Index Abstracts

The synthesis of the new hindered phosphorus complexes $\mathrm{ArPCl}_{2}(1)$, $\operatorname{ArP}(\mathrm{O})(\mathrm{OH}) \mathrm{H}(2), \quad \mathrm{ArPH}_{2}(3)$, and $\mathrm{ArP}=\mathrm{PAr}(4) \quad(\mathrm{Ar}=2,6$-dimesitylphenyl) are presented. Compounds 2 and 4 have been subjected to single crystal X-ray analysis and the structures are reported.

The direct mercuration of acetone leads to trimercurated acetone. In the case of butanone the mixture of trimercurated butanone (80%) is obtained along with dimercurated (15%) and monomercurated butanone (5%) respectively. The site and degree of mercuration was confirmed by one- and two dimensional ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

E. Urnézíius and J.D. Protasiewicz

Synthesis and Structural Characterization of New Hindered Aryl Phosphorus Centers (Aryl $=2,6$-Dimesitylphenyl)

369-372
Zora Popović, Branka KorparČolig, Dubravka MatkovićČalogović, Dražen Vikić-Topić and Milan Sikirica

Mercuration Products of Some Aliphatic Ketones and KetoAcids. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Evidence on the Site and Degree of Mercuration. The Crystal and Molecular Structure of 1(Acetoxymercurio)butanone
373-385

Francisco Lara-Ochoa, Ioan Silaghi-Dumistrescu and Ionel Haiduc

Coordinative Dimerization of Aminosilanes. Model MNDO and Ab Initio Molecular Orbital Calculations

387-398

New 1,2-Bis(silyl)indoles were synthesized via 1,2 -silatropy of the tert-butyldimethylsilyl and trimethylsilyl substituent (4). Bromination of di-tert-butylfluoro(indol-1-yl)silane with NBS gave the 3-bromosilylindole which reacts with n-butyllithium under lithium-bromine-exchange. Starting from the 3 -lithiumsilylindole new 1,3 -bis(silyl)indoles were synthesized. Reaction with dihalogenosilanes lead to the first bis(indol-3-yl)silanes 9 and 10.

It is shown that the reagent consisting of silylamine and organohalide has a similar reactivity to iodotrimethylsilane but with easier care, and can effectively open an oxirane ring to give β-trimethylsilyloxyalkyliodide. Excellent stereoselectivity is found for a fluorofunctional oxirane and 1,2epoxycyclohexane.

By addition of $(\mathrm{THF})_{3} \mathrm{LiSi}\left(\mathrm{SnMe}_{3}\right)_{3}$ to the appropriate metal chloride reagent, the complexes $\mathrm{Cp}^{*}\left(\mathrm{PMe}_{3}\right)_{2}$ $\operatorname{RuSi}\left(\mathrm{SnMe}_{3}\right)_{3}\left(\mathbf{1}, \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ and (dcpe) $\mathrm{Pt}\left[\mathrm{Si}\left(\mathrm{SnMe}_{3}\right)_{3}\right] \mathrm{Cl}\left(2, \mathrm{dcpe}=\mathrm{Cy}_{2}\right.$ $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PCy}_{2}$) have been prepared and structurally characterized. Structural parameters for complex 1 indicate that it is quite sterically congested. Complex 2, which is less sterically hindered, undergoes rearrangement in refluxing benzene to the complex (dcpe) $\mathrm{Pt}\left[\mathrm{Si}\left(\mathrm{SnMe}_{3}\right)_{2} \mathrm{Cl}\right]\left(\mathrm{SnMe}_{3}\right)(3)$.

4

A. Frenzel, R. Herbst-Irmer, U. Klingebiel, M. Noltemeyer, and S. Rudolph

New Routes to 1,2- and 1,3Bis(silyl)indoles - Synthesis of the First Bis(indol-3-yl)silane
399-408

Yasushi Yamamoto, Hideaki Shimizu, Chinami Matui and Michiru Chinda

Transformation of Oxiranes to β-Trimethylsilyloxyalkyl Iodide by N-(Trimethylsilyl)-diethylamine and Methyl Iodide

409-414

1

Richard H. Heyn and T. Don Tilley

Tris(trimethylstannyl) silyl Complexes of Ruthenium and Platinum

415-424

The preparation and X-Ray structure of two new organo-phosphorus rings is described.

The synthesis and structural characterization of five new amido alane complexes is reported. These include primary amido dimers of general formula $\left[\mathrm{R}_{2} \mathrm{AlNHR}\right]_{2}$ and one monomeric secondary amido complex, $\mathrm{Mes}_{2} \mathrm{AlN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (shown).

Petr Kilián, Jirí Touzín, Jarmoír Marek, J. Derek Woollins and Josef Novosad Reaction of Naphthalenedithiadiphosphetanedisulphide with Ethylene Glycol

425-429

David A. Atwood and Drew Rutherford

Synthesis and Structural Characterization of Monomeric and Dimeric Aluminum Amides

431-442
Y. L. Frolov, N. N. Chipanina and A. V. Kniznik

Theoretical Study of the Electronic Structure and Rotational Isomerism of Bis-Substituted Acetylenes

443-444

The methyl vinyl sulfide (MVS) molecule is investigated by means of the nonempirical HF SCF calculation with full optimization of its geometry (basis sets 6-31G/ for sulfur and 6-31G for other atoms). Energy difference for the cis $\left(\theta=0^{\circ}\right)$ and gauche $\left(\theta=134.4^{\circ}\right)$ rotational isomers is $207.2 \mathrm{~cm}^{-1}$. The most conformationally sensitive MOs are determined. Dipole moments and vibrational spectra for MVS are measured and also calculated for both isomers.

