo and F. Cuzzolin, ROAD: The ROad event Awareness Dataset for Autonomous Driving,
IEEE TPAMI (2022).

[66] G. Singh and F. Cuzzolin, Recurrent convolutions for causal 3D-CNNs, in: Proc. of ICCV Workshops, 2019.
[67] I. Sommerville, Software Engineering, 10th edn, International Computer Science Series, Addison-Wesley, 2015.
[68] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide, Wiley, 1997.
[69] R. Stewart and S. Ermon, Label-free supervision of neural networks with physics and domain knowledge, in: Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence, San Francisco, California, USA, February 4–9, 2017, S. Singh and S. Markovitch, eds, AAAI
Press, 2017, pp. 2576–2582. doi:10.1609/AAAI.V31I1.10934.

[70] M.C. Stoian, S. Dyrmishi, M. Cordy, T. Lukasiewicz and E. Giunchiglia, How realistic is your synthetic data? Constraining deep generative
models for tabular data, in: Proceedings of ICLR, 2024.

[71] J.M. Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 180(4) (2020). doi:10.1016/j.cell.2020.01.021.
[72] S. Studer, T.B. Bui, C. Drescher, A. Hanuschkin, L. Winkler, S. Peters and K. Müller, Towards CRISP-ML(Q): A machine learning process

model with quality assurance methodology, Mach. Learn. Knowl. Extr. 3(2) (2021), 392–413. doi:10.3390/make3020020.
[73] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong,

J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman and R. Collins, UK biobank: An open access resource for identifying the causes of a
wide range of complex diseases of middle and old age, PLOS Medicine 12(3) (2015), 1–10. doi:10.1371/journal.pmed.1001779.

[74] G. Symeonidis, E. Nerantzis, A. Kazakis and G.A. Papakostas, MLOps – definitions, tools and challenges, in: Proc. of IEEE CCWC, IEEE,
2022, pp. 453–460.

[75] E.J. Topol, High-performance medicine: The convergence of human and artificial intelligence, Nature Medicine 25(1) (2019), 44–56.
doi:10.1038/s41591-018-0300-7.

[76] K.R. Varshney and H. Alemzadeh, On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products,
Big Data 5(3), 2016.

[77] C. Vens, J. Struyf, L. Schietgat, S. Dzeroski and H. Blockeel, Decision trees for hierarchical multi-label classification, Mach. Learn. 73(2)
(2008), 185–214. doi:10.1007/s10994-008-5077-3.

[78] K. Wang, E. Tsamoura and D. Roth, On learning latent models with multi-instance weak supervision, in: Proceedings of NeurIPS, 2023.
[79] X. Wang, R. Girshick, A. Gupta and K. He, Non-local neural networks, in: Proc. of CVPR, 2018.
[80] T. Weng, H. Zhang, P. Chen, J. Yi, D. Su, Y. Gao, C. Hsieh and L. Daniel, Evaluating the robustness of neural networks: An extreme value

theory approach, in: Proc. of ICLR, OpenReview.net, 2018.
[81] R. Wexler, When a computer program keeps you in jail: How computers are harming criminal justice, The New York Times (2017), https://

www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html.
[82] M. Wick, S. Panda and J.-B. Tristan, Unlocking fairness: A trade-off revisited, in: Proc. of NeurIPS, Curran Associates, Vol. 32, Inc., 2019.

https://doi.org/10.1145/3361566
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1186/1471-2105-11-2
http://arxiv.org/abs/2211.05764
https://doi.org/10.48550/arXiv.2211.05764
https://doi.org/10.4037/NCI.0b013e3182a903f9
https://doi.org/10.4037/NCI.0b013e3182a903f9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1609/AAAI.V31I1.10934
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.3390/make3020020
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1007/s10994-008-5077-3
https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html
https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html


E. Giunchiglia et al. / Machine learning with requirements: A manifesto 13

[83] J. Xu, Z. Zhang, T. Friedman, Y. Liang and G. Van den Broeck, A semantic loss function for deep learning with symbolic knowledge, in:
Proc. of ICML, 2018.


	Introduction
	The need for requirements
	Autonomous driving
	Healthcare

	The pyramid model
	The role of neuro-symbolic AI
	Summary and outlook
	References



