
Journal on Satisfiability, Boolean Modeling and Computation 9 (2015) 83-88

MiFuMax—a Literate MaxSAT Solver

system description

Mikoláš Janota mikolas.janota@gmail.com

Microsoft Research, Cambridge

United Kingdom

Abstract

The main motivation behind the MaxSAT solver MiFuMax is twofold. It provides a base-
line implementation of core-based algorithms for both weighted and unweighted MaxSAT.
Such baseline implementation may serve for evaluation of evolving solvers. MiFuMax is
written in literate programming and as such is instructive for anyone interested in learning
about the implementation of modern core-based MaxSAT solvers. Despite its educative
background, the solver has placed 1st in the Unweighted Max-SAT-Industrial track of the
2013 MaxSAT Evaluation and it has been successfully applied in other research.

Keywords: MaxSAT, SAT, Literate programming

Submitted December 2014; revised October 2015; published December 2015

1. Introduction

One of the most interesting problems in computer science is formula satisfiability (SAT). Due
to its NP completeness it had long been believed intractable. However, since the immense
success of SAT solvers in the 90’s, it is no longer so. Indeed, SAT solvers are commonly used
in hardware/software checking, planning, and many other types of combinatorial problems.

In many real world scenarios it is often insufficient to find a solution but a solution with
some optimal properties is sought. This is where MaxSAT solvers come into play. Given a
formula in a conjunctive normal form (CNF), a MaxSAT solver finds a maximal satisfiable
subset of clauses of the formula. This enables us to formulate optimization problems as
MaxSAT problems (see e.g. [5]). This paper describes a MaxSAT solver MiFuMax1., which
solves MaxSAT by the core-based approach. In this approach, the solver tries to first satisfy
all clauses in the formula and gradually relaxes those portions (cores) that are deemed as
reasons for unsatisfiability. Throughout the computation, a SAT solver is used in a black-
box fashion. MiFuMax uses algorithms stemming from the seminal paper of Fu&Malik [3]
and it uses the SAT solver minisat2.2 [1], hence the name.

MiFuMax is written in literate programming [4], which enables interweaving written
text with program code. MiFuMax is written in LATEX and C++, interleaved by the noweb
system [10]. Like so, the interested reader can pick up a PDF retaining both the description
and the code and read it as a scientific article2.. Anyone interested in the gritty details of
MiFuMax is welcome to do so. Here we will look at the most characteristic features and
implementation details of the solver.

1. http://sat.inesc-id.pt/~mikolas/sw/mifumax/

2. Such PDF can be found at http://sat.inesc-id.pt/~mikolas/sw/mifumax/book.pdf.

c© 2015 IOS Press, the SAT Association, and the authors.

http://sat.inesc-id.pt/~mikolas/sw/mifumax/
http://sat.inesc-id.pt/~mikolas/sw/mifumax/book.pdf


M. Janota

2. Preliminaries

Throughout the paper, terminology commonly used in SAT and MaxSAT community will be
used (cf. [5]). In particular, we are going to be solving problems containing Boolean variables
(commonly denoted x,y, etc.). A literal is a variable or its negation, e.g. x, ¬x. A clause
is a disjunction of literals (possibly none). A formula in conjunctive normal form (CNF) is
a conjunction of clauses. Since disjunction is associative, commutative, and idempotent, it
is common to treat a clause as a set of literals. A formula in CNF is treated as a multiset
of clauses. The reason for using a multiset is that in MaxSAT, we measure the number of
satisfied clauses and hence multiple copies of one clause are not identical to a single clause.
Note that the empty clause, i.e. the empty disjunction of literals, is semantically equivalent
to false; the empty multiset of clauses is semantically equivalent true.

The input to a MaxSAT problem is a multiset of clauses and a solution is an assignment
that maximizes the number of satisfied clauses.3. MaxSAT has several variations. A simple
extension is the partial MaxSAT where clauses are split into hard and soft. A solution
is an assignment that satisfies all the hard clauses and maximizes the number of satisfied
soft clauses. A further extension of MaxSAT is the weighted MaxSAT, where each clause is
given a weight. Then, a solution is an assignment that maximizes the sum of the weights
of satisfied clauses. Weighted MaxSAT also has an analogous partial weighted MaxSAT
variant. Note that a partial (weighted) MaxSAT does not have a solution whenever the
multiset of hard clauses is unsatisfiable, whereas (weighted) MaxSAT always has a solution.

Example 1. Consider the formula (x ∨ y) ∧ (y ∨ z). If we wish to minimize the number of
variables set to true, we construct the following partial MaxSAT problem. Let hard clauses
be {x ∨ y, y ∨ z} and soft clauses {x̄, ȳ, z̄}. The solution to this problem is x = false, z =
false, y = true, unsatisfying one soft clause (ȳ). Note that this instance has only one solution
but in general there may be many.

In this paper we assume that a SAT solver for a given formula φ in CNF returns a sat-
isfying assignments to φ and returns an unsatisfiable multiset of clauses C ⊆ φ otherwise.
The multiset C is called an unsatisfiable core of φ. Whenever φ is clear from the context,
we simply say core C . Note that there is no requirement for the core to be minimal in any
way. In particular, it can happen that the core is the whole formula. In practice, how-
ever, state-of-the-art SAT solvers return cores significantly smaller than the given formula.
Nevertheless, any correct algorithm that relies on cores, must account for cases where the
returned core contains redundant clauses. In pseudocode, a SAT solver will be modeled by
the function SAT(φ) returning the triple (outc, µ,C ), where outc is true iff φ is satisfiable; if
it is, µ is a satisfying assignment of φ; if it is not, the multiset of clauses C is an unsatis-
fiable core of φ. Since minisat2.2 does not return unsatisfiable cores directly, we show how
MiFuMax computes them at the end of the following section.

3. Fu&Malik Algorithm for Unweighted MaxSAT

MiFuMax solves MaxSAT instances by the Fu&Malik algorithm [3], illustrated by Algo-
rithm 1. The algorithm begins by trying to satisfy all the given clauses. If this is possible,
the algorithm terminates and returns the obtained satisfying assignment. If, however, the

3. Sometimes only the number of satisfied clauses is required to be returned.

84



MiFuMax

Algorithm 1: The Fu&Malik algorithm [3]

Input : Formula φ
Output: assignment µ satisfying the maximal multiset of clauses of φ

1 while true do
2 (outc, µ,C )← SAT(φ)
3 if outc then return µ
4 remove any hard clauses from C
5 φ← φ \ C ∪{rC ∨ C | C ∈ C }∪

∑
C∈C rC ≤ 1

set of clauses φ is unsatisfiable, the algorithm transforms the formula. The motivation for
the transformation is the following. If there is a satisfying assignments to some submultiset
of φ, such assignment cannot satisfy all the clauses in the core C . Hence, the algorithm
adds to each clause C ∈ C a fresh variable rC . This operation is called relaxation and the
variable rC is called a relaxation variable. A relaxed clause is trivially satisfied by setting rC
to true. As not to lose optimal solutions, the additional constraint

∑
C∈C rC ≤ 1 is added,

which permits us to satisfy at most one clause from the core through rC . Note that this con-
straint on the cardinality of relaxation variables is not in CNF. A bevy of techniques exists
that enable efficient encoding of such constraints into CNF; MiFuMax uses the sequential
counter encoding [12]. The clauses encoding the constraint are treated as hard clauses and
thus are never relaxed in the future.

Observe that a clause may be relaxed multiple times, i.e., once the formula is transformed
by one iteration of the algorithm, the next iteration works on this transformed formula
without relating to the original one. Other algorithms that relax a clause only once exist [8].
However, more complicated constraints are needed (rather than just at-most-one).

It is easy to modify Algorithm 1 so that it handles partial MaxSAT instances. One
simply removes from any computed core any hard clauses (the instance has no solution if
the core becomes empty). Like so only soft clauses may be relaxed.

MiFuMax’s implementation follows Algorithm 1 rather closely. It maintains a list of
clauses φH for hard clauses and a list of clauses φS for soft clauses. In each iteration of the
loop of Algorithm 1 a new copy of a SAT solver is created and populated with φH and φS .
The clauses in φS are modified by relaxations whereas the clauses in φH remain intact
but are extended with new clauses representing the cardinality constraints. The following
discusses some further implementation specifics.

Core computation. Since minisat2.2 does not directly return cores, MiFuMax calculates
them using the assumption-based method. This method hinges on the incremental interface
of minisat2.2 [1, 2]. This interface enables invoking the SAT solver with a set of literals called
the assumptions. These assumptions can be understood as unit clauses that are temporarily
added to the formula. To obtain a core, before we call the SAT solver, for a clause C we
generate a fresh variable sC , called the control variable. Instead of C, we give to the SAT
solver the clause ¬sC ∨ C and pass the literal sC as an assumption when calling the SAT
solver. If the formula is unsatisfiable, minisat2.2 provides us with the final conflict clause
(conflict). That is a clause that contains only assumption literals and it must be satisfied if

85



M. Janota

Algorithm 2: WMSU1 algorithm [6]

Input : Formula φ
Output: assignment µ satisfying the maximal multiset of clauses of φ

1 while true do
2 (outc, µ,C )← SAT(φ)
3 if outc then return µ
4 wm ← min {w | (w,C) ∈ C }
5 RC ← {(wm, C ∨ rC) | (w,C) ∈ C }
6 SC ← {(w − wm, C) | w > wm, (w,C) ∈ C }
7 φ← φ \ C ∪RC ∪SC ∪

∑
C∈C rC ≤ 1

the given formula is to be satisfied.4. Hence, the core is calculated as {C | ¬sC ∈ conflict}.
Since we are not interested in elements of the core if they are part of the hard clauses, hard
clauses are never adorned with control variables and like so are automatically filtered out
of the core.

Unit core optimization MiFuMax makes a small optimization not described in the orig-
inal paper by Fu and Malik. Consider a core C with a single soft clause C (a unit core).
What this means is that the conjunct φH∧C is unsatisfiable. In such case C, is not satisfied
by any solution of the given MaxSAT problem. This permits us to simply remove the clause
the clause C from the multiset of soft clauses. At the same time, since φH ∧C is unsatisfi-
able (equivalently, φH ⇒ ¬C), ¬C can be added to the hard clauses, without affecting the
satisfying assignments of φH . Hence, whenever the solver finds a unit core C containing a
soft clause C, the following things happen in MiFuMax. 1) For any literal l ∈ C, the unit
clause ¬l is added to φH . 2) The clause ¬sC is added to the hard clauses to effectively
remove the clause C. 3) The clause C is marked as removed so that sC is not added to
the assumptions in the next SAT calls. 4) The above changes made to φH are immediately
repeated on the current copy of the SAT solver, and like so the SAT solver does not need
to be rebuilt for the next iteration.

4. Weighted MaxSAT

To solve weighted MaxSAT, MiFuMax uses the algorithm by Manquinho et al. (commonly
known as WMSU1) [6], whose pseudocode is shown in Algorithm 2. Weighted MaxSAT is
very much similar to unweighted MaxSAT and the used algorithm is also similar. We will
write (w,C) to denote a clause C with a weight w. One could solve a weighted MaxSAT
by translating it to unweighted MaxSAT by creating w unweighted copies of C for each
weighted clause (w,C). Let us pretend for a while that we do that and apply the un-
weighted Algorithm 1. Now we find some unweighted core C . Let wm be the smallest
weight appearing in the weighted counterpart of the core. This means that in the un-
weighted version of the formula there is at least wm copies of each of the clauses in C . In

4. One may imagine that this clause is obtained by traditional clause learning [11] if the assumptions are
the first decisions made by the solver.

86



MiFuMax

another words, there is at least wm disjoint copies of the core C . What we could do is relax
each of the copies separately right after finding the first copy of the core C without waiting
for the other copies to be computed. This gives us one important optimization. However,
we make another important observation and that is that each copy of some clause C ∈ C is
satisfied (respectively unsatisfied) by the same set of assignments. Hence, if any solution to
the unweighted MaxSAT satisfies some clause C, it will also satisfy its copies (and the other
way around). This means, that the same relaxation variable can be used for all the wm

copies of each clause C ∈ C .

These observations enable an algorithm that does not require explicitly creating all the
different copies of clauses. This is shown in Algorithm 2. Whenever a core C is found,
the algorithm computes the minimum weight wm appearing in it (line 4). Subsequently,
each clause (w,C) ∈ C is split into the clauses (wm, C) and (w − wm, C) (lines 5,6). The
clause with the weight wm correspond to the wm copies discussed above. The clause with
weight w − wm corresponds to the surplus copies of that clause (if w − wm = 0, the clause
is ignored). In accordance with the discussion above, the clause (wm, C) is relaxed. The
relaxation variables are bound by the at-most-one constraint just as in the unweighted case.

The implementation of the algorithm WMSU1 in MiFuMax is similar to the implemen-
tation of the Fu&Malik algorithm. The main difference is that the number of soft clauses
increases throughout the course of the algorithm, which slightly affects the bookkeeping.
In order to split a clause (w,C) into the clauses (wm, C ∨ rC) and (w − wm, C), the solver
changes the weight of the original clause into wm and relaxes it. Then it creates a new soft
clause C with the weight w − wm; this step is skipped if w = wm.

5. Conclusions and Future Work

This paper describes the solver MiFuMax, which is meant to demonstrate the basic func-
tionality of the core-based approach to MaxSAT solving. While the solver is meant to
be explanatory, it exhibits competitive performance. In fact, it has placed 1st in the Un-
weighted Max-SAT-Industrial track of the 2013 MaxSAT Evaluation5. and performed rather
well in the same track of 2014. The solver has also been applied in verification of Datalog
programs [14] and it has served as the basis for the solver eva [9] (the winner of 2014’s
weighted partial industrial track).

A number of powerful techniques have been developed for MaxSAT (cf. [8]) it would
be useful to add some of these to MiFuMax. In particular, disjoint cores [7] and core
trimming [13]. One drawback of the Fu&Malik algorithm is that it might require addition
of many relaxation variables. Other algorithms enable using a single relaxation variable per
clause [7]; these would also be useful to include into MiFuMax.

Acknowledgments.

This work was supported by FCT grants POLARIS (PTDC/EIA-CCO/123051/2010) and
AMOS (CMUP-EPB/TIC/0049/2013), INESC-ID’s multiannual PIDDAC funding PEst-
OE/EEI/LA0021/2013.

5. http://www.maxsat.udl.cat/13/results/index.html#ms-industrial

87

http://www.maxsat.udl.cat/13/results/index.html#ms-industrial


M. Janota

References

[1] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, SAT, pages 502–518, 2003.

[2] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.
Electronic Notes in Theoretical Computer Science, 89(4):543–560, 2003. BMC ’03,
First International Workshop on Bounded Model Checking.

[3] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin
Biere and Carla P. Gomes, editors, SAT, 4121 of Lecture Notes in Computer Science,
pages 252–265. Springer, 2006.

[4] Donald E. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984.

[5] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
185 of Frontiers in Artificial Intelligence and Applications, pages 613–631. IOS Press,
2009.

[6] Vasco M. Manquinho, João P. Marques Silva, and Jordi Planes. Algorithms for weighted
boolean optimization. In Oliver Kullmann, editor, SAT, 5584 of Lecture Notes in
Computer Science, pages 495–508. Springer, 2009.

[7] João Marques-Silva and Jordi Planes. Algorithms for maximum satisfiability using
unsatisfiable cores. In Design, Automation and Test in Europe, DATE 2008, pages
408–413. IEEE, 2008.

[8] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-
Silva. Iterative and core-guided MaxSAT solving: A survey and assessment. Con-
straints, 18(4):478–534, 2013.

[9] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided
MaxSAT resolution. In AAAI, pages 2717–2723, 2014.

[10] Norman Ramsey. Literate programming simplified. IEEE Software, 11(5):97–105,
1994.

[11] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[12] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints.
In Peter van Beek, editor, CP, 3709 of Lecture Notes in Computer Science, pages
827–831. Springer, 2005.

[13] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from unsatisfiable
formula. In Preliminary Proceedings of SAT, 2003.

[14] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On ab-
straction refinement for program analyses in Datalog. In PLDI, pages 239–248. ACM,
2014.

88


	Introduction
	Preliminaries
	Fu&Malik Algorithm for Unweighted MaxSAT
	Weighted MaxSAT
	Conclusions and Future Work

