
Journal on Satisfiability, Boolean Modeling and Computation 14 (2023) 17–23

OMTPlan: A Tool for Optimal Planning Modulo Theories

Francesco Leofante f.leofante@imperial.ac.uk
Department of Computing
Imperial College London
London SW7 2AZ
United Kingdom

Abstract
OMTPlan is a Python platform for optimal planning in numeric domains via reductions

to Satisfiability Modulo Theories (SMT) and Optimization Modulo Theories (OMT). Cur-
rently, OMTPlan supports the expressive power of PDDL2.1 level 2 and features procedures
for both satisficing and optimal planning. OMTPlan provides an open, easy to extend, yet
efficient implementation framework. These goals are achieved through a modular design
and the extensive use of state-of-the-art systems for SMT/OMT solving.

Keywords: Planning as Satisfiability, Optimisation Modulo Theories

Submitted 2 February 2022; revised 26 January 2023; accepted 2 May 2023

1. Introduction

AI Planning can be defined as the model-based approach to intelligent behaviour, where a
model of the world and of possible actions to be performed is used to decide on a sequence
of actions, a plan, that brings the world to a desired state [6].

Satisfiability Modulo Theories (SMT) [2] and its extension Optimization Modulo Theories
(OMT) [17] are two powerful frameworks that have been used to model, and reason about,
expressive planning problems. While SMT technology has long enjoyed popularity within
the planning community, the application of OMT to planning has remained unexplored until
recently. In [11] we introduced the first domain-independent reduction from optimal planning
to OMT solving. More specifically, we presented an OMT-based algorithm to solve optimal
numeric planning problems where actions are equipped with unitary (all actions have cost 1),
constant (actions have constant costs � 1) or state-dependent action costs (SDAC), where
the cost of executing an action is a function of the state where it is executed [9]. Notably,
no tool support exists for integrated reasoning on problems of the latter class and state-of-
the-art (SoA) planners either do not support SDAC upfront, e.g. [14], or solve them with
uninformed search, a general class of search algorithms that explore the solution space of a
planning problem ignoring domain specific knowledge such as cost structures, e.g. [12].

The present contribution is intended to fill this gap as we introduce OMTPlan, the first
planner that leverages state-of-the-art satisfiability techniques to solve optimal planning prob-
lems in the presence of rich cost structures. OMTPlan is implemented in Python and presents
a modular architecture that can be easily extended with new functionalities. Besides offering
solving capabilities, OMTPlan can also act as a translator from PDDL [5], the standard lan-
guage of planning, to SMT-LIB [1] thus providing a new source of challenging benchmarks
for the automated reasoning community – see, e.g. [3] for such an application of the tool. The
planner is open-sourced under a GNU General Public License, version 3 (GPL-3.0). Source

1574-0617 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/


F Leofante

Figure 1. OMTPlan: internal work-flow.

code and the related documentation are available online at: https://github.com/fraleo/
OMTPlan.

2. System Architecture

OMTPlan realises its functionalities through the interaction of the components represented
in Fig. 1. Each component takes care of different phases of the planning process as detailed
in the following.

Input Language. OMTPlan accepts problems specified in the Planning Domain Definition
Language (PDDL), the de-facto standard language for planning. Dialects of PDDL exist
with different expressive power, here we focus on PDDL 2.1 level 2 [5] as it allows to capture
rich numeric structures. PDDL describes a planning task by means of: (i) a domain file
containing the description of general features of the problem (e.g. the available actions) and,
(ii) a problem file defining instance-specific information (e.g. the initial and goal situation,
the optimisation metric). We refer to [5] for more details on PDDL.

Parsing and Grounding. We leverage the Python parsing module developed for the Temporal
Fast-Downward (TFD) planner.1 The original implementation does not provide support for
the specification of arbitrary metrics for plan quality. Hence, we extended it to support
metrics expressed in quantifier-free linear real arithmetic (QFLRA), as supported by our
approach [11].

Besides parsing operations, this module is also responsible for grounding the first-order
representation used in PDDL. The grounding algorithm of TFD makes use of a compilation
to a logic program in order to perform reachability analysis and grounding all in one [8]. This
compilation is specific to both the set of action schemas and the initial state of the search. The
reachability analysis is able to infer if certain ground actions will never be applicable when
starting from the given initial state, and that some variables will never actually change their
value, i.e. they are seen as static facts. As a result, ground actions that are not applicable
are pruned and static variables are compiled away and do not need to be represented with
variables in the planning formula.

1Available at http://gki.informatik.uni-freiburg.de/tools/tfd.

18

https://github.com/fraleo/OMTPlan
https://github.com/fraleo/OMTPlan
http://gki.informatik.uni-freiburg.de/tools/tfd


OMTPlan

Search. OMTPlan computes plans by progressively unrolling the transition system induced
by the planning problem, as commonly done in Planning as SAT [15]. Given a planning
problem Π, we build formulas Πn for unrolling of increasing number of steps n until a plan is
found, or a user-defined upper bound is reached. This module is responsible for implementing
the logics according to which the unrolling is performed. OMTPlan implements common
strategies such as linear (n = 1, 2, 3, . . .) and exponential (n = 1, 2, 4, . . .) increment; however
custom strategies can be easily implemented.

Once a search strategy has been selected, this module schedules calls to the encoder to
produce unrollings of different length. These are dispatched and tested sequentially, although
other strategies could be added. The search module is also responsible for feeding the plan-
ning formula to the underlying solver, fetching the result of the satisfiability check and act
accordingly.

Encoder. The main task of this module is to traverse the parse tree produced by the parsing
module and build the planning formula encoding the unrolling for the length selected by the
search module. In the current implementation the user can choose between:

(1) SMT encodings for satisficing planning;
(2) SMT encodings for optimal planning with unitary costs;
(3) OMT encodings for optimal planning with constant costs and SDACs.

Encodings (1) are based on the classical state-based representation of Planning as
SAT [15], here extended to numeric variables. Both the parallel and serial execution se-
mantics for actions are supported. The former allows for multiple actions to be executed in
parallel provided they act on different subsets of variables; the latter only allows for serial
plans where at most one action can be executed per step.

Encodings (2) combine serial encodings with a linear increment strategy to enable opti-
mal planning with unitary costs. An optimal plan in this setting is one which contains the
minimum number of actions. If Π0, . . . ,Πn−1 are unsatisfiable and Πn has a solution, then an
optimal plan is found and has cost n.

The OMT encodings (3) instead are the most general and extend OMTPlan’s capabilities
to perform optimal planning under constant and state-dependent action costs alike. Optimi-
sation objectives are defined as pseudo-boolean expressions for problems with unitary costs
and QFLRA expressions for the other cases.

All the encodings above combine elements of the standard Planning as SAT encoding with
novel abstraction techniques we presented in [11]. Building on these results, OMTPlan is able
to (i) detect efficiently if a goal is not reachable without requiring any unrolling the transition
system and (ii) provide a new sufficient condition for determining whether a plan is a global
optimum for the planning problem. The latter feature is crucial when dealing with SDAC, as
plans with the least number of actions are not necessarily cost-optimal. When a locally optimal
solution is found for Πn, proving that this is also a global optimum would require checking
that longer unrollings do not yield better plans, for all unrollings of length greater than n. We
overcome this challenge by extending the classical encoding with (i) a boolean abstraction
that disregards concrete numeric effects and allows to reason on unbounded executions and
(ii) loop formulas [13] which enforce a notion of optimality in the abstracted boolean space.
Due to space constraint we cannot report all the details of our encoding here; we kindly refer
the reader to [11] for that.

Finally, this module also allows to export SMT-LIB encodings [1] of planning formulas.
This functionality serves two different purposes:

19



F Leofante

• debugging: SMT-LIB encodings can be used to detect bugs in the logic of the encoder;
• benchmarking: benchmarks developed by the planning community can be used to

test OMT solvers, as done, e.g. in [3].

Validation. When a plan is found, the validation module is called to check its correctness
against the PDDL domain and problem files. To this end, a plan is extracted from the model
of the planning formula and converted back into PDDL syntax. The validation task is then
performed by the plan validator VAL,2 which checks whether the plan complies with the
PDDL description of the problem. If a plan is deemed valid, it is passed on to the main
routine for subsequent operations. Otherwise, OMTPlan reports a failure.

3. Experimental Evaluation

We demonstrate the capabilities of OMTPlan on optimal numeric planning problems taken
from the literature [11,12,16]. The benchmarks include simple domains, where numeric effects
of actions are restricted to assignments to constant values, and linear ones, where effects can
be described by linear expressions. All instances are satisfiable, i.e. they admit a valid plan.

The current implementation of OMTPlan relies on Z3/νZ [4] to construct and solve
planning formulas.3 However other OMT solvers could be used for the latter step via a
compilation to SMT-LIB.

We test the three configurations of our planner that support optimal planning, namely:

• SMT-s: SMT encoding with serial execution and linear increment;
• OMT-s: OMT encoding with serial execution and exponential increment;
• OMT-p: OMT encoding with parallel execution and exponential increment.

We compare4 OMTPlan against two state-of-the-art numeric planners: ENHSP [16], based
on A∗ search [7], and CSC , based on a reduction to MILP [14]. We report the number of
instances solved for each domain (coverage) and the corresponding solving time.

We run our experiments using a 30 minute timeout and 4 GB memory limits on a machine
running Debian 3.16 with processor Intel(R) Xeon(R) CPU E5- 2640 v4 @ 2.40 GHz.

Table 1 shows coverage and total solving time for simple numeric domains with unitary
costs. CSC appears to be the most effective tool at solving this class of problems, being able
to solve the largest number of instances in the least total time. ENHSP and SMT-s follow,
with the former yielding better performance on domains that feature long plans (i.e. requiring
many actions) that force OMTPlan to construct large encodings (e.g. Sailing). On the other
hand, SMT-s outperforms ENHSP on domains admitting shorter solutions. OMT encodings
do not show their full potential here: simple numeric problems with unitary costs require
limited optimisation capabilities; however, this is not detected by the OMT solver which
resorts to expensive optimisation procedures that may result in an unnecessary overhead.

Table 2 shows the results obtained for linear numeric domains with unitary, constant (-
Metric) and state-dependent (-SDAC) costs. These experiments show a completely different
picture from what is observed for simple domains. The increased expressivity of these prob-
lems poses a considerable challenge to CSC and ENHSP. OMTPlan-p, on the other hand,

2Available at https://github.com/KCL-Planning/VAL.
3Available at https://github.com/Z3Prover/z3.
4Results for ENHSP and CSC are taken from [11] and reported here for comparison. The exact same

hardware has been used for both sets of experiments.

20

https://github.com/KCL-Planning/VAL
https://github.com/Z3Prover/z3


OMTPlan

Table 1. Total number of instances (#), coverage (C) and total solving time (T) for simple numeric
domains with unitary costs

Domain # SMT-s OMT-s OMT-p ENHSP CSC

C T (s) C T (s) C T (s) C T (s) C T (s)
Counters 15 5 1678.88 4 14.95 7 150.96 6 28.22 15 1.36
Depots 20 2 81.36 1 22.72 1 58.09 3 1050.22 1 4.9
Gardening 63 46 2893.72 24 3843.95 25 2066.70 63 599.85 63 887.33
Sailing 20 5 64.46 5 167.07 4 354.36 16 2101.13 17 2813.55
Satellite 20 4 191.20 0 – 1 21.70 2 293.10 4 459.80
Rover (1-10) 10 4 27.99 4 380.24 4 82.84 4 25.91 4 10.93
Zenotravel (1-10) 10 8 323.55 4 175.69 4 146.09 6 579.30 7 699.65

Table 2. Total number of instances (#), coverage (C) and total solving time (T) for linear domains
with unitary, constant (-Metric) and state-dependent (-SDAC) costs. n.s.: tool does not support
optimal reasoning on the problem; s.f.: a segmentation fault occurred on all instances

Domain # SMT-s OMT-s OMT-p ENHSP CSC

C T (s) C T (s) C T (s) C T (s) C T (s)
FO-Counters (1-10) 10 3 4.64 3 101.83 9 1989.84 4 339.84 3 223.83
FO-Counters-Inv (1-10) 10 2 2.02 2 13.89 6 1051.67 3 77.29 2 48.82
FO-Counters-Rnd (1-30) 30 13 1163.94 11 185.3723 2917.34 14 1411.79 10 520.29
FO-Farmland 20 3 232.52 1 18.38 2 754.4113 1035.09 2 47.07
Rover-Metric (1-10) 10 n.s. n.s. 4 957.01 5 291.89 4 151.69 4 14.02
TPP-Metric (1-10) 10 n.s. n.s. 0 – 3 484.81 5 20.51 s.f. s.f.
Zenotravel-Metric (1-10) 10 8 1799.74 4 338.50 4 1088.98 4 145.55 2 1.55
SecurityClearance-SDAC 30 n.s. n.s. 8 1427.4726 2115.61 16 952.36 n.s. n.s.

is able to harness the power of the underlying SMT/OMT technology to handle this added
expressivity and proves to be effective. This is particularly evident in domains that feature
a high-degree of parallelism, which OMTPlan can exploit to build more succinct encodings.
Similar results have also been reported by [10], where OMTPlan outperformed SoA planners
on linear domains. We highlight that CSC does not support planning with state-dependent
costs; ENHSP does not provide admissible heuristics for linear numeric planning. As a result,
the planner had to be run using uninformed search that disregards cost structures.

4. Conclusions

We presented OMTPlan, the first domain independent planner based on Optimisation Modulo
Theories. Building upon the theoretical results of [11], OMTPlan implements reductions to
SMT and OMT to solve expressive planning problems for which tool support was lacking.
We discussed the internal work-flow of OMTPlan and explained its main functionalities.
Notably, OMTPlan can be used to convert PDDL problems into SMT-LIB format, thus
enabling fruitful interactions between the planning and SMT/OMT communities [3]. We

21



F Leofante

reported numeric experiments that demonstrate the capabilities of OMTPlan. Our results,
in combination with those already presented in [11], show that OMTPlan offers an efficient
solution to solve planning problems that require complex theory reasoning.

Acknowledgements

This work was partly supported by the Imperial College Research Fellowship scheme.

References

[1] C. Barrett, P. Fontaine and C. Tinelli, The Satisfiability Modulo Theories Library, 2016.

[2] C.W. Barrett, R. Sebastiani, S.A. Seshia and C. Tinelli, Satisfiability modulo theories,
in: Handbook of Satisfiability, Vol. 185, IOS Press, 2009, pp. 825–885.

[3] F. Bigarella, A. Cimatti, A. Griggio, A. Irfan, M. Jonás, M. Roveri, R. Sebastiani and
P. Trentin, Optimization modulo non-linear arithmetic via incremental linearization, in:
Proceedings of FroCoS’21, LNCS, Vol. 12941, Springer, 2021, pp. 213–231.

[4] N. Bjørner, A. Phan and L. Fleckenstein, νZ – an optimizing SMT solver, in: Proceedings
of TACAS’15, LNCS, Vol. 9035, Springer, 2015, pp. 194–199.

[5] M. Fox and D. Long, PDDL2.1: An extension to PDDL for expressing temporal planning
domains, J. Artif. Intell. Res. 20 (2003), 61–124. doi:10.1613/jair.1129.

[6] H. Geffner and B. Bonet, A Concise Introduction to Models and Methods for Automated
Planning, Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers, 2013.

[7] P.E. Hart, N.J. Nilsson and B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4(2) (1968), 100–107. doi:10.
1109/TSSC.1968.300136.

[8] M. Helmert, Concise finite-domain representations for PDDL planning tasks, Artif. In-
tell. 173(5–6) (2009), 503–535. doi:10.1016/j.artint.2008.10.013.

[9] F. Ivankovic, P. Haslum, S. Thiébaux, V. Shivashankar and D.S. Nau, Optimal planning
with global numerical state constraints, in: Proceedings ICAPS’14, 2014.

[10] R. Kuroiwa and C. Beck, A branch-and-cut approach for a mixed integer linear pro-
gramming compilation of optimal numeric planning, in: HSDP@ICAPS, 2021.

[11] F. Leofante, E. Giunchiglia, E. Ábrahám and A. Tacchella, Optimal planning modulo
theories, in: Proceedings of IJCAI’20, 2020, pp. 4128–4134.

[12] D. Li, E. Scala, P. Haslum and S. Bogomolov, Effect-abstraction based relaxation for
linear numeric planning, in: Proceedings of IJCAI’18, 2018, pp. 4787–4793.

[13] F. Lin and Y. Zhao, ASSAT: Computing answer sets of a logic program by SAT solvers,
in: Proceedings of AAAI’02, 2002, pp. 112–118.

22

https://doi.org/10.1613/jair.1129
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.artint.2008.10.013


OMTPlan

[14] C. Piacentini, M. Castro, A. Ciré and C. Beck, Compiling optimal numeric planning to
mixed integer linear programming, in: Proceedings of ICAPS’18, 2018, pp. 383–387.

[15] J. Rintanen, Planning and SAT, in: Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, Vol. 185, IOS Press, 2009, pp. 483–504.

[16] E. Scala, P. Haslum, S. Thiébaux and M. Ramírez, Interval-based relaxation for general
numeric planning, in: Proceedings of ECAI’16, Vol. 285, IOS Press, 2016, pp. 655–663.

[17] R. Sebastiani and S. Tomasi, Optimization modulo theories with linear rational costs,
ACM Trans. Comput. Log. 16(2) (2015), 12:1–12:43. doi:10.1145/2699915.

23

https://doi.org/10.1145/2699915

	Introduction
	System Architecture
	Experimental Evaluation
	Conclusions
	Acknowledgements
	References

