
Journal on Satisfiability, Boolean Modeling, and Computation 10 (2019) 37-58

Solution-Graphs of Boolean Formulas and Isomorphism∗

Patrick Scharpfenecker† patrick.scharpfenecker@uni-ulm.de

Jacobo Torán jacobo.toran@uni-ulm.de

University of Ulm

Institute of Theoretical Computer Science

Ulm, Germany

Abstract

The solution-graph of a Boolean formula on n variables is the subgraph of the hypercube
Hn induced by the satisfying assignments of the formula. The structure of solution-graphs
has been the object of much research in recent years since it is important for the performance
of SAT-solving procedures based on local search. Several authors have studied connectivity
problems in such graphs focusing on how the structure of the original formula might affect
the complexity of the connectivity problems in the solution-graph.

In this paper we study the complexity of the isomorphism problem of solution-graphs
of Boolean formulas. We consider the classes of formulas that arise in the CSP-setting and
investigate how the complexity of the isomorphism problem depends on the formula type.

We observe that for general formulas the solution-graph isomorphism problem can be
solved in exponential time while in the cases of 2CNF formulas, as well as for CPSS formulas,
the problem is in the counting complexity class C=P, a subclass of PSPACE. We also prove
a strong property on the structure of solution-graphs of Horn formulas showing that they
are just unions of partial cubes.

In addition, we give a PSPACE lower bound for the problem on general Boolean
functions. We prove that for 2CNF, as well as for CPSS formulas the solution-graph
isomorphism problem is hard for C=P under polynomial time many-one reductions, thus
matching the given upper bound.

Keywords: Solution-Graph, Isomorphism, Counting, Partial Cube

Submitted March 2017; revised January 2019; published July 2019

1. Introduction

Schaefer provided in [18] a well known dichotomy result for the complexity of the satisfiability
problem on different classes of Boolean formulas. He showed that for formulas constructed
from specific Boolean relations (now called Schaefer relations), satisfiability is in P while
for all other classes, satisfiability is NP-complete. Surprisingly, there are no formulas of
intermediate complexity.

More recently, Gopalan et al. and Schwerdtfeger [10, 21] uncovered a similar behaviour
for connectivity problems on solution-graphs of Boolean formulas. The solution-graph of a
Boolean formula on n variables is the subgraph of the n-dimensional hypercube induced by all

∗ A preliminary version of this paper appeared in the conference SAT 2016 [20].
† Supported by DFG grant TO 200/3-1.

c©2019 IOS Press, SAT Association and the authors.

P. Scharpfenecker and J. Torán

satisfying assignments. The study of solution-graphs of Boolean formulas has been the object
of important research in recent years, especially for the case of random formula instances. It
has been observed both empirically and analytically that the solution space breaks in many
small connected components as the ratio between variables and clauses in the considered
formulas approaches a critical threshold [16, 1]. This phenomenon explains the better
performance on random formulas of SAT-solvers based on message passing with decimation
than those based on local search or DPLL procedures (see e.g. [9]). The motivation behind
the works of [10] and [21] was to obtain new information about the connectivity properties
of the solution space for different types of Boolean formulas. Introducing some new classes
of Boolean relations, the authors in [10], were able to prove a dichotomy result for the
st-connectivity problem and Schwerdtfeger proved a trichotomy result for connectivity
[21]. For different formula classes the complexity of the connectivity problem is either
in P, or complete for coNP, or for PSPACE, while for st-connectivity it is either in P or
PSPACE-complete.

Schwerdtfeger [21] resolved some problems in the work of Gopalan [10] by restricting the
definitions of some sets of relations to include a safely componentwise restriction. Such a
restriction added to a property requires the property to hold even after identifying arbitrary
variables, yielding a smaller set of relations satisfying this additional property. As these
new definitions were required for proving the mentioned trichotomy, we will use the same
definitions as Schwerdtfeger, namely safely tight and constraint-projection separation Schaefer
(CPSS) sets of relations, for our results.

In this paper, we look further in the solution space of Boolean formulas studying the
complexity of the isomorphism of their solution-graphs. In other words, we consider the
following natural questions: given two Boolean formulas, how hard is it to test if their
solution-graphs are isomorphic? Does the complexity of the problem depend on the structure
of the formula? Observe that isomorphism of solution-graphs is a very strong concept of
equivalence between formulas, stronger than Boolean isomorphism [2] and stronger than
saying that both formulas have the same number of satisfying assignments. Since the
complexity of the general graph isomorphism problem, GI, is not completely settled (see
[14]), one might expect that it would be hard to obtain a complete classification for solution-
graph isomorphism. We show in fact that for different types of Boolean formulas, the
complexity of the isomorphism problem on their solution-graphs varies. We also completely
characterise the complexity of the problem for some types of Boolean formulas. For solution-
graphs of 2CNF formulas, isomorphism of a single connected component is exactly as hard as
testing graph isomorphism. For a collection of such components (encoded by a single 2CNF
formula), the isomorphism problem is complete for the complexity class C=P, a complexity
class defined in terms of exact counting. This means that deciding isomorphism of the
solution-graphs of 2CNF formulas is exactly as hard as testing if two such formulas have the
same number of satisfying assignments. This result also holds for the more general class of
CPSS formulas (definitions in the preliminaries section) introduced by Schwerdtfeger [21],
showing that for this class of formulas isomorphism and counting have the same complexity.
For the upper bound we use a recent result on the isometric dimension of partial cubes
[19], the fact that GI is low for the class C=P [13], as well as the closure of this class
under universal quantification [11]. The hardness property uses a result of Curticapean
[8], where it is proven that SamePM, the problem to decide if two given graphs have the

38

Solution-Graphs of Boolean Formulas and Isomorphism

same number of perfect matchings is complete for C=P. We show that this problem can be
reduced to the verification of whether two 2CNF formulas have the same number of satisfying
solutions, implying that this problem and even Iso(CPSS), the isomorphism problem of
CPSS solution-graphs, are complete for C=P.

For the other types of formulas used in [10, 21], built from Schaefer, safely tight and
general relations, we observe that the corresponding solution-graph isomorphism problems
can be solved in EXP, thus improving the trivial NEXP upper bound.

For classes of relations that are not safely tight, we can also improve the C=P lower
bound and show that the isomorphism problem for their solution-graphs is in fact hard for
PSPACE.

Table 1 summarises the complexity results for isomorphism of solution-graphs for specific
classes of formulas. The hardness lower bound means that there is some family of Boolean
formulas in the corresponding class for which the hardness result holds. Lower bounds from
classes of formulas can of course be transferred to super-classes of formulas while the other
direction works for upper bounds.

Table 1. Classification of Isomorphism problems.

Relations Lower bound Upper bound

CPSS C=P (Theorem 8) C=P (Theorem 4)

Schaefer, not CPSS C=P (Corollary 4) EXP (Theorem 1)

safely tight, not Schaefer C=P (Corollary 4) EXP (Theorem 1)

not safely tight PSPACE (Theorem 5) EXP (Theorem 1)

While we could not improve the EXP upper bound for the isomorphism of solution-graphs
corresponding to Horn formulas, we prove a strong new property for the structure of such
graphs which might help to develop a non-trivial isomorphism algorithm. We show that
the set of solutions between a locally minimal and locally maximal solution is a partial
cube. This means that in the graph induced by such set of solutions the minimum distance
between any two vertices coincides with the Hamming distance between the corresponding
solutions. Therefore a solution-graph can be seen as taking a partial cube for every locally
maximal solution and gluing them together.

While there is no direct connection between the isomorphism problem for solution-graphs
and SAT-solving methods, the study of isomorphism questions provides new insights on the
structure of solution-graphs and on the number of satisfying assignments for certain formula
classes that might be useful in further SAT related research.

2. Preliminaries

For two words x, y ∈ {0, 1}n, ∆(x, y) denotes the Hamming distance between them. We
associate words in {0, 1}n with subsets of [n] = {1, . . . , n} in the standard way.

39

P. Scharpfenecker and J. Torán

1

2

G

1

2

∅ 1, 2

simplex (G)

Figure 1. A graph G and its simplex graph simplex (G).

We mostly deal with undirected graphs without self-loops. For such a graph G = (V,E)
with vertex set V = [n] and edge set E ⊆

(
V
2

)
, its simplex graph (see e.g. [5]) is defined as

simplex (G) = (V ′, E′) with V ′ as the set of all cliques (including the empty clique) in G

and E′ = {{u, v} ∈
(
V ′

2

)
| ∆(u, v) = 1}. So G′ = simplex(G) is the set of all cliques of G

and two cliques are connected if and only if they differ (considered as strings of {0, 1}n) in
one element. We will only consider the simplex graph of bipartite graphs. As these graphs
have only cliques of size at most 2, |V ′| = |V |+ |E|+ 1. The graph G′ contains all original
vertices V , a vertex u = {i, j} for every edge {i, j} ∈ E which is connected to {i} and {j}
and a new vertex o = ∅ which is connected to all original vertices. Figure 1 gives an example
for a graph G and its simplex graph simplex (G).

Two graphs G = (V,E) and H = (V ′, E′) with V = V ′ = [n] are isomorphic if and only if
there is a bijection π : V → V ′ such that for all u, v ∈ V : {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E′.
If such a bijection exists we write G ∼= H, if not, G 6∼= H. The graph isomorphism problem
(GI) is the decision problem of whether two given graphs are isomorphic. Given a class of
graphs C, Iso(C) denotes the graph isomorphism problem on graphs in C.

The Boolean isomorphism problem consists in deciding, given two Boolean formulas F
and G on variables x1, . . . , xn, whether there is a signed permutation1. π of the n variables
such that for all x ∈ {0, 1}n, F (x1, . . . , xn) = G(π(x1), . . . , π(xn)). For example, for the two
formulas F (x1) = x1 and G(x1) = ¬x1 there exists the Boolean isomorphism π : x1 → ¬x1.

We deal with different classes of formulas. 2CNF denotes the class of formulas in
conjunctive normal form and with exactly two literals per clause2.. For a 2CNF formula
F (x1, . . . , xn) we define the directed implication graph I(F) = (V,E) on vertices V =
{x1, . . . , xn, x1, . . . , xn} and edges (k, l) ∈ E with k, l ∈ V if and only if there is no solution
to F which falsifies the clause (k → l). This coincides with the implication graph considered
by Aspvall, Plass and Tarjan in [3], after considering all possible 2-clauses that are logically
implied by F . By replacing all variables in a cycle with a single variable we get the reduced
implication graph RI(F). We say that a 2CNF formula F is reduced if I(F) = RI(F).
Observe that the computation of I(F) and RI(F) can be done in polynomial time in |F |
since the number of possible 2-clauses is quadratic in the number of variables.

1. A signed permutations may map variables to variables and may flip variables.
2. These formulas are also known as Krom formulas.

40

Solution-Graphs of Boolean Formulas and Isomorphism

We deal mostly with standard complexity classes like P, NP, EXP and NEXP. A class
that might not be so familiar is the counting class C=P [24]. This consists of the class of
problems A for which there is a non-deterministic polynomial time Turing machine M and
a polynomial time computable function f such that for each x ∈ {0, 1}∗, x ∈ A if and only
if the number of accepting paths of M(x) is exactly f(x). The standard complete problem
for C=P is ExactSAT: given a Boolean formula F and a number k, does F have exactly k
satisfying assignments?

The class C=P is closely related to the class #P as C=P contains for every function
problem in #P (compute the number of satisfying solutions) a related decision problem
(decide if the number of satisfying solutions is exactly k for some k ∈ N).

2.1 Solution-graphs of Boolean formulas

Intuitively, a solution-graph for a given Boolean formula is the induced subgraph on all
satisfying solutions represented in a host graph. In this paper we only consider induced
subgraphs of the n-dimensional hypercube Hn which is the graph with V = {0, 1}n and
E = {{u, v} | ∆(u, v) = 1}.

Definition 1 Let F (x1, . . . , xn) be an arbitrary Boolean formula. Then the solution-graph
GF is the subgraph of the n-dimensional hypercube Hn induced by all satisfying solutions x
of F .

Note that two satisfying solutions are connected by an edge if and only if their Hamming
distance is one. For a set of Boolean formulas D (for example D = 2CNF), Iso(D) denotes
the isomorphism problem on the class of solution-graphs of D-formulas.

Furthermore, observe that we can apply both isomorphism concepts to solution-graphs.
A Boolean isomorphism of two solution-graphs encoded by formulas F, F ′ on variables
x1, . . . , xn asks for a (signed) permutation π of the variables such that for all x ∈ {0, 1}n,
F (x1, x2, . . . , xn) = 1 if and only if F ′(xπ(1), xπ(2), . . . , xπ(n)) = 1. A general isomorphism
asks for a bijection between the sets of vertices of the two solution-graphs encoded by
F and F ′. Observe that every Boolean isomorphism is an isomorphism between the two
solution-graphs. The other direction may not be true. This may be the case for solution
graphs which are not partial cubes or even for solution graphs which are the disjoint union
of several partial cubes as every such connected component may require a different Boolean
isomorphism for a bijection to another solution graph. Boolean isomorphisms are therefore
more restricted than general isomorphisms of solution-graphs.

Given a graph G and two vertices u, v, dG(u, v) is the length of the shortest path between
u and v in G or ∞ if there is no such path. When the graph G is clear from the context we
will just write d(u, v).

Observe that in an induced subgraph G of Hn, for every pair of vertices x, y in G,
dG(x, y) ≥ ∆(u, v).

Definition 2 An induced subgraph G of Hn is a partial cube if and only if for all x, y ∈ G,
d(x, y) = ∆(x, y). We call such an induced subgraph “isometric”.

Definition 3 The isometric dimension of a graph G is the smallest n such that G embeds
isometrically into Hn or ∞ if no such embedding exists for any n.

41

P. Scharpfenecker and J. Torán

1

2 3

4 5

6 7

Figure 2. Example of a median graph: the median of vertices 3, 4 and 7 is the vertex 1.

Definition 4 An undirected graph G = (V,E) is a median graph if and only if for all
vertices u, v, w ∈ V there is a unique b ∈ V which lies on the shortest paths between (u, v),
(u,w) and (v, w). Then b is called the median of u, v and w.

Figure 2 gives an example of a median graph. While this is only one example of a tree
which is a median graph, it is known that all trees are median graphs.

Any Boolean function F : {0, 1}n → {0, 1} can be represented by the subset of all
its satisfying assignments in {0, 1}n as an n-ary Boolean relation. An n-ary Boolean
relation F ⊆ {0, 1}n is closed under a ternary operation � : {0, 1}3 → {0, 1} if and only
if ∀x, y, z ∈ F : � (x, y, z) := (�(x1, y1, z1), . . . ,�(xn, yn, zn)) ∈ F . Note that we abuse
the notation of a ternary operation to an operation on three bit-vectors by applying the
operation bitwise on the three vectors. For a set of Boolean relations R with arbitrary arities
(for example, R = {(x ∨ y), (x⊕ y), (x⊕ y ⊕ z)}), we define SAT(R) to be the satisfiability
problem for all Boolean formulas which are conjunctions of instantiations of relations in
R. For the given example R, F (x, y, z) = (z ∨ y) ∧ (x ⊕ y) is a formula in which every
clause is an instantiation of an R-relation. Similarly, Conn(R) (stConn(R)) is the following
connectivity (reachability) problem: given a conjunction F of R-relations (and s, t), is the
solution-graph connected (is there a path from s to t)? We mostly use F for Boolean
formulas/functions/relations and R,S for sets of Boolean relations.

Note that r ∈ R can be an arbitrary Boolean relation as for example r = (x ⊕ y) or
r = (x∨ y ∨ z)∧ (x∨ z). With Hornk we define the set of all Horn clauses, that is, the set of
clauses with at most one positive literal, of size up to k ∈ N. The ternary majority function
maj : {0, 1}3 → {0, 1} is defined as maj(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

In the next definitions we recall some concepts introduced in [21] and [10].

Definition 5 A Boolean relation F is

• bijunctive, iff it is closed under maj(a, b, c),

• affine, iff it is closed under a⊕ b⊕ c,

• Horn, iff it is closed under a ∧ b,

• dual-Horn, iff it is closed under a ∨ b,

42

Solution-Graphs of Boolean Formulas and Isomorphism

• IHSB−, iff it is closed under a ∧ (b ∨ c), and

• IHSB+, iff it is closed under a ∨ (b ∧ c).

A relation has such a property componentwise, if and only if every connected component
in the solution-graph is closed under the corresponding operation. A relation F has the
additional property “safely”, if and only if the property still holds for every relation F ′

obtained by identification of variables3.. Further, observe that IHSB− relations are always
Horn relations and IHSB+ relations are always dual-Horn relations while the other direction
of these statements may not be true.

Observe that IHSB− relations are always Horn relations and IHSB+ relations are always
dual-Horn relations while the other direction of these statements may not be true. In the
case of Horn formulas, the fact that any clause contains at most one positive literal implies
that the represented relations are Horn.

Definition 6 A finite set of relations R is Schaefer if at least one of the following conditions
holds:

1. every relation in R is bijunctive, or

2. every relation in R is Horn, or

3. every relation in R is dual-Horn, or

4. every relation in R is affine.

Based on this definition for Schaefer formulas, we define a more restricted class of
formulas by replacing only the second and third conditions.

Definition 7 A finite set of relations R is CPSS (constraint-projection separation Schaefer)
if at least one of the following conditions holds:

1. every relation in R is bijunctive, or

2. every relation in R is safely componentwise IHSB−, or

3. every relation in R is safely componentwise IHSB+, or

4. every relation in R is affine.

We assume all sets of relations to be finite. If we have a Boolean formula F which is
built from a set R of CPSS relations then we say that F is CPSS. Clearly, every CPSS
formula is Schaefer. We later use a bigger class of relations which is called safely tight. This
class properly contains all Schaefer sets of relations.

Definition 8 A set R of relations is (safely) tight if at least one of the following conditions
holds:

3. Identifying two variables corresponds to replacing one of them with the other variable.

43

P. Scharpfenecker and J. Torán

• every relation in R is (safely) componentwise bijunctive, or

• every relation in R is (safely) OR-free, or

• every relation in R is (safely) NAND-free.

A relation is OR-free if we cannot derive (x ∨ y) by substituting variables by constants and
reducing the formula. Similarly, a relation is NAND-free if we cannot derive (x ∨ y) by
substituting variables by constants and reducing the formula.

3. Isomorphism for solution-graphs

We now turn our attention to the isomorphism problem on solution-graphs. In general, the
solution-graph of a formula can have an exponential number of connected components and
each component might be of exponential size (in the formula size). The NP upper bound for
GI directly tanslates into a NEXP upper bound for the isomorphism of solution-graphs.

Based on the celebrated new algorithm from Babai for graph isomorphism [4] running in

time nlogO(1)(n), it is not hard to see that the isomorphism of solution-graphs is in EXP: for
two given Boolean formulas on n variables, we can construct explicitly their solution-graphs
in time O(2n) and then apply Babai’s algorithm on them, resulting in a 2n

O(1)
algorithm.

But we do not need such a strong result, the algorithm of Luks for testing isomorphism of
bounded degree graphs [15] suffices.

Theorem 1 The problem to decide for two given Boolean formulas whether their respective
solution-graphs are isomorphic is in EXP.

Proof: Luks [15] gave an algorithm for graph isomorphism with time-complexity |V |deg(G).
A solution-graph embedded in the hypercube Hn has degree at most n. The running time
of Luks algorithm on such graphs is bounded by 2n

2
. �

By restricting the encoding formula, we can get better upper bounds. Theorem 4 will
show that the isomorphism problem for CPSS formulas is in C=P, a subclass of PSPACE.
For this, we need the following two results.

Theorem 2 ([19]) Given a CPSS relation F (x1, . . . , xn), every connected component of
the solution-graph of F is a partial cube of isometric dimension at most n.

Theorem 3 ([17], Theorem 5.72) For any two finite isomorphic partial cubes G1 and
G2 on Hn, there is a signed permutation4. of Hn that maps one of the partial cubes onto the
other. Moreover, for any isomorphism α : G1 → G2, there is a signed permutation σ such
that σ applied to the vertices of G1 is exactly α.

In other words, two partial cubes G1 and G2 are isomorphic if and only if there exists a
(signed) permutation on the variables of these partial cubes which transforms the hypercube

4. What we call a signed permutation of Hn, Ovchinnikov [17] (Section 3.8) calls an automorphism of the
cube H(X) of a set X: the automorphism group of H(X) (which is the same as Hn if |X| = n) is the
semidirect product of all permutations of X and the elementary Abelian 2-group on X. In other words,
the automorphism group of H(X) consists of all signed permutations on |X| variables.

44

Solution-Graphs of Boolean Formulas and Isomorphism

in which G1 is embedded into the hypercube in which G2 is embedded while still mapping
G1 to G2. Therefore, although partial cubes of Hn might be of size 2n, an isomorphism
between such graphs can be described by a Boolean isomorphism, which can be described
by only n log(n) bits.

Lemma 1 The isomorphism problem for median graphs is GI-complete under logarithmic
space many-one reductions.

Proof: As median graphs are a restricted set of graphs, the upper bound is trivial. For
the lower bound, we need the fact that a given pair of graphs G,H, can be transformed in
logarithmic space into a pair of bipartite graphs G′, H ′ so that simplex (G′) ∼= simplex(H ′) if
and only if G ∼= H.

To see this we first suppose that for two given general graphs G,H we know that |E| 6= |V |.
This could easily be enforced in an isomorphism-preserving logarithmic space reduction. In
a next step, we replace each edge (u, v) in both graphs with the gadget (u, zu,v), (zu,v, v)
where zu,v is a new vertex. This yields two new bipartite graphs G′, H ′ which are isomorphic
if and only if G and H were isomorphic. But then simplex (G′) ∼= simplex(H ′) if and only if
G ∼= H.

Finally, the upper bound follows from the observation that for any graph, its simplex
graph is a median graph. �

This of course implies that the isomorphism of (explicitly given) partial cubes is already
GI-complete as median graphs are partial cubes (see e.g. [17], Theorem 5.75).

Note that it is known that median graphs can be exactly embedded as a solution-graph
of a reduced 2CNF formula (see for example Theorem 17 in [6]). Accordingly, Lemma 1 gives
an alternative reduction to the one given in [7] Claim 22, between Boolean isomorphism for
2CNF formulas and GI. With Theorem 3 we get:

Corollary 1 The Isomorphism Problem for reduced 2CNF solution-graphs is GI-complete
under logarithmic space many-one reductions.

Proof: The hardness part follows from the observation given above. By Theorem 3 two
partial cubes are isomorphic if and only if there is a signed permutation of the variables
mapping one partial cube to the other. But such a signed permutation is just a Boolean
automorphism of the Boolean function. For general Boolean formulas this problem is hard
for NP and in Σ2 [2], but for Schaefer-formulas, which contain 2CNF formulas, this problem
can be reduced in polynomial time to GI (see Thm. 17 in [7]) by creating a unique normal
form and looking for a syntactic isomorphism of the formulas.

For 2CNF formulas this can easily be done using only logarithmic space. [7] (Theorem
23) creates for a given formula F a normal form F ′ by including all possible clauses of size
2 into F ′ which are valid under F . This can for 2CNF formulas be done in logarithmic
space. By doing this for two formulas F and G to get F ′ and G′, they observe that F has
an (unsigned) Boolean isomorphism if and only if F ′ and G′ are syntactically isomorphic
(using a specific representation as graphs).

For our purposes, we observe that we can represent such a formula F ′ with a graph using
the three vertices xi,+xi,−xi for all variables xi in F ′. We connect all triples xi,+xi,−xi

45

P. Scharpfenecker and J. Torán

with the edges (xi,+xi), (xi,−xi), colour all xi with the same colour (which is not used
elsewhere) and connect for every clause (u, v) ∈ F ′ the vertices representing the literals u
and v (if u = xi we use +xi, if u = ¬xi we use −xi). By applying this construction to F ′

and G′, yielding the graphs F ∗ and G∗, we observe that F ∗ ∼= G∗ if and only if there is a
Boolean isomorphism between F and G. All of this can be done using only logarithmic
space. �

This basically tells us that even if we look at two exponentially sized, isomorphic partial
cubes embedded in Hn, finding an isomorphism is as easy as finding a Boolean isomorphism.
The problem is more complex when the solution-graphs might have more than one connected
component. We face the additional problem that single connected components may not have
a single formula representing just this component (a single formula could represent several
components). For the isomorphism of solution-graphs of CPSS relations we will show an
upper bound of C=P. For this we need the following Lemma showing that the problem of
testing if there is an isomorphism between two connected components which maps a given
solution to another given solution, can be reduced to GI.

Lemma 2 Let F be a CPSS formula with satisfying solution x and let xI for I ⊆ [n] be
another solution obtained from x by flipping all bit-positions i ∈ I of x. If xI and, for all
i ∈ I, x{i} satisfy F , then there is a path from x to xI .

Proof: Let us assume w.l.o.g. that I = [k] for some k ≤ n. Obviously, for all i ∈ I, x{i} is
connected to x as d(x, x{i}) = 1. We show by induction on j that for all j with 1 ≤ j ≤ k,
x[j] satisfies F . As their consecutive distances are 1, the statement follows.

For j = 1 we know by the assumption of this theorem that x[1] satisfies F . For
the induction step assume x[j] satisfies F . If F is componentwisely bijunctive, then
maj(xI , x[j], x{j+1}) = x[j+1] satisfies F by its closure property. If F is not componen-
twise bijunctive (and therefore not affine), it is Horn and componentwise IHSB- (or the dual
case). We now handle the two cases where x{j+1} flips a bit either from 1 to 0 or from 0 to
1. W.l.o.g., we assume that the order the flips occur in is such that we first only flip from 1
to 0 and then only from 0 to 1. In other words, we rename the indices of the variables such
that there exists an l ∈ [k] such that for all j < l, x{j} flips the j-th bit in x from 1 to 0 and
for all j ≥ l, x{j} flips the j-th bit in x from 0 to 1.

First, if x{j+1} flips the (j + 1)-th bit in x from 1 to 0, then x[j] ∧ (x{j+1} ∨ xI) = x[j+1].
To see this, we first note that x[j+1] differs from x[j] only by setting the (j + 1)-th bit from 1
to 0. This will be achieved as the (j + 1)-th bit of x{j+1} ∨ xI is 0 (this bit has been flipped
by both x{j+1} and xI). Additionally, we have to make sure that no other bit than the
(j+ 1)-th bit gets flipped from 1 to 0 by the conjunction with x[j]. But for a bit in x[j] to get
flipped from 1 to 0 in this conjunction, it has to be 0 in (x{j+1}∨xI), implying this bit has to
be 0 in x and in xI , which is only the case for bits not touched by I. As such bits are already
0 in x[j], the conjunction does not flip these bits. Therefore x[j] ∧ (x{j+1} ∨ xI) = x[j+1] and
the closure property implies that x[j+1] satisfies F .

Second, if x{j+1} flips the (j + 1)-th bit in x from 0 to 1. Then (x[j] ∨ x{j+1}) sets the
(j + 1)-th bit to 1 and possibly some bits which were flipped from 1 to 0 in x[j]. But then
xI ∧ (x[j] ∨ x{j+1}) restores these flips by setting them back to 0, except the (j + 1)-th bit
which is 1 in xI . Therefore xI ∧ (x[j] ∨ x{j+1}) = x[j+1], implying that x[j+1] satisfies F .

The case for dual-Horn and componentwise IHSB+ follows by duality. �

46

Solution-Graphs of Boolean Formulas and Isomorphism

Figure 3. A walk on solution-graphs.

Lemma 3 The following problem is reducible to GI in polynomial time: given two CPSS
formulas F and G and satisfying solutions s of F and t of G, decide whether there is an
isomorphism π between the connected components containing s and t with π(s) = t.

Proof: We know by Theorem 3 that if two partial cubes are isomorphic, then there always is
a Boolean isomorphism. One could easily guess a candidate signed permutation of variables
for the Boolean isomorphism. But it is not clear how to verify that this signed permutation
is in fact a Boolean isomorphism. A way to reduce this problem to GI would be to extract a
single connected component and create a formula which contains only this subgraph, but
in general, it is not clear how to do this. We use the construction depicted in Figure 3 to
achieve a different kind of extraction which is enough in the case of isomorphism.

The purpose of this construction is to give a formula which captures the structure of
the connected component C (identified by a given vertex in this component) instead of
the connected component itself. Every satisfying solution of the constructed formula will
represent a walk on the solution-graph, starting in the given vertex and having a fixed
maximum length. If this construction is isomorphism-invariant and every vertex of C may
be reached by such a walk, then the constructed formula encodes the structure of only the
connected component C.

We describe this walk on a solution-graph beginning at a given vertex u in a branch-
and-combine construction. We use several blocks of variables. Beginning from a vertex u
in the solution-graph, we have a block of variables for every one of the n bits such that
the i-th block can be assigned to u or the neighbour of u which differs from u in bit i (if

47

P. Scharpfenecker and J. Torán

this neighbour exists). We combine these at most n vertices into a new vertex u′ which
accumulates all bit-flips these vertices used.

Given the original variables x = (x1, . . . , xn), we create new blocks of variables xi and xi,j

for i ∈ {0, . . . , n} and j ∈ {1, . . . , n}, each containing n variables. For example, the block x0

contains the variables (x0
1, . . . , x

0
n) and the block x0,4 contains the variables (x0,4

1 , . . . , x0,4
n).

We fix the first block of variables x0 to s ∈ {0, 1}n. We then add n new blocks x0,1, . . . , x0,n

such that every x0,j may only differ from x0 in bit j. This can be achieved by either reusing
the variables which are not allowed to change or by adding a clause implementing (x0

j ↔ x0,i
j)

for all i 6= j. By not adding this constraint for x0,j
j with j ∈ [n], this variable may change

compared to xjj .

In addition, we add for every j the clauses F (x0,j) to ensure that every following block
of x0 satisfies F . Obviously, every x0,j has distance at most 1 from x0 = s and is a vertex
in the solution-graph. We then add a new block x1 such that x1

j = x0,j
j by again either

reusing the variable x0,j
j for x1

j or adding a clause (x1
j ↔ x0,j

j). This combines all steps of

the previous branching step and we require x1 to satisfy F .

Although all vertices visited in the branching step have distance at most 1 from x0,
the vertices described in x1 have distance

∑
j∈[n] d(x0, x0,j) from x0. Therefore x1 may in

principle not be in the same connected component as x0. Lemma 2 showed that, in the case
of CPSS formulas, this can never happen.

Note that the given construction on (F, s) creates a formula F ′ in which every satisfying
solution is a walk on F of length n starting at s (we use n branch and reduce blocks).
Therefore, the set of all satisfying solutions to F ′ is the set of all walks on F where every
step is the traversal of a complete sub-hypercube and in every step the walk may refuse to
take a step and remain at the previous vertex.

Obviously, if there is an isomorphism π mapping the two components onto each other
such that π(s) = t, then there is an isomorphism mapping the sets of paths onto each other.
This isomorphism just has to use π for every block xi and has to exchange the parallel steps
xi,0, . . . , xi,n according to π. The other direction is true if we restrict the bijection between
the paths to follow from a signed permutation π on the set of the original variables of F
and G by applying π to all blocks xi, xi,j (for i, j ∈ [n]) and interchanging xi,1, . . . , xi,n (for
all i ∈ [n]) according to π.

We can now reduce the Boolean isomorphism question between F ′ and G′ to GI (see
Corollary 1 which uses a modified construction of [7]) implementing these additional proper-
ties with graph gadgets. Given (F, s) and (G, t), we construct the two formulas F ′ and G′ as
described earlier. We then apply the reduction of [7] and create the formulas F ∗ = nf(F ′)
and G∗ = nf(G′) as normal forms of F ′ and G′ such that there is a Boolean isomorphism
between F ′ and G′ if and only if there is a signed permutation on the variables of F ∗ and
G∗ mapping the formulas to each other. Observe that this construction does not modify
the set of variables. Further, these formulas can be interpreted as graphs by using for each
clause a vertex and for each variable three vertices, one for the variable and one for the
positive and one for the negative literal of this variable. Additionally, there are vertices
representing constants 0 and 1. We then connect the vertices representing clauses to the
vertices representing the literals or constants occurring in this clause and for every variable
x we connect the vertex representing this variable with the two vertices representing its

48

Solution-Graphs of Boolean Formulas and Isomorphism

literals. [7] proved that these two graphs (we still call them F ∗ and G∗) are isomorphic
(while mapping vertices representing variables/literals/clauses only to vertices representing
variables/literals/clause) if and only if there is a Boolean isomorphism between F ′ and G′.

We now want to find an isomorphism mapping the formula F ∗ (as a graph) to the
formula G∗ which satisfies some additional constraints. These additional constraints can be
implemented with gadgets. As there are several copies of the original variables x1, . . . , xn in
F ∗ and G∗, we connect all vertices representing copies of xk (for k ∈ [n]) with each other
(using a special colour for the edges) such that they form a clique. Therefore, in all blocks
of variables xi and xi,j we have to apply the same permutation of the original variables
x1, . . . , xn. If we do the same for the vertices representing positive and negative occurrences
of the original variables, we additionally force that every block applies the same signed
permutation to the original variables. Further, we connect for every j ∈ [n] the vertex
representing the original variable xj to all vertices representing variables in xi,j (for all i)
with an edge using an unused colour. This forces an isomorphism to apply the permutation
used on x1, . . . , xn to the blocks xi,1, . . . , xi,n (for all i ∈ [n]).

We therefore force all blocks to be mapped internally in the same way and we force the n
parallel blocks to be mapped exactly as each block is mapped internally. Finally, we replace
the colours applied to edges with gadgets. The result is two graphs which are isomorphic if
there is an isomorphism mapping the components rooted at s and t in F and G onto each
other so that s gets mapped to t. This construction can be done in time at most polynomial
in the size of the formulas F and G, so in time polynomial in |F | and |G|. �

Theorem 4 Iso(CPSS) ∈ C=P.

Proof: The proof uses the fact that GI is low for the class C=P [13]. This means that a
non-deterministic polynomial time algorithm with a C=P acceptance mechanism and having
access to an oracle for GI, can be simulated by an algorithm of the same kind, but without
the oracle. In symbols C=PGI = C=P.

We already know that the solution-graphs of CPSS relations consist of at most an
exponential number of connected components and every such component is a partial cube.
For two solution-graphs F and G to be isomorphic there has to be a bijection mapping each
connected component of F onto an isomorphic component of G.

One way to check the existence of such a bijection is by looking at each possible partial
cube and counting the number of connected components isomorphic to it in both graphs. If
the numbers match for all partial cubes, the graphs are isomorphic. Instead of checking all
possible partial cubes, which would be too many, one only has to check the ones which are a
connected component in one of the graphs. For x ∈ {0, 1}n let Ax and Bx be the sets

Ax = {y ∈ {0, 1}n | F (y) = 1 ∧ Fx ∼= Fy with an isomorphism mapping x to y}

Bx = {y ∈ {0, 1}n | G(y) = 1 ∧ Fx ∼= Gy with an isomorphism mapping x to y}

The existence of an isomorphism between Fx and Fy (or Gy) mapping x to y can be checked
with a GI oracle (as proven in Lemma 3). Our algorithm checks for every x ∈ {0, 1}n
satisfying F , whether ||Ax|| = ||Bx||. The same test is performed for all x satisfying G.
Both tests are successful if and only if the graphs are isomorphic. Clearly the graphs are
isomorphic if and only if both tests succeed.

49

P. Scharpfenecker and J. Torán

This procedure shows that the problem is in the class ∀C=PGI .5. Using the mentioned
fact that GI is low for C=P, this class coincides with ∀C=P. In addition, Green showed [11]
that C=P is closed under universal quantification, i.e. ∀C=P = C=P. We conclude that
Iso(CPSS) ∈ C=P. �

In Theorem 4 we exploited the fact that CPSS formulas encode graphs which consist of
partial cubes of small isometric dimension. But for general Schaefer formulas this property
does not hold. The solution-graph might have an exponential isometric dimension or the
connected subgraphs might even not be partial cubes. Therefore it seems improbable that
the C=P-algorithm can be adapted for general Schaefer solution-graphs. These graphs
should admit a better lower bound. Unfortunately, we can only provide such a lower bound
for the more powerful class of Boolean relations that are not safely tight.

Theorem 5 Let S be a set of relations which is not safely tight. Then Iso(S) is hard for
PSPACE under logarithmic space reductions.

Proof: First notice that, as S is not safely tight, there has to be a relation in S which is not
OR-free and there has to be a relation in S which is not NAND-free. Therefore we can apply
partial assignments for these relations to construct the two relations (x ∨ y) and (x ∨ y),
implying we can use these two relations, as well as (x⊕ y). We first prove the weaker result
that if S is not safely tight, then Iso(S ∪ {(x ∨ y)}) is hard for PSPACE. Later, we argue
that we can replace the usage of (x ∨ y) with a relation which is definitely present in S.

The proof is based on the reduction from s, t-connectivity to GI from [12] which uses
coloured graphs. We know that the s, t-connectivity problem for formulas that are not
safely tight is PSPACE-complete [10]. We give a construction of solution-graphs that have
coloured vertices as a way to distinguish some vertices. Later we show how the formulas can
be modified to mimic the colours in their solution-graphs.

Given a formula F built on relations from S, as well as satisfying assignments s and t,
we create two copies of GF (which is the solution-graph defined by F) and colour vertex s
in one of the copies with white and in the second copy with black. Let GF ′ be the disjoint
union of the two copies. Now we consider two copies GF1 and GF2 of GF ′ . We colour in GF1

one of the copies of vertex t with grey while in GF2 the other copy of t is coloured grey. All
other vertices have no colour. There is a path from s to t in GF if and only if GF1 and GF2

are not isomorphic. This is because in the case of an s, t path in GF the two white copies of
the s vertex cannot be mapped to each other, while this would be possible if there is no such
a path since then they would not be in the same connected components as the t vertices.

This construction can easily be performed with solution-graphs. Given the formula
F (x1, . . . , xn), two disjoint copies of the encoded graph are defined by the formula

F ′(a, b, x1, . . . , xn) = (a⊕ b) ∧ F (x1, . . . , xn)

using two new variables a and b. Colouring a vertex s ∈ {0, 1}n by attaching a gadget to it
can be done by adding to s the graph Hm with m > n as neighbour. For a given formula G
and the vertex s, we construct

5. We use the same quantifier notation which is common for the classes in the polynomial time hierarchy.

50

Solution-Graphs of Boolean Formulas and Isomorphism

G′s(x1, . . . , xn, y1, . . . , ym) = G(x1, . . . , xn)

∧
∧

i≤n,s[i]=0,j≤m

(xi → yj)

∧
∧

i≤n,s[i]=1,j≤m

(xi → yj)

The new graph can be described as the old solution-graph of G but now s0m is the
minimal vertex of a new complete hypercube on 2m vertices using the m new variables
y1, . . . , ym. To see this, observe that if any of the variables x1, . . . , xn differs from s, then
y1, . . . , ym all have to be set to 0. But if x1, . . . , xn are assigned to the bit-string s, then the
n ·m new clauses (of the form (xi → yj) and (xi → yj)) are satisfied, allowing y1, . . . , ym to
be assigned arbitrary.

Note that s is the only vertex of the original solution-graph which is part of a hypercube
of dimension m. In addition, it is the only vertex of the hypercube of dimension m which
is connected to some of the old vertices. Applying the colouring given above using this
construction implies that Iso(S ∪ {(x ∨ y)}) is hard for PSPACE and therefore Iso(S ∪{(x∨
y)}) is hard for coPSPACE = PSPACE.

We now show how to replace the clauses of the form (a∨ b) in this construction by using
the relation R(x, y, z) = (x∨ z)∧ (y ∨ z) = {001, 100, 101, 110}. Observe that this relation is
not equivalent to (x∨ y) but similar: no satisfying assignment of R may set xy = 01 and for
all partially satisfying assignments of xy there are either one or two possible ways to set z
such that the complete assignment satisfies R.

Further, we replace the clauses (xi → yj) with this relation R and use the same additional
variable z for every clause involved in the creation of the same colour-gadget for both formulas.
While the clause (xi → yj) with satisfying solutions {00, 10, 11} represents a solution graph
which is a single path on 3 vertices, the relation R represents a solution graph which is a
single path on 4 vertices. Therefore, by adding the relation R(x, y, z) for existing variables
x, y, we replace paths of length 3 by paths of length 4. Every vertex in the solution graph
which was connected to a vertex setting xy to 10 is now connected to either a vertex setting
xyz to 100 or 101. But as these two vertices are connected (they differ only by z), reachability
is preserved. Moreover, no other edges are introduced except the ones connecting the copies
of vertices with xy = 10 to their original neighbours or themselves.

So while this construction modifies the constructed graphs, we know that both graphs are
modified in the same way while disconnected components still stay disconnected. Therefore
this construction does not require clauses of type (x ∨ y), proving our statement.

Observe that this reduction just uses copies of the input formula, adds 2 new variables
and a polynomial amount of new clauses which only depend on n,m and the entries of s, t.
This can be done using logarithmic space. �

The given construction uses new clauses which are Horn and 2CNF and can even be
applied to simpler classes of formulas. The following statements use the hardness results of
[19] with the reduction in the proof of Theorem 5.

Corollary 2 Iso(2CNF) is hard for NL and Iso(Horn3) is hard for P under logarithmic
space reductions.

51

P. Scharpfenecker and J. Torán

4. Structure of solution-graphs of Horn formulas

While [19] showed that CPSS formulas contain only partial cubes of small isometric dimension
as connected components, Horn formulas may encode partial cubes of exponential isometric
dimension or graphs which are not even partial cubes. So for the isomorphism question, things
seem to get more complicated. We give an interesting property for Horn solution-graphs
which suggests that Iso(Horn3) might be easier than general solution-graph isomorphism.

Let dm(a, b) denote the monotone distance between a and b. So dm(a, b) < ∞ if and
only if there is a strictly monotone increasing path from a to b or vice versa. In [10, 21] it
is shown that in safely OR-free formulas there is a unique minimal satisfying assignment
in every connected component. As Horn formulas are safely OR-free ([10, 21]), given an
assignment y satisfying a Horn formula F , the connected component of y contains a unique
minimal satisfying assignment. For the next result, we will assume w.l.o.g. that this minimal
satisfying assignment in the connected component of y is 0n. If this is not true, and y is
the minimal satisfying assignment we could modify F setting all variables which are 1 in
y to 1 and get a formula F ′ on less variables where 0n

′
is the required minimal satisfying

assignment. The resulting formula still contains the connected component corresponding
to y in F . With [y]F := {a ∈ {0, 1}n | dm(a, y) < ∞} we denote the set of all vertices a
between 0n and y for which there is a monotonically increasing path from a to y.

Theorem 6 For every solution y to a Horn formula F , [y]F is a partial cube.

Proof: Let a, b ∈ [y]F be two arbitrary vertices. We show that d(a, b) = ∆(a, b). In case the
two monotone increasing paths a = a1, . . . , ak = y from a to y and b = b1, . . . , bl = y from b
to y are already of total length ∆(a, b), then we are done. Otherwise, suppose that there is
at least one variable xi which gets increased to 1 in both paths. The positions in the path
where such variables are increased may differ. Every variable can be classified as either not
changed in any of the paths, changed in only one path, and therefore contributing to ∆(a, b),
or changed in both paths. We can now construct the shorter path from a1 ∧ y = a1 over
a1 ∧ bl−1 and a1 ∧ b1 = a ∧ b = b1 ∧ a1 back to b1 ∧ a2 and b1 ∧ ak = b1. Figure 4 illustrates
in the first row the original path and in the second row the new path.

a1 a2 . . . ak = bl = y bl−1 . . . b2 b1

a1 ∧ bl = a1 a1 ∧ bl−1 . . . a1 ∧ b1 = a ∧ b b1 ∧ a2 . . . b1 ∧ ak−1 b1 ∧ ak = b1

Figure 4. Original and shorted paths from a1 to b1 over y = bl = ak.

Note that all these vertices are in GF as Horn formulas are closed under conjunction
and the overall sum of vertices in this sequence is the same as in the original path. But as
the first half is the conjunction of a1 with every vertex in the second half, every variable
which gets increased in both halves (0 in a1) will lead to two identical consecutive vertices
in the first half. By symmetry, the same happens in the new second half. This path is now
two vertices shorter for every variable which was changed in both paths. All remaining flips
are still present. �

52

Solution-Graphs of Boolean Formulas and Isomorphism

Figure 5 gives a minimal example (with repeated y vertex in the middle) which illustrates
how an increasing/decreasing path can be transformed to a shortest path of the same length
as the Hamming distance between the source and target vertices. The original path has
length 6 with one common variable in both halves while the shortcut has length 4, which is
optimal.

Long path a = 11000 11010 11011 11111 01111 00111 00011 = b

Optimal path a = 11000 01000 00000 00000 00010 00011 00011 = b

Figure 5. Finding shortcuts in Horn solution-graphs.

This result shows that Horn solution-graphs encode for every locally maximal solution y
a partial cube [y]F and every intersection of two such partial cubes [y]F ∩ [y′]F = [z]F is
also a partial cube. We point out that a similar statement holds for dual-Horn formulas.

While this seems to be a promising structure, connected components of solution-graphs
encoded by Horn formulas may still have an exponential number of locally maximal solutions
y, each yielding a partial cube [y]F . It seems necessary to find additional structure between
these locally maximal solutions to give improved upper bounds for the isomorphism problem
on these graphs. Such a structure could lie in the intersection [y]F ∩ [y′]F of two locally
maximal solutions y and y′.

5. Iso(2CNF) and the number of perfect matchings

We showed in Theorem 4 that Iso(2CNF) ∈ C=P. In this section we show that Iso(2CNF)
is also hard for C=P. For this, we will consider several reductions involving the following
decision problems:

Same2SAT: Given two 2CNF-formulas F and F ′, does the number of satisfying assign-
ments for F and F ′ coincide?

SamePM: Given two graphs, does the number of perfect matchings in each of the graphs
coincide?

Curticapean [8] showed recently that SamePM is C=P-complete. In a series of reductions,
Valiant [23, 22] proved that the (functional) problem of computing the permanent of a
matrix can be Turing reduced to computing the number of satisfying assignments of a 2CNF
formula. This reduction queries a polynomial number of #SAT instances and uses the
answers (which are numbers of polynomial length in the input matrix size) in a Chinese
remainder fashion to compute the original number of perfect matchings. This argument
does not work in the context of many-one reductions and decision problems because it is
not clear how to combine all the queries into a single formula. We take ideas from these
reductions to show that SamePM is many-one reducible to Same2SAT and to Iso(2CNF).

Theorem 7 SamePM is polynomial time many-one reducible to Same2SAT.

Proof: Valiant [23] gave a way to reduce the problem of counting perfect matchings to the
problem of counting satisfying assignments of a 2CNF formula by counting all matchings as
an intermediate step. We adapt some of his ideas for our result.

53

P. Scharpfenecker and J. Torán

Reducing the number of all matchings (perfect or not perfect) of a given graph B to the
number of satisfying solutions of a formula is easy. We define a variable xe for each edge e
in B and for each pair of edges e, e′ with a common vertex we create a clause (xe ∨ xe′). If
FB is the conjunction of all these clauses, the set of satisfying assignments for FB coincides
with the set of matchings in B.

The number of perfect matchings of a graph B with n vertices can be computed from
the number of all matchings in B and in some derived graphs Bk for k ∈ {1, . . . n}. For this,
let bi be the number of matchings with exactly i unmatched vertices in B. Then b0 is the
number of perfect matchings that we want to compute, while bn−2 is the number of edges
in B. Let us define a modification Bk of B (1 ≤ k ≤ n) consisting of a copy of B and for
every vertex u in B, k otherwise isolated vertices u1, . . . , uk with the additional set of edges
{{u, ui} | 1 ≤ i ≤ k}. Now each matching in B can be extended in Bk by matching each
non-matched vertex of B to one of its k new neighbours. Each original matching of B with
i unmatched vertices corresponds to (k + 1)i matchings in Bk. Let ck be the total number
of matchings in Bk. ck =

∑n
i=0 bi · (k + 1)i. The following equation system describes the

relation between matchings in Bk graphs and in B.
1 1 1 · · · 1
1 2 4 · · · 2n

...
...

...
. . .

...
1 (n+ 1) (n+ 1)2 · · · (n+ 1)n

×

b0
b1
...
bn

 =


c0

c1
...
cn


Let us call by V the (n+ 1)× (n+ 1) matrix, and by b and c the two vectors in the equation.
V is a Vandermonde matrix with in binary encoded entries of length bounded by poly(n)
and can therefore be inverted in polynomial time [23]. The coefficients ci are numbers of
matchings, that can be reduced to numbers of satisfying assignments of 2CNF formulas.
The first entry of V −1 × (c0, . . . , cn)T is b0, the number of perfect matchings in B that we
want to compute. Given V −1 and 2CNF formulas F0, . . . , Fn having respectively c0, . . . , cn
satisfying assignments (the formulas can be created from B0, . . . , Bn with the aforementioned
reduction), b0 can be computed as the sum and difference of ci’s multiplied by coefficients
defined by V −1.

If we are given two graphs B1 and B2, on n vertices by doing the same construction we
get two sets of coefficients (C1 and C2) and the number of perfect matchings in B1 and B2

coincide if and only if the following statement holds:

(V −1
1,1 , . . . , V

−1
1,n+1)× (C1

0 , . . . , C
1
n)T = (V −1

1,1 , . . . , V
−1

1,n+1)× (C2
0 , . . . , C

2
n)T .

The c coefficients in the equation can be expressed as numbers of solutions of 2CNF
formulas, while the other numbers are rational numbers. Inverting the Vandermonde matrix
leads to rational numbers of length at most polynomial in n. Therefore, using an appropriate
factor, we can multiply both sides of this equation by the same factor and reduce every
rational number to an integer of polynomial length. This equation can be reorganised so
that both sides contain only additions and multiplications of positive numbers. These can
be implemented as numbers of satisfying assignments of 2CNF formulas using the following
gadgets. Note that input formulas are all anti-monotone and therefore have the satisfying
solution 0n and we maintain this solution through all constructions.

54

Solution-Graphs of Boolean Formulas and Isomorphism

Multiplying the number of satisfying assignments of two 2CNF-formulas can be achieved
by the conjunction of both formulas (with disjoint sets of variables).

The sum of the solution sets of two formulas F and F ′ is again a conjunction of both
formulas (with disjoint sets of variables) with the following modification: For two fixed
satisfying assignments 0n of F and 0m of F ′, we add the clauses

∧
i∈[n],j∈[m](xi → yj). So

for every solution v′ 6= 0n in F , the variables of F ′ get fixed to 0m. By symmetry the same
holds for all v′ 6= 0m satisfying F ′. This corresponds to the disjoint union of the solution sets
except for 0n+m which occurs only once. So we add a new variable b and add the clauses∧
i∈[n](xi → b) ∧

∧
j∈[m](yj → b) in the same way as before. This duplicates 0n+m as b is

allowed to be 1 or 0 but if we deviate from this assignment, we fix b to 0. The number of
satisfying solutions is therefore the sum of F and F ′ and 0n+m+1 is still a satisfying solution.
Observe that the number of of variables in the new formula is the sum of the variables in F
and in F ′, plus 1 (for the new variable b).

For encoding the coefficients of the inverse Vandermonde matrix we need a way to
transform a positive integer k into a 2CNF-formula H with exactly k satisfying solutions.
This can be achieved by looking at the binary encoding of k = (k1, . . . , kl)2. For every i with
ki = 1 we create the 2CNF formula Hi =

∧
j∈[i](xi ∨ xi) on i variables having exactly 2i

solutions and construct a formula having exactly as many solutions as the sum of solutions
all these formulas (as described before). For this every formula has its own set of variables
and contains 0i as satisfying solution. This new formula H has exactly k satisfying solutions.

We form for both sides of the equation 2CNF-formulas implementing these computations,
and get two formulas F, F ′ that have the same number of satisfying assignments if and only
if B1 and B2 have the same number of perfect matchings. �

Theorem 8 Same2SAT is polynomial time many-one reducible to Iso(2CNF).

Proof: Two formulas having only isolated satisfying assignments have the same number of
solutions if and only if their solution graphs are isomorphic. A formula F can be transformed
into another one F ′ with the same number of solutions but having only isolated satisfying
assignments. This can be done by duplicating each occurring variable x with a new variable
x′ and adding the restriction (x↔ x′). The Hamming distance between two solutions in F ′

is then at least two. �
These reductions plus Theorem 4 imply:

Corollary 3 Same2SAT and Iso(2CNF) are C=P-complete under polynomial many-one
reductions.

Corollary 4 Iso(Schaefer) and Iso(safely tight) are hard for C=P under polynomial many-
one reductions.

This last result follows from the observation that all constructed 2CNF formulas, those
for counting matchings, as well as those for multiplication and summation constructions are
also Horn.

55

P. Scharpfenecker and J. Torán

6. Conclusions and Open Problems

We studied the isomorphism problem for solution-graphs for the different types of Boolean
formulas defined in [10, 21]. Although it is not clear how our results can have a direct
application in the development of SAT-solvers, we believe that it is worth exploring the
structure of such graphs and its relationship to the formula structure. For example, all
connected components of solution-graphs of CPSS formulas have a nice structure since
they are partial cubes of small isometric dimension [19]. We showed that this implies that
isomorphism for solution-graphs of CPSS formulas (a class that includes 2CNF formulas)
can be reduced to counting. It is an open question whether other formula classes provide
properties which can be exploited for testing isomorphism of their solution-graphs. The
class of Horn formulas is such a candidate as we showed that their solution-graphs have
an interesting structure. We also proved that several natural problems like Iso(2CNF),
Iso(CPSS) and the problem to decide whether two 2CNF formulas have the same number of
solutions are complete for C=P.

We achieved better lower bounds for the isomorphism problem of solution-graphs only for
general Boolean formulas. Our classification results are summarised in Table 1. A natural
open questions would be to match upper and lower bounds for all types of relations, testing
whether for the case of isomorphism, there is also a dichotomy (trichotomy) result with
respect to the formula structure as in the cases of satisfiability and connectivity.

References

[1] Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. On the solution-
space geometry of random constraint satisfaction problems. Random Struct. Algorithms,
38(3):251–268, May 2011.

[2] Manindra Agrawal and Thomas Thierauf. The boolean isomorphism problem. In
37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 422–430, 1996.

[3] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123,
1979.

[4] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697, 2016.

[5] H.-J. Bandelt and M. van de Vel. Embedding Topological Median Algebras in Products
of Dendrons. Proceedings of the London Mathematical Society, 3(58):439–453, May
1989.

[6] Hans-Jurgen Bandelt and Victor Chepoi. Metric graph theory and geometry: a survey.
Contemporary Mathematics, 453:49–86, 2008.

[7] Elmar Böhler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer. Equivalence
and isomorphism for boolean constraint satisfaction. In Computer Science Logic, 16th

56

Solution-Graphs of Boolean Formulas and Isomorphism

International Workshop, CSL 2002, 11th Annual Conference of the EACSL, Edinburgh,
Scotland, UK, September 22-25, 2002, Proceedings, pages 412–426, 2002.

[8] Radu Curticapean. Parity separation: A scientifically proven method for permanent
weight loss. In 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 47:1–47:14, 2016.

[9] Oliver Gableske. SAT solving with message passing: a dissertation. PhD thesis,
University of Ulm, 2016.
https://www.gableske.net/downloads/gableske_thesis.pdf.

[10] Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadim-
itriou. The connectivity of boolean satisfiability: Computational and structural di-
chotomies. SIAM J. Comput., 38(6):2330–2355, 2009.

[11] Frederic Green. On the power of deterministic reductions to C=P. Mathematical
Systems Theory, 26(2):215–233, 1993.

[12] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness
results for graph isomorphism. J. Comput. Syst. Sci., 66(3):549–566, 2003.

[13] Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomorphism is low for PP.
Computational Complexity, 2:301–330, 1992.

[14] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem:
its structural complexity. Birkhauser Verlag Basel, aug 1993.

[15] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[16] Marc Mézard, Thierry Mora, and Riccardo Zecchina. Clustering of solutions in the
random satisfiability problem. Physical Review Letters, 94(19):197205, 2005.

[17] Sergei Ovchinnikov. Graphs and Cubes. Universitext, Springer, 2011.

[18] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, pages 216–226, 1978.

[19] Patrick Scharpfenecker. On the structure of solution-graphs for boolean formulas. In
Fundamentals of Computation Theory - 20th International Symposium, FCT 2015,
Gdańsk, Poland, August 17-19, 2015, Proceedings, pages 118–130, 2015.

[20] Patrick Scharpfenecker and Jacobo Torán. Solution-graphs of boolean formulas and
isomorphism. In Theory and Applications of Satisfiability Testing - SAT 2016 - 19th
International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, pages 29–44,
2016.

[21] Konrad W. Schwerdtfeger. A computational trichotomy for connectivity of boolean
satisfiability. J. of Satisfiability, 8(3/4):173–195, 2014.

57

https://www.gableske.net/downloads/gableske_thesis.pdf

P. Scharpfenecker and J. Torán

[22] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

[23] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J.
Comput., 8(3):410–421, 1979.

[24] Klaus W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Inf., 23(3):325–356, 1986.

58

	Introduction
	Preliminaries
	Solution-graphs of Boolean formulas

	Isomorphism for solution-graphs
	Structure of solution-graphs of Horn formulas
	Iso(2CNF) and the number of perfect matchings
	Conclusions and Open Problems

