
Journal on Satisfiability, Boolean Modeling and Computation 9 (2015) 53–58

Boolector 2.0

system description

Aina Niemetz aina.niemetz@jku.at

Mathias Preiner mathias.preiner@jku.at

Armin Biere biere@jku.at

Institute for Formal Models and Verification

Johannes Kepler University Linz, Austria

Abstract
In this paper, we discuss the most important changes and new features in-

troduced with version 2.0 of our SMT solver Boolector, which placed first in the
QF BV and QF ABV tracks of the SMT competition 2014. We further outline some
features and techniques that were not yet described in the context of Boolector.

Keywords: SMT solving, Lemmas on Demand, Lambdas, Don’t Care Reasoning

Submitted November 2014; revised March 2015; published June 2015

1. Introduction

Boolector is a Satisfiability Modulo Theories (SMT) solver for the quantifier-free the-
ories of fixed-size bit vectors and arrays. It employs the lemmas on demand approach,
which is an extreme variant of lazy SMT. Recently, [10] introduced a generalization
of the lemmas on demand procedure presented in [5] to lazily handle lambda terms.
Further, an optimization of the lemmas on demand procedure based on don’t care
reasoning to reduce the cost for abstraction refinement was proposed in [9].

In this paper, we discuss our current version 2.0 of Boolector, which participated
in tracks QF BV and QF ABV in the SMT competition 2014 and won both. We give
an overview of the most important changes and new features since version 1.5.118,
which won tracks QF BV and QF AUFBV of the SMT competition 2012.

2. Overview

Version 2.0 of Boolector implements the lemmas on demand for lambdas approach [10].
It further incorporates optimizations of the lemmas on demand procedure with don’t
care reasoning [9]. Figure 1 gives a high-level view of the procedure and introduces
both the unoptimized approach LOD, and its optimized variant LODopt as follows.

Given an input formula φ, procedure LOD enumerates truth assignments (candi-
date models) of the bit vector abstraction (bit vector skeleton) α(π) of the prepro-

c© 2015 IOS Press, the SAT Association, and the authors.



Niemetz et al.

LOD

Optimization

φ Preprocessing π Formula
Abstraction

α(π)

α(π) ∧ ξ

SAT

unsat

σ(α(π) ∧ ξ)

Partial Model
Extraction

Refinement

Consistency
Check

σp(α(π) ∧ ξ)

sat

ξ = {l} ∧ ξ

u
n
sa

t

sat
in

co
n
-

si
st

en
t

co
n
si

st
en

t

Figure 1. The workflow of the lemmas on demand decision procedure in Boolector. The
original procedure LOD (indicated by the dashed line) works on full candidate models, whereas
the optimized procedure LODopt extracts partial candidate models prior to consistency checking.

cessed input formula π and iteratively refines those assignments with lemmas until
convergence. At refinement iteration i, formula refinement ξ is defined as l1∧. . .∧li−1,
where l1, . . . , li−1 is the set of lemmas derived up to iteration i. Note that initially,
ξ is >. In each iteration, an underlying decision procedure SAT determines the satis-
fiability of the (refined) formula abstraction Γ ≡ α(π)∧ ξ by encoding Γ to SAT and
determining its satisfiability by means of a SAT solver. As formula abstraction Γ is
an overapproximation of φ, LOD immediately concludes with unsat if Γ is unsatis-
fiable. If Γ is satisfiable, the current (full) candidate model σ(α(π) ∧ ξ) is checked
for consistency w.r.t. the preprocessed input formula π. If the candidate model is
consistent, LOD immediately concludes with sat. Otherwise, the candidate model is
spurious and a lemma l is added to the formula refinement ξ.

Abstraction refinement is usually the most costly part of LOD (requiring up to
99% of the total runtime), where cost correlates with the number of refinement it-
erations, as each iteration entails a call to the underlying SAT solver. Checking the
full candidate model, however, is often not required, as only a small subset of the
full model is responsible for actually satisfying the formula abstraction. Boolector
2.0 therefore implements an optimization of procedure LOD to exploit a posteriori
observability don’t cares, i.e., parts of the formula abstraction irrelevant to its satis-
fiability under the current assignment. By introducing don’t care reasoning on full
candidate models to extract partial candidate models prior to consistency checking,
procedure LODopt focuses on the relevant parts of the formula abstraction only, and
subsequently reduces the cost for consistency checking.

54



Boolector 2.0: System Description

Note that the model checking approach for solving QF BV formulas as proposed
in [7] has not yet been implemented in Boolector 2.0.

2.1 Selected Features

Python API Since version 2.0, Boolector provides a public Python API as a
Python module, which allows users to conveniently access the most important func-
tions of Boolector’s public C API from a Python program. The Python module makes
use of Python operator overloading to create Boolector bit vector expressions and
converts integer constants to Boolector constant expressions. It further maintains
Boolector’s reference counting for expressions and automatically releases allocated
Boolector resources via the Python garbage collector. The documentation of Boolec-
tor’s public API can be found at http://fmv.jku.at/boolector/doc.

Cloning Similar to cloning in Lingeling [2], Boolector 2.0 supports cloning and
provides a clone function to generate an exact (but independent) copy of the original
Boolector instance. Cloning is, e.g., extensively used in PBoolector [11], a paral-
lel version of Boolector, which implements a cube and conquer approach similar to
Treengeling [2], but for the quantifier-free theory of fixed-size bit vectors.

Model Generation Prior to version 2.0, Boolector with model generation enabled
in some cases suffered from a performance drop. This was due to the fact that model
generation required bit-blasting of terms that where previously eliminated during
rewriting to generate assignments via the underlying SAT solver. Boolector 2.0 im-
plements a new model generation algorithm, which determines assignments for such
terms via term level propagation rather than via the SAT solver and therefore sub-
stantially reduces the previous overhead. Boolector provides two modes for generating
models: construct a model 1) for all asserted, or 2) for all constructed expressions.

Internal Model Validation During testing, each time a formula is determined
to be satisfiable, Boolector 2.0 internally checks if the resulting model is valid. This
feature is enabled even if model generation is disabled. It uses cloning and the new
model generation described above and helped to reveal several bugs in Boolector’s
rewriting engine. In the future, we will make this functionality available via Boolec-
tor’s public API as well as the command (check-model) in SMT-LIB v21..

Uninterpreted Functions Boolector 2.0 natively supports uninterpreted func-
tions (UF) with bit vector sorts. Note that prior to version 2.0, in SMT-LIB v11.

Boolector was able to handle function applications on UF by means of reads on ar-
rays, where the UF was interpreted as an array and the read index was a concatenation
of the function application’s arguments.

Skeleton Preprocessing As a preprocessing step, Boolector attempts simplifi-
cation of the Boolean structure of the formula by means of SAT preprocessing. It
generates a Boolean formula abstraction (Boolean skeleton), which is encoded to SAT

1. http://www.smtlib.org

55

http://fmv.jku.at/boolector/doc
http://www.smtlib.org


Niemetz et al.

and simplified by the preprocessor of the underlying SAT solver. In case that the SAT
solver returns unsatisfiable, Boolector immediately concludes with unsatisfiable. For
the satisfiable case, however, Boolector extracts all unit clauses found by the SAT
solver, maps them back to the term level, and adds them as new constraints, which
in turn may be used for further simplifications of the formula.

Unconstrained Optimization Boolector 2.0 reintroduces a previously disabled
optimization based on so-called unconstrained variables [3], where unconstrained
terms are substituted by fresh variables to simplify the formula. Boolector’s un-
constrained optimization now also considers lambdas and UF. Note that model gen-
eration with unconstrained optimization enabled is not yet supported.

Symbolic Lemmas In contrast to previous versions, Boolector 2.0 now main-
tains lemmas on the term level rather than directly encoding them to CNF. This
enables lemma sharing between Boolector instances (as employed, e.g., in our dual
propagation-based optimization [9]).

Model-based Testing We use model-based testing as in [1] to extensively test
Boolector’s public C API. This is a very effective and efficient automated testing
approach to test all solver features exposed to the user. Prior to model-based test-
ing, we applied grammar-based black-box input fuzzing in combination with delta
debugging [4, 8]. In contrast to model-based testing, however, the effectiveness of
input fuzzing is restricted by the input format’s expressiveness. Consequently, if the
solver supports features not supported by the format, these features cannot be tested
via input fuzzing unless the format (and its respective parser) is extended to support
them. Note that we still rely on input fuzzing for testing Boolector’s parsers2..

API Tracing Every call to Boolector’s public API can be recorded via API trac-
ing. The resulting trace can be replayed and the replayed sequence behaves exactly
like the original Boolector run. This is particularly useful for debugging purposes, as
it enables replaying erroneous behaviour.

Improvements of the Incremental API We improved Boolector’s assumption
handling, which now also provides means to identify failed assumptions [6].

3. Lemmas on Demand for Lambdas

Boolector implements a new lemmas on demand decision procedure for lambda terms
as introduced in [10], which replaces the array decision procedure introduced in [5].
Internally, Boolector now represents array variables as uninterpreted functions (UF),
array operations write and if-then-else as lambda terms, and read operations as func-
tion applications. Lambda terms enable the modeling of array operations other than
the base operations introduced above, e.g., constant, pre-initialized arrays, or memcpy
and memset from the standard C library. In addition to modelling arrays, lambdas
in Boolector can also be used to create arbitrary functions, with the only restriction

2. http://fmv.jku.at/ddsexpr

56

http://fmv.jku.at/ddsexpr


Boolector 2.0: System Description

that those functions may neither be recursive nor of higher order. Boolector’s new
lemmas on demand procedure for lambdas is able to lazily handle lambda terms, i.e.,
lambdas are instantiated on demand during consistency checking. Further, Boolec-
tor optionally supports the eager elimination of lambda terms, which may—in the
worst case—result in an exponential blow-up in the size of the formula. However,
on certain instances—especially in the field of software model checking and symbolic
execution—eager elimination of lambda terms is beneficial and yields significant sim-
plifications through rewriting. Note that Boolector 2.0 does not yet support equality
over lambda terms and consequently does not yet support extensionality on arrays.

4. Don’t Care Reasoning on the Bit Vector Skeleton

As introduced in [9] and indicated in Fig. 1, Boolector 2.0 implements an optimiza-
tion of the lemmas on demand procedure in [10] to reduce the cost for abstraction
refinement. It implements two techniques for extracting partial candidate models by
identifying irrelevant parts of the formula abstraction via don’t care reasoning prior to
consistency checking. This subsequently reduces the number of refinement iterations
and consequently, the overall runtime of the lemmas on demand procedure.

Our justification-based approach identifies a posteriori observability don’t cares
by skipping lines that do not influence the output of an AND gate under the current
assignment of the formula abstraction based on the fact that Boolector internally
represents a formula as directed acyclic graph (DAG), where all Boolean expressions
are expressed by means of NOT and (two-input) AND gates.

Our dual propagation-based approach, on the other hand, exploits the duality
of the formula abstraction, i.e., the fact that assignments satisfying Γ (the primal
channel) falsify its negation ¬Γ (the dual channel). We follow an offline strategy
with one solver per channel (rather than an online strategy with one solver for both
channels), where the primal solver generates a full assignment before the dual solver
enables partial model extraction based on the primal assignment.

5. SMT Competition 2014 Configuration

Three different configurations of Boolector participated in two tracks at the SMT
competition 2014. Configuration (1) Boolector entered the QF BV track with un-
constrained optimization and full beta reduction (to eagerly eliminate SMT-LIB v2
macros) enabled. The other two configurations, (2) Boolector (dual propagation) and
(3) Boolector (justification) entered the QF ABV track with dual propagation resp. jus-
tification optimization, unconstrained optimization, and full beta reduction probing
enabled. Boolector 2.0 is a cleaned-up version of the version that participated in
the SMT competition 2014. It is configured to reenact the above configurations as
follows: (1) -bra -uc, (2) -pbra -uc -dp, and (3) -pbra -uc -ju. Note that since
Boolector 2.0 does not yet support extensionality, for benchmarks that were still

57



Niemetz et al.

extensional after rewriting (174 out of 6457), we used version 1.5.118 of Boolector
(with the SAT competition 2014 version azd of Lingeling), which implements the old
lemmas on demand engine and therefore still supports extensionality on arrays.

6. Conclusion

We presented Boolector 2.0, a new version of our SMT solver Boolector, and discussed
the most important changes and new features introduced since Boolector version
1.5.118. We outlined techniques like skeleton preprocessing and cloning that have
not yet been described in the context of Boolector, and discussed model-based testing,
which helped us tremendously to improve and implement new features in Boolector.

References

[1] Cyrille Artho, Armin Biere, and Martina Seidl. Model-Based Testing for Verifi-
cation Back-Ends. In TAP, 7942 of LNCS. Springer, 2013.

[2] A. Biere. Yet Another Local Search Solver and Lingeling and Friends Entering
the SAT Competition 2014. In SAT Competition 2014, Univ. of Helsinki, 2014.

[3] Robert Brummayer. Efficient SMT Solving for the Extensional Theory of Arrays.
PhD thesis, JKU Linz, 2009.

[4] Robert Brummayer and Armin Biere. Fuzzing and Delta-Debugging SMT
solvers. In SMT 2009. ACM, 2009.

[5] Robert Brummayer and Armin Biere. Lemmas on demand for the extensional
theory of arrays. JSAT, 6(1-3), 2009.

[6] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT’04, 2919
of LNCS. Springer, 2004.

[7] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. Efficiently solving bit-
vector problems using model checkers. In SMT 2013, Helsinki, Finland, 2013.

[8] Aina Niemetz and Armin Biere. ddSMT: A Delta Debugger for the SMT-LIB
v2 Format. In SMT 2014, Helsinki, Finland, 2013.

[9] Aina Niemetz, Mathias Preiner, and Armin Biere. Turbo-charging lemmas on
demand with don’t care reasoning. In FMCAD’14. IEEE, 2014.

[10] Mathias Preiner, Aina Niemetz, and Armin Biere. Lemmas on demand for lamb-
das. In DIFTS’13, 1130 of CEUR Workshop Proceedings, 2013.

[11] Christian Reisenberger. PBoolector: A Parallel SMT Solver for QF BV by Com-
bining Bit-Blasting and Look-Ahead. Master’s thesis, JKU Linz, 2014.

58


	Introduction
	Overview
	Selected Features

	Lemmas on Demand for Lambdas
	Don't Care Reasoning on the Bit Vector Skeleton
	SMT Competition 2014 Configuration
	Conclusion

