
Journal on Satisfiability, Boolean Modeling and Computation 9 (2014) 1-25

Applications of SAT Solvers in Cryptanalysis:

Finding Weak Keys and Preimages

Frédéric Lafitte frederic.lafitte@rma.ac.be

Department of Mathematics
Royal Military Academy
Belgium

Jorge Nakahara Jr jorge.nakahara@ulb.ac.be

Department of Computer Science
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Abstract
This paper investigates the power of SAT solvers in cryptanalysis. The con-

tributions are two-fold and are relevant to both theory and practice. First, we
introduce an efficient, generic and automated method for generating SAT instances
encoding a wide range of cryptographic computations. This method can be used
to automate the first step of algebraic attacks, i.e. the generation of a system of
algebraic equations. Second, we illustrate the limits of SAT solvers when attacking
cryptographic algorithms, with the aim of finding weak keys in block ciphers and
preimages in hash functions. SAT solvers allowed us to find, or prove the absence
of, weak-key classes under both differential and linear attacks of full-round block
ciphers based on the International Data Encryption Algorithm (IDEA), namely,
WIDEA-n for n ∈ {4, 8}, and MESH-64(8). In summary: (i) we have found sev-
eral classes of weak keys for WIDEA-n and (ii) proved that a particular class of
weak keys does not exist in MESH-64(8). SAT solvers provided answers to two
complementary open problems (presented in Fast Software Encryption 2009): the
existence and non-existence of such weak keys. Although these problems were sup-
posed to be difficult to answer, SAT solvers provided an efficient solution. We also
report on experimental results about the performance of a modern SAT solver as
the encoded cryptanalytic tasks become increasingly hard. The tasks correspond
to preimage attacks on reduced MD4 algorithm.
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1. Introduction

This paper describes two applications of SAT solvers: finding weak keys in block
ciphers and preimages in hash functions. The experimental framework is implemented
and made available in the free open-source software cryptosat [10].

What is a weak key? Generically, a weak key of a block cipher is a user key which
leads to a nonrandom behavior of the cipher. Ideally, a block cipher should have no
weak keys. For IDEA and related ciphers mentioned previously, a weak key causes
some multiplicative subkeys to have value 0 or 1, turning multiplication into a linear
operation. These multiplicative subkeys are mandatory inputs to a multiplication
operation over GF(216 + 1), where 0 ≡ 216 by construction [19]. Note that 216 + 1 is
a prime number. We have found classes of weak keys of block ciphers based on the
International Data Encryption Algorithm (IDEA) [19]. These block ciphers follow
the Lai-Massey scheme and include: WIDEA-n [17] for n ∈ {4, 8} and MESH-8 [29].

Consequences of weak keys in a hash function setting. Ciphers that allow
weak keys are not ideal cryptographic primitives. Since block ciphers are pervasive
building blocks in other cryptographic constructions, the presence of weak keys leads
to a nonrandom behavior not only of the encryption/decryption framework, but also
of higher-level structures, such as hash functions and stream ciphers. For instance, in
a hash function setting, suppose a block cipher E is used as a permutation component
in a compression function in Davies-Meyer (DM) mode: hi = hi−1⊕Emi

(hi−1) where
h0 = IV is an initial value. In the HIDEA-n hash function [16], for instance, WIDEA-
n ciphers are used as permutations E in DM mode. In this setting, hi and hi−1

are chaining variables, and the key K is a message block mi, which is under the
control of the adversary. If K is a weak value, then Emi

= EK ’s behavior can be
controlled indirectly, to cause an output difference equal to the input difference, i.e.
∆Emi

(hi−1) = ∆hi−1. In other words, the adversary uses the feedforward of hi−1

in the DM mode and the weak key to cause difference ∆hi = hi ⊕ h′i = 0, that is,
a collision, with certainty. Therefore, the presence of weak keys leads to collisions
with only two compression function computations, which is much faster than the
expected complexity due to the birthday paradox. Other consequences of weak keys
are discussed in the following paragraphs.

Consequences of weak keys in a block cipher setting. Let us consider a pure
encryption setting, with an m-bit block and k-bit cipher (where m is a multiple
of 16 for the ciphers targeted in this paper). To detect if a key K is weak, one
can ask for the encryption of two plaintext blocks (P, P ′) such that ∆P = P ⊕ P ′
= (δ, δ, . . . , δ), where δ = 8000x. If K is weak according to a differential path, for
example, as described in [30] for WIDEA-4, then the corresponding ciphertexts (C,C ′)
will satisfy C⊕C ′ = P⊕P ′ with certainty. Otherwise, for a random key, this equality
will be satisfied with probability 2−m. This test can be implemented with two chosen
plaintexts and two encryptions. For example, for WIDEA-4, the given differential
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patterns hold with certainty for a weak key but with 2−256 chance for a random key.
That means that for two plaintext pairs, we expect 2512−2·256 = 1 false alarm. Other
classes of weak keys can be detected, depending on the differential pattern used.

Consequences of weak keys in a stream cipher setting. In a stream cipher
construction, such as OFB, CTR and CFB modes [25], the occurrence of a weak key
in the underlying block cipher means that there is a non-negligible correlation (or
bias) in the keystream bits generated by these modes, which can be exploited by a
linear cryptanalytic attack [30, 4]). In particular, for IDEA, WIDEA-n and MESH-
64(8), the bias is 2−1 if a weak keys is used. This bias is the maximum, which means
the data complexity is as low as 8 · (2−1)−2 = 32 known text blocks. Thus, in a
known-plaintext setting, the keystream can be recovered efficiently since the bias is
so high. Therefore, the keystream can be distinguished from a random keystream
(One-Time Pad).

In summary, the existence of weak keys has a non-negligible security impact because
they jeopardize the use of block ciphers in a number of applications, where block
ciphers are fundamental building blocks, even if the exact number of weak keys is not
clear. The next paragraphs provide background on SAT-based cryptanalysis.

SAT solvers and cryptanalysis. The Boolean satisfiability problem (SAT) was
mentioned as a useful framework for cryptanalysis for the first time in [22]; the relation
between input and output bits of a cryptographic algorithm can be expressed as a
SAT problem which can then be fed to a SAT-solver in order to recover the secret
bits (e.g. key bits). The problem SAT can be solved by different types of solvers. For
our purposes, we consider only complete SAT solvers, i.e. deterministic algorithms
that are given a formula in Conjunctive Normal Form (CNF) and that always output
a satisfying valuation of its variables, in case such a valuation exists. Otherwise, the
SAT solver outputs that the SAT instance is unsatisfiable. A CNF is a conjunction
of clauses, a clause is a disjunction of literals, and a literal is a propositional variable
or its negation.

SAT solvers and algebraic attacks. SAT-based cryptanalysis is reminiscent of
algebraic attacks, since both approaches aim at solving an encoding of the computa-
tions underlying a cryptographic algorithm in the secret variables e.g. key bits. In
the case of algebraic attacks, the encoding is a system of multivariate equations where
variables, over the finite field GF(2) (resp. GF(28) or GF(232)), correspond to bits
(resp. bytes or words). Then, the system of equations is solved in the secret variables
using various algebraic techniques [1]. In the case of SAT-based cryptanalysis, the
encoding is a CNF, where the propositional variables correspond to the bits used
in the computations. This encoding is then handed to an off-the-shelf SAT solver,
instead of an algebraic solver, in order to recover the value of secret variables.

Automating the first step of algebraic attacks. Algebraic attacks are mounted
in two phases: (i) generating a system of equations, (ii) solving the system in the secret
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variables. It is straightforward to convert a SAT instance into a system of equations
over GF(2). For instance, the CNF formula (x1 ∨¬x2)∧ (x2 ∨¬x4) can be written as
the system of equations

0 = ANF(x1 ∨ ¬x2)⊕ 1

0 = ANF(x2 ∧ ¬x4)⊕ 1 (1)

where ANF(·) denotes a function that returns the Algebraic Normal Form of the
input Boolean function. Although the translation from CNF to ANF described above
is very poor, it shows that it is possible to obtain automatically a system of algebraic
equations relating secret and public bits by generating the CNF first. It is worth
mentioning that so far SAT instances were obtained from multivariate equations [15,
2], whereas our method bypasses the algebraic modeling of the target algorithm.

The difficulty of solving the generated instances is shown experimentally by attack-
ing the preimage resistance of the MD4 algorithm. The compression function of MD4
consists of 48 iterations of an unbalanced Feistel ladder. We show how the time and
memory required by a modern SAT solver [33] behaves as a function of the number
of iterations and the number of unknown preimage bits. The SAT solver was able to
invert up to 31 (out of 48) iterations in a few hours using a personal computer (see
section 2.2 for details). It was shown in previous research [14] that by taking into
account previous cryptanalysis by Dobbertin [6], a SAT solver could invert up to 39
iterations in less than 8 hours.

Outline. This paper is organized as follows: related work is described in Sect. 1.1.
Sect. 1.2 presents our contributions. Sect. 2.1 introduces the method used to generate
the SAT-instances. Sect. 2.2 presents results on SAT-based preimage attacks on the
MD4 algorithm. Sect. 3 presents weak keys for WIDEA-n; Sect. 4 discusses weak
keys for the MESH-64(8) cipher. We conclude in Sect. 5.

1.1 Related Work

SAT-based cryptanalysis. Expressing cryptanalysis as a SAT problem was first
proposed back in 2000 [22], where SAT solvers were used in an attempt to recover
DES keys. In 2005, the authors of [14] proposed a method for generating SAT in-
stances based on C++ operator overloading and used it to compare the hash functions
MD4 and MD5 by analyzing their preimage resistance against a SAT solver. Later,
SAT solvers were used in [26] to automate parts of the collision attack of Wang et al.
[35]. In [26], it is mentioned that although SAT solvers alone cannot break modern
cryptographic algorithms, they are useful at enhancing cryptanalysis, and their com-
bination to other cryptanalytic techniques seems promising. In [5], the authors show
that by taking into account previous cryptanalysis by Dobbertin on MD4 [6], a SAT
solver is able to invert 39 iterations (out of 48) of the Feistel ladder used in MD4’s
compression function, instead of 28 iterations when not using Dobbertin’s results.
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The cryptanalysis of Dobbertin [6] provided information that could be injected in the
CNF encoding of MD4, helping the solver considerably. An adversary might inject
other useful information obtained by other means, such as side-channel attacks [27],
cold-boot attacks [18], or simple eavesdropping [11]. Other examples of SAT-based
cryptanalysis include recovering the internal state of stream ciphers [8, 34, 23], key-
recovery algebraic attacks on Keeloq [3], as well as preimage search on hash functions
[28]. SAT solvers are often used to assist algebraic attacks in solving systems of equa-
tions. A comparison of the performance of SAT solvers with that of algebraic attacks
based on Gröbner basis algorithms can be found in [9].

WIDEA-n. In [17], Junod and Macchetti presented a Wide-block version of the
IDEA cipher [19] called WIDEA-n, n ∈ {4, 8}, combining n instances of the 8.5-
round IDEA cipher joined by an n × n matrix derived from a Maximum Distance
Separable (MDS) code placed inside the Multiplication-Addition (MA) box in each
round of each IDEA instance. In [30], Nakahara described differential and linear
attacks under weak-key assumptions, but no weak keys were presented. In this paper,
we explicitly show weak (user) keys that lead to weak subkeys for differential and
linear distinguishers across the full 8.5-round WIDEA-n ciphers under the original
key schedule algorithms.

Weak keys for WIDEA-8 were investigated by Mendel et al. in ([24]), where
they described attacks on WIDEA-8 as compression function in Davies-Meyer mode.
They used a guess-and-determine approach but only found weak keys for 7.5 rounds,
instead of 8.5 rounds. These weak keys allowed them to find free-start collisions for
the compression function.

1.2 Our Results

The contributions of this paper include:

• Weak keys of the full 8.5-round WIDEA-4 and WIDEA-8 block ciphers under
differential and linear attacks. We are not aware of any such keys ever been
reported previously for the full ciphers. The designers of WIDEA-n cipher
claimed (in [17], Sect.4.2) that weak keys like in IDEA did not exist in WIDEA-
n. Nonetheless, such keys were found efficiently using SAT solvers, for both full
8.5-round ciphers.

• Encoding the search for weak keys of specific differential or linear pattern for the
MESH-64(8) cipher resulted in an unsatisfiable SAT instance. This result proves
that this particular weak-key class does not exist in MESH-64(8). Therefore,
SAT solvers are able to formally rule out a class of attacks.

• An efficient and fully automated method for generating SAT instances encoding
a wide range of cryptanalytic tasks. This method is an improvement of previous
work [14] and can be easily extended to other cryptographic primitives than the
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ones attacked in this paper. It is implemented in the extensible free open-source
software cryptosat [10], along with functionalities that allow for the user to easily
manipulate and solve instances.

• The first phase of algebraic cryptanalysis, i.e. the generation of a system of
equations, can be automated using our SAT-instance generation method. So
far, such systems were obtained manually after analysis of the target algorithm.
In our case, as shown in equation (1), it is straightforward to automatically
transform the SAT instance into a system of sparse multivariate equations over
GF(2).

• As mentioned in previous research [26], the combination of SAT solvers with
known cryptanalysis is promising. However, examples of such combinations are
scarce (see Sect. 1.1 for related work). This paper describes the first application
of SAT solvers to find weak keys of block ciphers.

• We also illustrate the limits of SAT solvers by attacking the preimage resistance
of MD4’s compression function with the SAT solver cryptominisat [33] version
2.9.5 1.. The solver alone was able to invert up to 31 iterations (out of 48) in a
few hours (see section 2.2).

Reproducibility. All results were obtained using the free open-source software
cryptosat [10] version 0.1.0 running in the R environment [32] version 3.0.2 using
cryptominisat [33] version 2.9.5 and the scripts given in the appendix. All randomness
in these scripts comes from the default pseudo-random number generator of R which
is the Mersenne-Twister.

2. Generating and Solving SAT Instances

In previous work, [2, 27, 3], the CNF representation of a cryptographic algorithm
was obtained by translating a system of algebraic equations into a set of clauses. In
this section we present an efficient and fully automated method for generating CNF
encodings of a wide range of cryptographic computations. The method outputs the
SAT instance directly in DIMACS (a standard format for Boolean functions in CNFs)
and has been used for attacking symmetric-key algorithms that use only the bitwise

operators NOT (¬), XOR (⊕), AND (∧), OR (∨), as well as addition modulo 2n (
n

�)

and left rotation of amplitude s on n-bit words (
n
≪ s).

This set of operations is sufficient in order to attack ARX algorithms (i.e. al-
gorithms based on mixing modular addition, rotation and bitwise exclusive or), but
other operators, such as multiplication, can be encoded in a similar way.

1. Similar figures were obtained using minisat [7] (version 2.2.0).
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We then present the performance of a modern SAT solver, namely cryptominisat
[33], in terms of time and memory, when solving increasingly difficult encodings of
preimage attacks on the MD4 algorithm.

2.1 Generating SAT Instances

In [14], the authors proposed an elegant method based on C++ operator overloading
for generating SAT instances. The C++ code of each operator (⊕,∨,etc.) is enhanced
with a functionality that updates a global propositional formula, encoding the cryp-
tographic operations as they take place. However, this approach requires to maintain
a (huge) formula in memory, and to translate it into CNF [12].

Our method is an improvement over [14] that consists in expressing each operator
directly in CNF so that the overloaded code can output the global formula directly to
a file, clause after clause, as the operations are executed. This makes the generation
efficient since it requires practically no memory nor additional computations to handle
the formula.

For example, let us consider the operation c = a ∨ b, with a, b, c ∈ {0, 1}32, and
let f∨ denote the corresponding formula:

f∨ =
32∧
i=1

(ci ↔ (ai ∨ bi))
CNF
=

32∧
i=1

(ci ∨ ¬ai) ∧ (ci ∨ ¬bi) ∧ (¬ci ∨ ai ∨ bi)

Each time operator ∨ is executed, its overloaded code will generate these 32 × 3
clauses, with the effective variable identifiers instead of the formal identifiers ai, bi, ci.
As the clauses are generated, these variables are simply identified using a counter
that is incremented in the overloaded code.

The CNF of the other operators (i.e. f∧, f⊕, f¬, f≪s, f�) are obtained in a similar
way (for the � operator, variables di denote the carry bit):

f∨
CNF
=

32∧
i=1

(ci ∨ ¬ai) ∧ (ci ∨ ¬bi) ∧ (¬ci ∨ ai ∨ bi)

f∧
CNF
=

32∧
i=1

(ci ∨ ¬ai ∨ ¬bi) ∧ (¬ci ∨ ai) ∧ (¬ci ∨ bi)

f⊕
CNF
=

32∧
i=1

(ci ∨ ai ∨ ¬bi) ∧ (ci ∨ bi ∨ ¬ai) ∧ (¬ci ∨ ¬ai ∨ ¬bi) ∧ (¬ci ∨ ai ∨ bi)

f¬
CNF
=

32∧
i=1

(ci ∨ ai) ∧ (¬ci ∨ ¬ai)

f≪s
CNF
=

32∧
i=1

(ci ∨ ¬ai+s mod 32) ∧ (¬ci ∨ ai+s mod 32)

7



F. Lafitte et al.

f�
CNF
= ¬d0

32∧
i=1

CNF(ϕi) ∧ CNF(ψi)

ϕi = (XOR(ai, bi, di−1) ∨ ¬di) ∧ (¬XOR(ai, bi, di−1) ∨ di)
ψi = (MAJ(ai, bi, di−1) ∨ ¬di) ∧ (¬MAJ(ai, bi, di−1) ∨ di)

As noted in [14], by using operator overloading, the generation of the clauses is
independent of the target cryptographic algorithm. Therefore, the same implemen-
tation can easily be applied to any other cryptographic algorithm that uses these
operators.

Although the translation described in this section is far from optimal, it does not
lead to poor solver performances compared to previous work [5] as shown in the next
section. In particular, we could invert 31 steps of MD4 using this flat encoding.

2.2 Solving SAT Instances

This section reports experimental results when applying the SAT solver cryptominisat
to preimage attacks on (reduced versions of) the MD4 algorithm. The MD4 algorithm
inspired the design of a wide range of cryptographic hash functions, including MD5,
SHA-1, and SHA-2 among other hash functions [25]. As mentioned in [20], MD4 is
still used in some widespread protocols, most notably the S/KEY one-time password
protocol [13] and the NT LAN Manager (NTLM) authentication protocol.

MD4 uses a strengthened Merkle-Damg̊ard mode of operation [25], with a com-
pression function that operates on 32-bit words. The input to the compression func-
tion consists of sixteen message words denoted W0, ...,W15, and four words denoted
a, b, c, d which constitute the internal state. One call to the compression function up-
dates this internal state by iterating the unbalanced Feistel transformation shown in
Fig 1. That is, starting from the initial state IV = (a0, b0, c0, d0), the transformation
in Fig 1 is applied iteratively to yield (a48, b48, c48, d48), using one message word in
each step, denoted wi with i ∈ {1, . . . , 48}. After the 48 steps, each word W0, ...,W15

has been used three times according to a pre-specified order. Finally, the compression
function outputs the final state (a0 � a48, b0 � b48, c0 � c48, d0 � d48).

Note that in Fig. 1 each step computes a single 32-bit value, denoted as in [20] by
Qi, with i ∈ {1, ..., 48}. The transformation can be written as equation (2), and as
equation (3) after writing the initial values Q−3, Q0, Q−1, Q−2 instead of a0, b0, c0, d0

respectively.

Qi = (ai−1 � Φi(bi−1, ci−1, di−1)� wi � ki)≪ si ∀i ∈ {1, ..., 48} (2)

Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3)� wi � ki)≪ si ∀i ∈ {1, ..., 48} (3)

Inverting the compression function consists in solving the system of equations (3),
after plugging in values for the final state obtained from the target hash value. It is
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ai−1 bi−1 ci−1 di−1

Φi−1ki

wi

ai bi ci di

si−1

Figure 1. The Feistel ladder of MD4 (all values hold on 32 bits). Each call to the compression
function updates the hash function state (ai, bi, ci, di) using 48 applications (steps) of this trans-
form. Each step i ∈ {1, ..., 48} combines the message wordwi with the state and step-dependent
constant ki using a step-dependent Boolean function Φi, addition modulo 232 (�) and left rotation
of amplitude si (≪ si) where si is also a step-dependent constant.

Table 1. This 512-bit message hashes to the hexadecimal value f...fx when applying MD4’s
compression function reduced to 31 steps.

W0 : f460339fx, W1 : 52b843bbx, W2 : 91032846x, W3 : 2ec58249x,
W4 : 927047dfx, W5 : 513f1d9fx, W6 : 36cea836x, W7 : 1179ab4bx,
W8 : 703e2918x, W9 : c220ff73x, W10 : 85db2664x, W11 : 6389fd3cx,
W12 : 086cd663x, W13 : c9371d30x, W14 : f77f4fc0x, W15 : 6188439bx.

also possible to plug in values of known message bits, which is particularly relevant in
the case of a password recovery attack since most of the preimage bits are known to
be zero. An attacker might also take advantage of known password characters (e.g.
obtained via shoulder surfing).

The method described in section 2.1 allows us to easily generate the SAT instance
encoding the system (3). As the number of steps and unknown bits increase, we
report the performance (time and memory) required by the solver.

Experimental setup. Let s denote the number of steps and b the number of un-
known preimage bits. For each value of s ∈ {15, 20, 22, 24, 25, 26, 27} and b ∈ {100,
200, 300, 400, 500}, we generated 250 random DIMACS files by applying the MD4
compression function to 250 random message blocks x ∈ {0, 1}512. Then, for each
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value of (s, b), we compute the median performance of cryptominisat in terms of CPU
time and memory usage.

Experimental results. Figures 2 and 3 illustrate how solving time and memory
usage grow as a function of the parameters s and b, using the SAT solver cryptominisat
[33] on a personal computer. It is worth noting that the amount of memory required
by the SAT solver does not blow up as it is the case with Gröbner basis algorithms
[9]. Table 1 shows a preimage that hashes to the hexadecimal value f...fx after
31 steps of MD4’s Feistel transformation. It was found in 17 hours using 1.4 GB of
memory with a PC that has 2 GB of memory and a 3.06 GHz CPU with the following
characteristics: GenuineIntel i686; 32-bit; little-endian; CPU(s):2; thread(s) per core
1; Core(s) per socket:1.

3. Weak Keys for the WIDEA-n Block Ciphers

Among the several design criteria for key schedule algorithms, one can find: high per-
formance, compact code, low latency, resistance to side-channel analysis, and avoid-
ance of weak keys, among others. The presence of weak keys means a failure of both
the key schedule and the encryption/decryption algorithm’s designs [25], since the
existence of suspicious bit patterns in the key is not a threat if there is no shortcut
attack in the encryption/decryption frameworks because of them. Likewise, nonran-
dom cipher behavior [21] that is unrelated to bit patterns in the key or in the subkeys
does not mean the latter are weak. Keys are considered weak only when the apparent
weakness propagates from the key schedule to the encryption algorithm, and leads to
nonrandom cipher behavior and eventually to (efficient) attacks.

3.1 The Key Schedule of WIDEA-n

Let Zi, for 0 ≤ i ≤ 51, denote the round subkeys used in 8.5-round WIDEA-n,
n ∈ {4, 8}. The key schedule algorithm of WIDEA-4 is as follows [17]: due to the
4-way parallelism, each subkey has 64 bits. Let Ki, for 0 ≤ i ≤ 7, denote the eight
64-bit words representing the user key. The round subkeys are computed by the key
schedule as follows:

Zi = Ki, 0 ≤ i ≤ 7.

Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5)≪ 24)⊕ Ci/8−1, 8 ≤ i ≤ 51, i ≡ 0 mod 8.

Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5)≪ 24), 8 ≤ i ≤ 51, i 6≡ 0 mod 8. (4)

where operations superscripted with ‘16’ indicate that the operation is actually car-
ried out over 16-bit slices of Zi. Otherwise, the operation is over 64-bit words,
such as the bitwise left-rotation ≪ 24. Following [17], C0 = 1dea000000000000x,
C1 = 3825000000000000x, C2 = 1dd7000000000000x, C3 = 3ea4000000000000x,
C4 = e57a000000000000x, C5 = f7a000000000000x are constants inserted every eight
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Figure 2. The median CPU time (seconds) and memory (MB) used by the SAT solver over 250
random instances, as a function of the number of unknown bits b. Each curve corresponds to a
different value for parameter s.
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rounds. The design of this key schedule uses nonlinear feedback shift registers and
was inspired by the key schedule of the MESH ciphers [31].

In total, the key schedule of WIDEA-4 generates 52 subkeys, but the first eight
subkeys come from the user key. Each equation in (4) means an equality on 64 bits,
and each subkey is also 64 bits long. Therefore, bitwise, there are (52 − 8) ∗ 64 =
2816 nonlinear equations in 512 unknowns (key bits). It is an overdefined system of
nonlinear equations.

The key schedule algorithm of WIDEA-8 [17] follows (4) in an 8-way-fold par-
allelism. Let Ki, for 0 ≤ i ≤ 7, denote the eight 128-bit words representing the
user key. The 128-bit round subkeys are computed exactly as for WIDEA-4. The
WIDEA-4 constants Ci/8−1 are left shifted by 64 bits (padded on the right by 64 zero
bits). In total, the key schedule of WIDEA-8 can be seen as a system of 5632 nonlin-
ear equations in 1024 unknowns (keys), double the size of the system for WIDEA-4.
Both systems have the same ratio of number of equations (denoted E) over number
of variables (V ): E/V = 2816/512 = 5632/1024 = 5.5.

Let us define an order for each IDEA instance in WIDEA-n: the one whose subkeys
are in the most significant 64-bit position will be referred to as first instance, and so
forth until the n-th IDEA instance.

The state of WIDEA-4 can be represented by a 4×4 matrix of 16-bit words. Each
row of the state corresponds to an IDEA instance.

The best differential and linear distinguishers for the full 8.5-round WIDEA-4,
under weak-key assumptions, presented in [30] are 1-round iterative and have the
form 

0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ

→


0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ

 (5)

in other words, the attack focuses on a single IDEA instance (out of four) in order
to minimize the number of weak-subkey assumptions. In a differential cryptanalysis
setting, δ = 8000x is a 16-bit xor difference. In linear cryptanalysis, δ = 1 is a 16-bit
mask.

Suppose a differential setting. For a weak key, the 1-round iterative distinguisher
(5) holds with certainty. But, for a random, non-weak key, (5) holds with probability
(2−16)2 per round. Therefore, weak keys allows to distinguish the full 8.5-round
WIDEA-4 with certainty, that is a single plaintext pair, which means a complexity
of two chosen plaintexts and equivalent encryption effort. For a random key, (5)
repeated 8.5 times would hold with (negligible) probability (2−32)9 = 2−288. This is a
concrete example of a nonrandom behavior caused by weak keys.

The corresponding weak subkeys consist of 64-bit values whose fifteen most sig-
nificant bits (MSBs) are zero. In WIDEA-4, this means that the following eighteen
subkeys should be weak in their most significant 16 bits: Z0, Z3, Z6, Z9, Z12, Z15,
Z18, Z21, Z24, Z27, Z30, Z33, Z36, Z39, Z42, Z45, Z48 and Z51.
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For attacking different IDEA instances in WIDEA-4, the pattern of fifteen zero
bits must move to other non-overlapping 16-bit pieces of the 64-bit subkey Zi.

3.2 Results for WIDEA-n

In this section we present examples of weak 512-bit keys for WIDEA-4, found by a
SAT solver, for each of the four IDEA instances. Values in bold indicate the weak
subkey bits. Subscript x denotes hexadecimal value.

The top part of Table 2 shows a weak key for the first IDEA instance in WIDEA-
4, while the bottom half shows the round subkeys. The 15-bit weak subkey piece is
highlighted in boldface type. Tables 5, 6 and 7 show weak keys for the other IDEA
instances in WIDEA-4.

Table 2. 512-bit user key of WIDEA-4 and weak subkeys concerning the first IDEA instance.

Z0 : 00002d289ea5066cx, Z1 : e2e9bcf7b5ab6391x, Z2 : 17ed8810ef6ce89ax,
Z3 : 00007e1271ac8d08x, Z4 : 377cd37c92ae7c46x, Z5 : a20c6abecdeda9dcx,
Z6 : 0000ea1281c20742x, Z7 : a7c289d06d0d3e3ax.

Z9 : 00002086d664be7bx, Z12 : 00004f4fddbb0e63x, Z15 : 0000f17468e835e3x,
Z18 : 00006873bbf1985ax, Z21 : 0000bee7d00e3ce6x, Z24 : 00002caf3fd879d6x,
Z27 : 00007569bfcbe27ax, Z30 : 0000bab68c0b85b5x, Z33 : 0000fc2b60bcbbefx,
Z36 : 0000dcfe48b90bcbx, Z39 : 0000f310e660aaaax, Z42 : 0000471d7f2aabc8x,
Z45 : 0000d37c552d9c9cx, Z48 : 0000e885c4f8bc76x, Z51 : 00002a3dba933a79x.

The given weak keys are just examples, but they already contradict the claims
of [17] that no weak keys existed for WIDEA-4. Finding these weak keys took only
a few seconds of a SAT solver. Thousands of other weak keys were found just as
fast. Therefore, although the key schedule of WIDEA-4 in (4) is more involved than
IDEA’s, weak keys still exist in both ciphers. Note that the weak key in Table 2
allows to attack only the first IDEA instance in WIDEA-4. Therefore, this weak
key cannot be used to attack any of the other three IDEA instances, and vice-versa.
Consequently, each weak key belongs to a different, non-overlapping weak-key class.
The non-overlapping nature of these classes guarantees that the size of their union is
maximal (compared to the overlapping case).

We also searched for weak keys in all four IDEA instances simultaneously in
WIDEA-4. The corresponding SAT instance was unsatisfiable, therefore, proving
that no such weak keys exist.

The estimate of the weak-key class size in [30] is based on the assumption that
each weak subkey requires fifteen bits to be zero. Across 8.5 rounds, with two weak
subkeys per round, and attacking two IDEA instances at once, means 9 ·2 ·2 ·15 = 540
bits restricted to zero (if each subkey condition holds independently). But, this means
a probability of 2−540, which for a 512-bit key, means no weak key is expected to exist.

13
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Next, we present examples of weak 1024-bit keys for WIDEA-8, found by a SAT
solver, for each of the eight IDEA instances. Therefore, each such weak key belongs
to a different weak-key class.

The state of WIDEA-8 can represented by a 8 × 4 matrix of 16-bit words. Each
row corresponds to an IDEA instance. The best differential and linear distinguishers
for the full 8.5-round WIDEA-8, under weak-key assumptions, presented in [30] are
1-round iterative and have the form

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ


→



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ


(6)

in other words, the attack focus on a single IDEA instance at a time (out of eight).
In a differential cryptanalysis setting, δ = 8000x is a 16-bit xor difference. In linear
cryptanalysis, δ = 1 is a 16-bit mask. The corresponding weak subkeys consist of
128-bit values whose fifteen most significant bits (MSBs) are zero. In WIDEA-8, this
means that the same eighteen subkeys as in WIDEA-4 should be weak.

The top part of Table 3 shows a weak key for the first IDEA instance in WIDEA-8,
while the bottom half shows the round subkeys. The 15-bit weak subkey piece is in
boldface type. Tables 8 to 14 (in the appendix) show weak keys for the other IDEA
instances in WIDEA-8.

Table 3. 1024-bit user key of WIDEA-8 and weak subkeys concerning the first IDEA instance.

Z0 : 0001c9c63160bceeac68c62c4d16be85x, Z1 : aea162405f37f9d07babc9d3f32a531dx,
Z2 : ba122e73a3da189d4879b0e05af6d08bx, Z3 : 0000aee346b6a872f3b9a7f1f9b3f5d4x,
Z4 : bdefc6e9fe7c328113798a7b84bd93a3x, Z5 : 09569d8d3b26ffd6fbfbbf5186794b24x,
Z6 : 000141b5ef0c87fdca638e8c32d7231bx, Z7 : fc2f60e69dc434a23666d040470117acx.

Z9 : 0001735387097c70e2ad98f803c1f268x, Z12 : 0001c0cf121ebe551e37cc5e343df4ccx,
Z15 : 0001bf1718de290b722dc61fc9c73852x, Z18 : 00014b8c62faab56adcba849880bdc5ax,
Z21 : 00013dd5e3acdb23bf6c553bddf98c2fx, Z24 : 00004291bed30f6867003c59dba003ffx,
Z27 : 0001f986b4abffe9016fc6a91bbf8603x, Z30 : 00019e310c7a27fdc67d3854325ffc99x,
Z33 : 000081bb2ea6ee8fdcc8bf4d2057fef7x, Z36 : 00019c4b08cc2785b5f14767b0ae7cf1x,
Z39 : 0000e0e35c2505baff6510fefb155e0ax, Z42 : 0000a7b12bbfafdef197ca0f03acb055x,
Z45 : 00007e7af512af2be5fe6093f34142e9x,Z48 : 000015b14f4fbbff5542104f9046818ex,
Z51 : 0001ca4b0125f706f0b65baaca691528x.
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4. Weak Keys of MESH-64(8) Ciphers

The design of the MESH-64(8) block cipher [29] followed closely the Lai-Massey
scheme used in the IDEA cipher [19]. As far as we are aware of, no weak key has ever
been reported for any number of rounds of MESH-64(8).

4.1 Key Schedule of MESH-64(8) Ciphers

Let the 128-bit user key of MESH-64(8) be K = (K0, K1, . . . , K15), where Ki ∈ Z8
2.

The key schedule of MESH-64(8) is as follows: the first sixteen round subkeys Zi are
Zi = Ki ⊕ ci, where c0 = 1 and ci = 2 · ci−1, for i > 1, with multiplication in GF(28)
= GF(2)[x]/q(x), where q(x) = x8 + x4 + x3 + x + 1 and ‘2’ is represented by the
polynomial ‘x’ in GF(28). The remaining subkeys are computed as follows, where the
subscripts are computed modulo 10: Zj = (((Zj−16�Zj−12)⊕Zj−3)�Zj−2)≪ 1⊕cj,
where ≪ means left bit rotation, and 16 < j ≤ 87.

4.2 Results for MESH-64(8) Ciphers

The weak-key class for MESH-64(8) which we looked for consists of keys for which
the following 1-round pattern

(β, β, β, β, β, β, β, β)→ (β, β, β, β, β, β, β, β) (7)

holds with maximum probability or maximum bias. In a differential cryptanalysis
setting, β = 80x is a byte xor difference, while in a linear cryptanalysis setting, β = 1
is a linear bit mask. The choice of (7) is because (i) it is iterative, and (ii) the
difference pattern of only β’s minimizes the number of weak-subkey conditions, i.e.
minimizes the number of multiplicative subkeys that need to be weak.

The SAT instance that encodes the search of the given weak-key class for MESH-
64(8) is not satisfiable. This allows us to conclude on the non-existence of such weak
keys in this particular key class only.

5. Conclusions

This paper provided weak 512-bit keys of WIDEA-4 and 1024-bit keys of WIDEA-8
[17]. These weak user keys lead to 1-round iterative differential and linear distinguish-
ers holding with certainty across the full 8.5-round versions of these ciphers. These
findings prove that WIDEA-n, n ∈ {4, 8}, are not ideal cryptographic primitives.
These findings imply attacks in a block/stream cipher and hash function settings, for
both distinguish-from-random and key-recovery attacks.

We also showed that SAT solvers are able to prove the nonexistence of a specific
weak-key class (7), as it was the case with MESH-64(8) (see Sect. 4.2).

We also described an efficient and automated method for generating SAT in-
stances encoding a wide range of symmetric-key algorithms e.g. ARX algorithms.
The method can be extended to other operators in a straightforward way. This
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method also allows to automate the generation of multivariate equations over GF(2),
thereby facilitating algebraic cryptanalysis [1].

Table 4 summarizes the results in this paper.

Table 4. Summary of weak-key search results for different ciphers.

Cipher Weak-key Block size Key size Rounds Comments
Classes (bits) (bits)

WIDEA-4 Tables 2–7 256 512 8.5 one weak key per slice
WIDEA-8 Tables 3–14 512 1024 8.5 one weak key per slice

MESH-64(8) — 64 128 8.5 no such weak key (Sect. 4.2)
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Appendix A. Generated instances

Algorithm Iterations/steps Variables Clauses
MD4 5 2448 6795
MD4 6 2835 8334
MD4 7 3222 9873
MD4 8 3609 11412
MD4 9 3996 12951
MD4 10 4383 14490
MD4 11 4770 16029
MD4 12 5157 17568
MD4 13 5544 19107
MD4 14 5931 20646
MD4 15 6318 22185
MD4 16 6705 23724
MD4 17 7156 25455
MD4 18 7607 27186
MD4 19 8058 28917
MD4 20 8509 30648
MD4 21 8960 32379
MD4 22 9411 34110
MD4 23 9862 35841
MD4 24 10313 37572
MD4 25 10764 39303
MD4 26 11215 41034
MD4 27 11666 42765
MD4 28 12117 44496
MD4 29 12568 46227

Widea-4 52 20497 71038
Widea-8 52 40897 141614

Mesh-64(8) 88 5009 21416
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Appendix B. Scripts for cryptosat

B.1 Weak keys

library(cryptosat)

FILENAME <- "JSAT.weakkeys.results.rda"

names <- c("TARGET","SAT","CPU", "MEM", "VARS", "CLAUSES", "ITERATIONS", "WINSTANCE",

"SLICE", "COMMENTS")

RESULTS <- data.frame(matrix( ncol=length(names), nrow =1))

names(RESULTS) <- names

find.weak.keys <- function(RESULTS , targetname , winstance=NA, slice=NA)

{

if(!is.na(winstance) && targetname!="wideaks")

stop("defined ’instance ’ but target is not wideaks")

if(is.na(winstance) && targetname =="wideaks") {

warning("using default instance of Widea (i.e. n=4)")

winstance <- 4

}

if(is.na(slice) && targetname =="wideaks")

stop("must specify which slice to attack")

if(targetname =="wideaks" && slice >= winstance)

stop("bad argument ’slice ’ or ’winstance ’")

constrained.subkeys <- seq(from=0,to=51,by=3) # for Widea -n (n=={ instance })

if(targetname =="mesh64ks")

constrained.subkeys <- c( 10, 15, 21, 22, 28, 33, 39, 40, 46, 51 )

if(targetname =="mesh8ks")

constrained.subkeys <- c( 0,2,5,7,11,13,14,16,20,22,25,27,31,33,34,40,42,45,47,51,53,

54,56 ,60,62,65 ,67,71,73 ,74,76 ,80,82,85 ,87)

### G E N E R A T E I N S T A N C E

target <- Target(targetname)

if(targetname =="wideaks") target$setParameter("instance", winstance)

instance <- target$generateInstance ()

### A D D W E A K K E Y C O N S T R A I N T S

for( i in constrained.subkeys ) {

varname <- paste("Z",i,sep="")

varidx <- NA

if(targetname =="wideaks") {

varname <- paste(varname ,"[",slice ,"]",sep="")

varidx <- instance$getIdxOf(varname )[1:15]

}

if(targetname =="mesh8ks") {

varidx <- instance$getIdxOf(varname)

if(!is.null(dim(varidx ))) varidx <- varidx [1:8, varname]

instance$setVariable(varidx [1], TRUE)

varidx <- varidx [-1]

}

for(idx in varidx)

instance$setVariable(idx ,FALSE)

}

### S O L V E I N S T A N C E

solution <- instance$solveWith ()

result <- c( targetname , # "TARGET"

solution$isSAT(), # "SAT"
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solution$getSolvingTime (), # "CPU"

solution$getMemoryUsage (), # "MEM"

instance$getNumVariables (), # "VARS"

instance$getNumClauses (), # "CLAUSES"

"full", # " ITERATIONS "

winstance , # " WINSTANCE"

slice , # "SLICE"

Sys.info ()["nodename"] ) # "COMMENTS"

RESULTS <- rbind(RESULTS ,result)

save(RESULTS ,file=FILENAME)

RESULTS

}

t <- "wideaks"

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=4, slice =0)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=4, slice =1)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=4, slice =2)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=4, slice =3)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =0)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =1)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =2)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =3)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =4)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =5)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =6)

RESULTS <- find.weak.keys(RESULTS , targetname=t, winstance=8, slice =7)

RESULTS <- find.weak.keys(RESULTS , targetname="mesh8ks")

B.2 Preimages

library(cryptosat)

FILENAME <- "JSAT.preimages.rndKBfalse.rda"

RNDKNOWNBITS <- FALSE

names <- c("SAT","CPU", "MEM", "VARS", "CLAUSES", "STEPS", "KNOWNBITS",

"RNDKNOWNBITS", "COMMENTS")

RESULTS <- data.frame(matrix( ncol=length(names), nrow =1))

names(RESULTS) <- names

run.with <- function(RESULTS , steps , knownbits , samples) {

for( sample in 1: samples ) {

print(paste(sample ,"/",samples ))

# G E N E R A T E T H E I N S T A N C E

target <- Target("md4compress")

target$setParameter("iterations", steps)

instance <- target$generateInstance ()

# S E T T H E H A S H V A L U E

for(i in 1:4) {

var <- paste("Q[",steps -i,"]",sep="")

val <- instance$getValueOf(var)

idx <- instance$getIdxOf(var)

if(length(val)!=32 || length(idx)!=32) stop("something is wrong")
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for(i in 1: length(val))

instance$setVariable(idx[i],val[i]==1)

}

# S E T T H E H E L P B I T S

Wval <- c() # the known message

Widx <- c() # corresponding propositional variable indices

for(i in 0:15) {

Wvar <- paste("W[",i,"]",sep="")

Wval <- c(Wval , instance$getValueOf(Wvar))

Widx <- c(Widx , instance$getIdxOf(Wvar))

}

if(length(Wval)!=512 || length(Widx)!=512) stop("something is wrong")

MSGBITS <- sample (1:512 , knownbits)

if(!RNDKNOWNBITS) MSGBITS <- 1: knownbits

for( i in MSGBITS )

instance$setVariable(Widx[i], Wval[i]==1)

# S O L V E T H E I N S T A N C E

print("solving ...")

solution <- instance$solveWith ()

print("done!")

result <- c( solution$isSAT(), # "SAT"

solution$getSolvingTime (), # "CPU"

solution$getMemoryUsage (), # "MEM"

instance$getNumVariables (), # "VARS"

instance$getNumClauses (), # "CLAUSES"

steps , # "STEPS"

knownbits , # " KNOWNBITS"

RNDKNOWNBITS , # " RNDKNOWNBITS "

Sys.info ()["nodename"] ) # "COMMENTS"

RESULTS <- rbind(RESULTS ,result)

save(RESULTS , file=FILENAME)

}

RESULTS

}

SAMPLES <- 250

KNOWNBITS <- c(100 ,200 ,300 ,400 ,500)

STEPS <- c(15 ,20 ,22 ,24 ,25 ,26 ,27)

count <- 0

total <- SAMPLES*length(KNOWNBITS)*length(STEPS)

for(knownbits in KNOWNBITS)

for(steps in STEPS) {

print(paste("****** Steps =",steps ,"Known bits =",knownbits ,"******"))

RESULTS <- run.with(RESULTS , steps , knownbits , samples=SAMPLES)

count <- count + SAMPLES

print(paste(count ,"/",total))

}
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Appendix C. Weak keys of WIDEA-n ciphers

Table 5. 512-bit user key of WIDEA-4 and weak subkeys concerning the second IDEA instance.

Z0 : 395d00000b1972f2x, Z1 : 14687352eebfa3a3x, Z2 : eda06123101bbcaex,
Z3 : 86a000005b003dd8x, Z4 : a386b84284567a12x, Z5 : a469c03e47fbb15bx,
Z6 : 732400008b1de93ax, Z7 : d7560a9fbb483f76x.

Table 6. 512-bit user key of WIDEA-4 and weak subkeys concerning the third IDEA instance.

Z0 : 59c63711000005ecx, Z1 : 7352e14d3f6f1e79x, Z2 : 04602ecc119a73b9x,
Z3 : 63fde77000018fc5x, Z4 : 6ed237962c1a1f3ax, Z5 : ff9dc3e17cd9f303x,
Z6 : 210a0fbc000057a5x, Z7 : 15e4659e944c63a5x.

Table 7. 512-bit user key of WIDEA-4 and weak subkeys concerning the fourth IDEA instance.

Z0 : 1d4c319177710001x, Z1 : d94189cbd37575e4x, Z2 : d591a3515b7bee44x,
Z3 : 5f83fa2d40b70001x, Z4 : d283c7edd6b1a0b2x, Z5 : dc7670a5e493c19ax,
Z6 : b8efbcfe3d5c0001x, Z7 : aae76a1b39f1fe8ex.

Table 8. 1024-bit user key of WIDEA-8 and weak subkeys concerning the second IDEA instance.

Z0 : 542d0000bbd83bc8ac9707b155f63bd3x, Z1 : 735266ee520753f77df9fab137eff93fx,
Z2 : be979d90686e51da5932877b69d63846x, Z3 : f1d600009cacff2b71662da75594117bx,
Z4 : 2a36af25e7789f0958478b75c263393ex, Z5 : 5bac73e09b4c0b45de379e4d0cc563e5x,
Z6 : 62210001cf0172f9dd181aef3ff10779x, Z7 : df41e88f0dd657efcc4345a3020f738bx.

Table 9. 1024-bit user key of WIDEA-8 and weak subkeys concerning the third IDEA instance.

Z0 : ce0369cc00011fa0112b402378607d8cx, Z1 : 52d228190db8b2fb36fe7cb6a4923ff3x,
Z2 : 7f60ec624ce8c9fda66e8e6025db6591x, Z3 : e9052c240001b497ea4bde45c769b4ebx,
Z4 : 5a78636ecb0bbf3fa4ce55b9e0a8f7f7x, Z5 : 1449c25a95e64dc878d7522b28a2c65bx,
Z6 : 526b94b700012ce2af34521b35ec9470x, Z7 : f3ffb172b7787e30bec74c2816a52b56x.
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Table 10. 1024-bit user key of WIDEA-8 and weak subkeys concerning the fourth IDEA in-
stance.

Z0 : 271684859e1a0000545c90f7861619c8x, Z1 : 77c21d2c72e99573add29cdd403172cbx,
Z2 : c583ce79a6b3be73c2c9ec870eb33d8cx, Z3 : 509a5df54e270001de2a1ba34aa04294x,
Z4 : feb294de96090aac23518277da3a01edx, Z5 : 41d5bf9ab09075d409f7ea767db1ff8bx,
Z6 : 40e086b9c8a800014d617ed4298a2d05x, Z7 : a42694d8640b5fffd1dbeb2fb899de21x.

Table 11. 1024-bit user key of WIDEA-8 and weak subkeys concerning the fifth IDEA instance.

Z0 : dc46b3c130f2c6320000f934498aa261x, Z1 : 23c47bd870045f66226b5403b7818766x,
Z2 : 4bc944e3f9d5d7a801a7a3b11d54c07ax, Z3 : 977fe5a7a2f23dea00013a585c5c4b6cx,
Z4 : dbbc32be55fd2b512ec881770ce640c2x, Z5 : f7c60b939bf735e3db7b6cf6c403eea7x,
Z6 : 34d8c582b201fe4000014ce16e5feb64x, Z7 : c9d2b3dfb6577915984e7cb86638ba4bx.

Table 12. 1024-bit user key of WIDEA-8 and weak subkeys concerning the sixth IDEA instance.

Z0 : 48175bed72710162acf20001c4ce4e1bx, Z1 : 8697b91966d475e00d7cac9450f11e78x,
Z2 : 7a448cb7f2f7144078185192ad45b2c3x, Z3 : 10994b4b70f6a90d2bd700018f07f7e0x,
Z4 : 06eb0f2048330f57917d60215a5ff33ax, Z5 : ed2c50d87fdf9a4de109750039e950bcx,
Z6 : 0155b95592ad5a8181c400012d9888abx, Z7 : cbfd21bde970ba6e83bb27fe3b39ab4cx.

Table 13. 1024-bit user key of WIDEA-8 and weak subkeys concerning the seventh IDEA in-
stance.

Z0 : ef54735c2c732a7fb48170090000d4d8x, Z1 : c9c697819a33561fbe9b3fc9ebbb425cx,
Z2 : 81a4a2f1a1222eb8892b8af1bab30416x, Z3 : 1d5869ad16ac69728f909e630000023ax,
Z4 : 34e6b1d745b0302f6011507ca8a2a0e4x, Z5 : aa2fd64fc7ca837cad105a832d70536cx,
Z6 : 1ad19efc2df74cc3692fe9f10001edd3x, Z7 : ec25fd09bd08537d589ff69871be4833x.

Table 14. 1024-bit user key of WIDEA-8 and weak subkeys concerning the eighth IDEA in-
stance.

Z0 : dc7853502880fdf51dc9e795e2260001x, Z1 : 8089ea6c425c1be032fcf0123c779012x,
Z2 : 8c888bcc4f27c6d35338a6013b6a1ca6x, Z3 : 3e619a3dcc1878be7a02a47679610001x,
Z4 : b4e89acbe72198f7a752385ab3961373x, Z5 : 8bfdaa848980f7071bbaff068eaa6fcex,
Z6 : c1e72b1cac7ac68fb604ad52ba5e0001x, Z7 : 062046a11ac16410bd69f29368c0bffex.
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