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Abstract. Historically, tumor biopsies and clinical laboratory testing have been the gold standard for diagnosis and prognosis
in metastatic renal cell carcinoma (mRCC). Genomic profiling in mRCC has traditionally been performed on tumor tissue;
however, challenges and limitations in obtaining tissue biopsies led to the discovery of alternative biological specimens,
namely circulating cell-free DNA (cfDNA). Rapidly evolving technologies, with increased sensitivity and specificity, have
been used to query cfDNA in the clinical research setting. These investigations are rapidly establishing cfDNA and liquid
biopsies as valuable complementary specimens to the gold standard, and in some instances surpassing these with unique
insight into the contemporary genomic landscape and tumor heterogeneity. In this review, we will discuss recent research into
the prognostic, diagnostic, and predictive utility of liquid biopsies in mRCC. We will explore their potential role in precision
treatment of mRCC and conclude with what is needed in order to translate them to clinical practice.
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INTRODUCTION

The treatment landscape for metastatic renal cell
carcinoma (mRCC) is evolving at a staggering pace.
Currently, the therapeutic armamentarium for mRCC
includes multi-targeted tyrosine kinase inhibitors
(TKIs), VEGF targeted therapies, combined immune
checkpoint inhibitors (ICIs), and combinations of
VEGF targeted therapy and immune checkpoint
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inhibitors [1-7]. Since many of these agents were
approved over a similar time period, there are few
direct head-to-head comparisons of these agents.
With minimal head-to-head clinical trial data to guide
treatment selection, predictive biomarkers capable
of optimizing individual outcomes are needed in
mRCC. Tissue biopsies are routinely used to diagnose
patients with mRCC, and they are also the primary
source of tumor cells for molecular profiling by next-
generation sequencing (NGS). NGS of tumor tissue
has improved our understanding of the biology and
genomic landscape of mRCC [8].

To date, in mRCC, the majority of NGS studies
were retrospective and utilized archived tumor tissue
from the initial nephrectomy, which may not accu-
rately reflect the contemporary genomic profile of
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metastatic disease. For patients with mRCC, anal-
ysis of cell-free circulating tumor DNA (ctDNA),
hereafter referred to as liquid biopsy, is a promising
addition to the diagnostic, predictive, and prognos-
tic tools currently utilized in the clinical setting. A
thorough discussion on liquid biopsies is beyond the
scope of this review, but we recommend readers refer
to a recent publication by Corcoran and Chabner for
more details [9]. Current dogma predicts that can-
cer cells undergoing apoptosis and necrosis release
ctDNA into circulation, which then combines with
plasma cell-free circulating DNA (cfDNA) from nor-
mal cells (Fig. 1) [10]. Liquid biopsy is a minimally
invasive blood-based test that is easy to repeat, may
offer insight into tumor heterogeneity, and provides
contemporary monitoring of tumor evolution [11].
Furthermore, metastases in mRCC are often soli-
tary and in anatomic sites that are difficult to biopsy,
such as bone or brain. In this review, we will discuss
the promising clinical utility of liquid biopsies for
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diagnosis, prognosis, and to guide precision treatment
of mRCC patients.

ANALYTICAL CHARACTERIZATION OF
LIQUID BIOPSY IN MRCC

Nuclease-resistant cell-free DNA (cfDNA), typ-
ically associated to nucleosomes, corresponds to
double-stranded DNA fragments ranging in length
between 150-200 base pairs. The abundance, degree
of fragmentation (genomic and mitochondrial), and
methylation of tumor-suppressor genes has been
investigated in cfDNA from RCC patients.

Analysis of cfDNA levels and fragmentation in
mRCC

In spite of significant variability in cfDNA levels
between patients, a study of 92 RCC patients and 41
healthy controls reported increasing levels between
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Fig. 1. Circulating cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) are found in serum and plasma fractions from blood. The
mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active shedding from tumor cells has been hypothesized. Once
ctDNA is isolated, it can be quantitated and analyzed for genomic alterations.
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healthy controls and tumor, as well as with increas-
ing Fuhrman nuclear grade [12]. Moreover, cfDNA
levels were lower in healthy controls compared to
c¢T1aNOMO RCC patients, and higher in patients
with lymphovascular invasion (LVI) [12]. Addition-
ally, the median fragment size of plasma cfDNA was
shorter in RCC patients compared to healthy controls,
and also shorter with higher Fuhrman grade (3/4) and
positive LVI [12]. Yamamoto and colleagues also
noted that cfDNA fragment size increased follow-
ing removal of the primary tumor, and that shorter
fragment size and higher plasma cfDNA levels were
associated with shorter PFS [12]. These findings sug-
gest that cfDNA levels and median fragment size may
have diagnostic and prognostic utility for patients
with all stages of RCC.

Analysis of mitochondrial cfDNA fragments in
mRCC

A different report investigated whether genomic
and mitochondrial cfDNA fragments may have
diagnostic and prognostic potential [13]. CfDNA
was extracted from 40 healthy controls and 229
RCC patients (145 with localized disease and 84
metastatic). Results from this study indicated two
mitochondrial fragments of 65 and 175bp were able
to distinguish metastatic from localized and healthy
control cfDNA with high confidence (p <0.0001). In
contrast, only 1 out of 5 genomic cfDNA fragments
(APP fragment 3, 306bp) was capable of distinguish-
ing between RCC patients, who had lower levels, and
healthy controls. The results reported by Lu and col-
leagues suggests that combinations of genomic and
mitochondrial cfDNA fragments may help with early
diagnosis of metastatic disease, which could be espe-
cially valuable in clinical trials evaluating adjuvant
therapy for RCC [13].

Analysis of cfDNA levels and tumor suppressor
gene methylation in mRCC

Earlier detection of RCC at lower clinical stag-
ing improves the probability of cure. With this
goal in mind, Skrypkina and colleagues investigated
whether cfDNA levels and methylation of specific
tumor suppressor genes could be useful in RCC [14].
Their results, in agreement with those from previous
reports, showed that cfDNA concentration in plasma
was higher in RCC patients compared to healthy
controls. In addition, they noted that methylation of
the tumor suppressor genes RASSFI (62.9%), FHIT

(55.6%), and APC (51.9%) in cfDNA had the high-
est specificity for distinguishing patients with RCC
from healthy controls. Finally, the authors utilized
receiver-operating characteristics analysis to inves-
tigate the diagnostic potential of combining cfDNA
level with the methylation status of the three tumor-
suppressor genes (RASSFIA, FHIT, and APC). The
ROC results indicate the highest achievable sensi-
tivity/specificity (100%) for RCC diagnosis in the
localized setting requires a combination of the cfDNA
level and methylation status of all three genes. A sig-
nificant limiting factor in this study was the number
of RCC patients and controls investigated, 27 and 15
respectively. Due to potential significance of these
results, validation of their findings in large, prospec-
tive studies is needed.

GENOMIC LANDSCAPE OF MRCC BY
LIQUID BIOPSY

In order for liquid biopsy to be of clinical util-
ity, targeted panels must include genes with common
genomic alterations (GAs) found in patients with
mRCC. While currently there are no predictive
biomarkers for mRCC, a group of commonly altered
genes that are of interest includes VHL, PBRMI,
SETD2, BAPI, KDM5C, mTOR, TSCI1, and PTEN
[15-17]. To date, there is only one large study that
reported the frequency of GAs in mRCC by NGS of
a liquid biopsy [18]. In that study, Pal and colleagues
described the genomic landscape in 220 patients
with mixed histology mRCC who underwent testing
using a commercial platform, Guardant360. Among
69 patients with clear cell mRCC, 32% had an alter-
ation in VHL and 30% had an alteration in TP53.
ARIDIA (18%), NF1 (22%), and EGFR (13%) were
also commonly altered in this cohort. The commer-
cial gene panel used did not include PBRM 1, SETD?2,
BAP1, or KDM5C, so the presence of GAs in these
genes in ctDNA was not determined.

The frequency of GAs detected in ctDNA from
mRCC patients differs from reports on NGS of
tumor tissue. Multiple, large studies of tumor tis-
sue NGS have been reported in patients with all
stages of RCC, yet there is only one tissue NGS
study that focused on patients with mRCC [19]. The
gold standard for reporting the genomic landscape
in tumor tissue across all stages and histologies of
RCC is The Cancer Genome Atlas (TCGA) study [8,
20]. In the most recent report from TCGA of 488
patients with clear cell RCC, GAs in VHL were more
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Table 1
Frequency of Genomic Alterations in Clear-Cell mRCC by ctDNA
and Tissue Next-Generation Sequencing

Gene ctDNA clear-cell TCGA clear-cell RECORD-3

(n=69) (n=488) (n=220)
TP53 30% 3% 8%
VHL 32% 55% 75%
PBRM1 N/A* 38% 46%
SETD2 N/A* 13% 30%
KDM5C N/A* 7% 15%

CtDNA =circulating tumor DNA, TCGA =The Cancer Genome
Atlas, n=number, N/A =not available, * =not tested by commer-
cially available ctDNA platform.

common than in the study by Pal, et al (55% vs. 32%),
while TP53 alterations were less prevalent (3% vs.
30%) (Table 1). While the TCGA cohort includes
patients with all histologies of RCC, only 11% had
clear cell mRCC. Thus, one could anticipate that the
frequency of GAs would differ between the two stud-
ies. However, even if one were to consider only clear
cell mRCC patients (n=76) from the TCGA cohort,
the frequency of GAs in VHL and TP53 would remain
mostly the same (50% and 4% respectively). It is
also important to note that >80% of ccRCC patients
in the TCGA cohort had loss of chromosomal arm
3p where the VHL gene is located. The commercial
platform, Guardant360, does not detect large dele-
tions; therefore, loss of the VHL gene in the Pal et
al cohort would go undetected. In contrast, a post-
hoc analysis of the RECORD-3 trial performed NGS
of tumor tissue on 220 patients with mRCC [19].
The prevalence of GAs in VHL and TP53 were 75%
and 8% respectively (Table 1). A limitation of both,
the TCGA and RECORD-3 studies on patients with
mRCC, was that the predominant source of tissue
came from primary tumor nephrectomies, thus these
may not reflect the evolving genomic landscape and
heterogeneity of the metastatic setting. Additionally,
it is possible that low levels of ctDNA, possibly due
to therapy, could result in alterations being below the
limit of detection. Large, carefully controlled studies,
comparing the genomic landscape assessed by NGS
of tumor tissue and ctDNA are needed in order to
fully understand the discrepancies in GAs detected
by either platform.

DIAGNOSTIC YIELD AND TIMING OF
LIQUID BIOPSY IN MRCC

Currently, liquid biopsies are primarily utilized to
enroll patients in biomarker-guided clinical trials;

however, as their use becomes more prevalent, it’s
important to understand the optimal timing for their
collection in mRCC. In the largest study to date, 79%
of 220 patients with mRCC had detectable ctDNA
[18]. Furthermore, it appears that patients with higher
tumor burden shed more ctDNA. In a study of 36
patients with mRCC, patients with detectable ctDNA
had higher disease volume as determined by the sum
of the longest diameter of measurable lesions on
CT imaging compared to patients without detectable
ctDNA (8.81 cm vs. 4.49 cm, p=0.04) [21].

LIQUID BIOPSIES AND THERAPEUTIC
EVOLUTION

It is also important to know how the genomic land-
scape of mRCC evolves after systemic treatment. In
the same study of 220 patients with mRCC, Pal and
colleagues showed that the genomic landscape for
mRCC evolves after systemic treatment [18]. In a
comparison of post-first-line and post-salvage-line
treatment of mRCC, there was a significant differ-
ence in the frequency of GAs in TP53 (24% vs. 49%,
p=0.02) and NFI (3% vs. 20%, p=0.01). Further-
more, a non-significant difference was observed in
the frequency of GAs in VHL (18% vs. 29%, p=0.3)
and PIK3CA (5% vs. 10%, p=0.3). The evidence
from these studies suggests that liquid biopsies will
be most informative in those patients with mRCC
who are progressing on systemic treatment or have
high tumor burden.

LIQUID BIOPSIES AND TUMOR
HETEROGENEITY

In a seminal paper by Gerlinger and colleagues,
mRCC was shown to have significant intratumor het-
erogeneity, as 63—69% of somatic alterations were not
detectable in every region biopsied [22]. Some have
hypothesized that liquid biopsy will more accurately
reflect the genomic landscape of mRCC by captur-
ing tumor heterogeneity. In a hypothesis-generating
study of 19 patients with mRCC, we performed
matched tumor tissue and liquid biopsy NGS to assess
concordance, and whether a liquid biopsy was capa-
ble of detecting tumor heterogeneity [23]. When
controlling for genomic segments tested by both
platforms, we noted a low concordance (8.6%) in
detected GAs between platforms, this may suggest
that liquid biopsies are more capable of detect-
ing tumor heterogeneity. However, this study had
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significant methodological limitations. Primarily, this
study was comparing two different commercial plat-
forms, Guardant360 and FoundationOne. Multiple
studies across cancer types have compared tissue
NGS using FoundationOne and liquid biopsy NGS
by Guardant360, and have reported low concordance
between the two testing platforms [24-27]. The lim-
itations of these comparisons include: the different
pipelines used to call GAs, GAs with low vari-
ant allele frequencies, the timing between tests, the
number of interventional therapies, and whether a
patient was on therapy at the time of testing [28, 29].
While larger studies comparing tissue NGS and liquid
biopsy in mRCC are needed, the available data sup-
ports the continued investigation of liquid biopsies as
atool for the contemporary, non-invasive, assessment
of the genomic landscape in mRCC patients.

POTENTIAL ROLE OF LIQUID BIOPSY IN
PRECISION TREATMENT OF MRCC

Biomarkers predictive of response to treatment are
not routinely used in clinical practice for mRCC;
however, there are some potential opportunities
where liquid biopsies can inform precision treatment
of mRCC. ICIs are approved in the first-line and
salvage-line setting for mRCC [6, 30]. In contrast
to non-small cell lung cancer (NSCLC) and other
malignancies, PD-L1 staining has not been a reliable
predictor of response for patients with mRCC [31].
Furthermore, PD-L1 staining requires tumor tissue,
and metastases in mRCC are often difficult to access.
Tumor mutational burden (TMB) is an alternative test
that can be assessed by liquid biopsy and may be a
better predictor of response to ICIs. Across all malig-
nancies, RCC has the highest number of insertions
and deletions, which can result in a high neo-antigen
load [32]. TMB is a surrogate for overall neo-antigen
load in a tumor [33, 34]. Multiple studies across
a variety of malignancies, including mRCC, have
demonstrated that high tissue TMB is predictive of
response to ICIs [35, 36]. A study using data from the
POPLAR and OAK trials of atezolizumab in NSCLC
showed that blood-based TMB can also be used to
predict response to ICIs [37]. Recently, Guardant
Health has updated their cfDNA assay, Guardant360,
to include TMB reporting. Furthermore, a study of 69
patients with diverse solid tumors, including mRCC,
found that “hypermutated ctDNA”, defined as >6
GAs, was predictive of improved response to ICIs

[38]. While prospective studies are needed, TMB and
hypermutated ctDNA in liquid biopsies are promis-
ing biomarkers of response to ICIs for patients with
mRCC.

While there are no predictive biomarkers for
VEGF targeted therapies, liquid biopsy NGS can be
used to guide enrollment of patients with mRCC
in biomarker-guided clinical trials. Currently, there
are multiple biomarker-guided clinical trials open to
patients with mRCC. While clear cell is the most
common histologic subtype of mRCC, 15-20% of
patients will have non-clear cell disease, including
papillary mRCC, which are associated with inferior
outcomes [39, 40]. Genomic profiling has shown that
MET dysregulation is common in papillary mRCC,
and a phase 2 clinical trial of savolitinib, a selective
MET tyrosine kinase inhibitor, showed promising
activity in MET-positive, papillary mRCC [41, 42].
Currently, there are two phase 3 clinical trials evaluat-
ing MET inhibitors in patients with papillary mRCC,
SWOG 1500 and SAVOIR, and liquid biopsy NGS
is capable of detecting MET alterations. Moving
forward, gene targeted liquid biopsies may become
an ideal companion test for future biomarker-driven
clinical trials in mRCC.

CONCLUSION

Due to advances in many technologies and
increased sensitivity, the use of liquid biopsies is
becoming increasingly prevalent across many differ-
ent cancers. While there are currently no indications
to use liquid biopsy in routine management of mRCC,
there are many promising avenues currently under
investigation. Based on multiple studies, analysis of
cfDNA concentration, fragment size, and methyla-
tion status may aid in early diagnosis of localized
or metastatic RCC and help with prognostication.
While the majority of mRCC patients appear to shed
ctDNA, the yield of liquid biopsy NGS is higher in
patients with increased tumor burden and in those
whose disease is progressing. Additionally, liquid
biopsy NGS in mRCC has shown that the genomic
landscape evolves after systemic treatment and is
capable of detecting tumor heterogeneity. In order
for liquid biopsy to achieve its full clinical poten-
tial, standardization of pre-analytical and analytical
procedures, terminology, cross-platform validation,
and sufficiently powered prospective studies are
needed.
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