
Journal on Satisfiability, Boolean Modeling and Computation 8 (2014) 197-202

Sat4j 2.3.2: on the fly solver configuration
System Description

Daniel Le Berre ∗ daniel.leberre@cril.fr

Stéphanie Roussel stephanie.roussel@cril.fr

Université Lille Nord de France, F-59000 Lille, France

Université d’Artois, CRIL, F-62300 Lens, France

CNRS, UMR8188, F-62300 Lens, France

Abstract

Taking the best of SAT (at large) technology for a given class of problems requires
usually an expert knowledge of the solver used or to rely on an automatic configuration
tool. The former condition is usually not satisfied as soon as the user is not a member of
the SAT community, and the latter solution does not help the user to understand what is
going on inside the solver. We propose an approach that allows the end users of Sat4j to
configure a solver for a specific instance. Such an approach is based on both the ability to
change dynamically the main settings of the solver when it is running and to display to the
user several metrics that inform her about the state of the search in the solver. While the
latter has been already explored in the SAT community, and the former has been explored
in the constraint programming community, we believe that the combination of that two
features is quite unique for SAT solvers. We believe that such a tool could also be used in
the classroom to help students to understand how CDCL solvers work.

Keywords: runtime solver configuration, interactive solving, search visualisation

Submitted June 2012; revised July 2012; published July 2014

1. Introduction

The SAT competition has been a good way to promote the design of fast, reliable and general
purpose SAT solvers during the last decade. In recent years, the use of portfolios (i.e. a
system composed of several heterogeneous SAT engines) is considered by some authors [8] as
the best way to tackle SAT because they show great performances during the competitions.
However, when it comes to use SAT solvers in a company, the results of the SAT competition
may not be that relevant. A company is likely to invest on a few SAT engines for both
intellectual property and maintainability concerns. During its invited talk at Pragmatics
of SAT 2011, Alexander Nadel discussed the way Intel was moving from a specific solver
(Eureka) to a more modular one, to adapt the specificities of the various problems to be
solved there. From the beginning, Sat4j has been designed in that spirit. However, when it
comes to select which features to enable to solve a particular problem, an expert knowledge
is usually required (that’s the approach used at Intel for instance). Another approach is to

∗ Part of this work was supported by Ministry of Higher Education and Research, Nord-Pas de Calais
Regional Council and FEDER through the ’Contrat de Projets Etat Region (CPER) 2007-2013’, and
ANR TUPLES.

c©2014 Delft University of Technology and the authors.

D. Le Berre and S. Roussel

use automatic configuration tools such as ParamILS [2], which works fine when one has to
maximize the number of problems to be solved (or to minimize the runtime of the solver)
for a given set of benchmarks. Here we would like to report the approach that we have
taken to allow the end users of Sat4j to configure a solver for their specific problem. Such
an approach is based on both the ability to change dynamically the main strategies of the
solver when it is running and to display to the user several metrics that inform her about
the state of the search in the solver. While the latter has been already explored in the
SAT community [6], but oriented toward the state of the instance, and the former has been
explored in the constraint programming community [4], we believe that the combination of
that two features is quite unique for SAT solvers.

2. Monitoring a CDCL solver behavior

Advanced SAT solver users usually use various metrics (number of decisions, conflicts,
restarts, etc.) to evaluate the best settings or solver for solving a specific SAT instance (or
class of instances). However, the wide success of SAT technology in solving combinatorial
problems put SAT solvers in the hands of users not familiar with the way SAT solvers work.
As such, they are considered as black boxes, taking a CNF as input and outputting either
a model or that such a model does not exist. The challenge is thus to allow those users to
get the best from SAT technology, i.e. to let them setup their SAT solver without any deep
knowledge of its internals. In order to address that issue, we need to provide some feedback
to the end user about what’s going on inside the solver, and to provide her some hints to
escape known traps, to let her “drive” the solver on a particular SAT instance. We decided
to display in real time several metrics from the solver that are important to understand the
behavior of the solver. The idea is to allow the user to adapt the configuration of the solver
at the light of those metrics. The various metrics are logged in text files and displayed using
Gnuplot version 4.6 for an efficient but platform dependent solution or displayed directly
in Java thanks to the jchart2d library for a more integrated but slower solution.

Decisions index Displays the id of the decision variables over time (see Figure 1(a)).
That information is logged at each branching decision. It allows to check if the decisions
are limited to a group of variables or if they are spread across all variables. In the former
case, adding some randomization to the heuristics may help (see Figure 1(a) on the right
the effect of activating random walks). We noted several interesting patterns using that
metric. Note that it is sometimes interesting to distinguish between positive and negative
decisions (on which phase the solver first branches on). As such, we display the indexes on
two graphs, one for positive literals and one for negative literals.

Activity value Displays for each variable the value of its activity. That information is
logged at each restart, because it needs to be done for all the variables at once. As such,
the time needed to create the data file is not negligible. That information is mainly useful
to check that the heuristics work as expected (rescale every now and then, decision ids are
taken among the variables with highest value). No real action can be decided from that
metric.

Size of learned clauses CDCL solvers learn one clause for each conflicting assignment.
That information is logged every time a conflict is found. There exist several minimization

198

on the fly solver configuration

 1

 11915

 2000

 4000

 6000

 8000

 10000

 0 5000 10000 15000 20000 25000 30000 35000 40000

Index of the decision variables

Restart
Negative Decision

(a) Negative decisions index

 1 0

 20

 40

 60

 80

 100

 120

 140

 2000 4000 6000 8000 10000 12000 14000

Size of the clause learned (after minimization if any)

Restart
Size

(b) Learned clauses size

Figure 1. Examples of metrics displayed at runtime

strategies that can be used to reduce those clauses, especially the one introduced in Minisat
1.13[7]. That metric can be used to check whether such techniques are effective or not. In
Figure 1(b) for instance, one can see the minimization strategy at work since step 7000.

Evaluation of learned clauses There are several ways to evaluate learned clauses (ac-
tivity, LBD[1]). That metric provides the evaluation of the learned clauses available in the
solver. Since “worst” learned clauses are removed periodically, one should observe learned
clauses of increasing quality.

Speed Number of propagations per second. We compute every two seconds how many
propagations have been performed. The solver usually has a decreasing velocity because it
learns new clauses over time. Aggressive learned clauses deletion strategies such as glucose’s
one allow to keep the solver in a good velocity. The objective of that metric is to allow
the end user to remove some learned clauses when the solver slows down significantly. Note
however that such metric is highly dependent of which other metrics are logged, because
they affect the running time of the solver. We noticed that such metric is currently unstable,
i.e. varies a lot during the search, thus making it difficult to use in practice. We are currently
looking for a better way to measure velocity.

Decision level Denotes the number of decisions taken before reaching a conflict. That
metric is logged at each conflict found. It corresponds to the depth in the search tree. The
depth should decrease over time. If that measure is stalled, then performing a restart can
help escaping that plateau.

Trail level Denotes the number of variables assigned when reaching a conflict. That
metric is logged at each conflict found. A pathological case that can be noticed using that
measure is when the solver assigns almost all the variables before reaching a conflict. In that
case, the solver is in a “generate and test” situation, i.e. conflicts arise on full assignments,
with few chances to take advantage of backjumping and learning to cut the search space.

All those metrics can easily be logged in any CDCL solver to monitor the behavior of that
solver. However, for sake of efficiency, most solvers do not allow to change its settings

199

D. Le Berre and S. Roussel

at runtime (they are usually decided at compilation time). Sat4j was designed from the
beginning to be highly flexible, and allowing on the fly solver configuration could be added
without much efforts because the main changes were limited to allow concurrent access and
modifications of the main solver components.

3. On-the-fly solver configuration

Many components are configurable in Sat4j. See the previous system description [3] for
details. We focus here on features that can now be changed when the solver is running.

Phase selection When the heuristic selects a decision variable, there are several strategies
possible to select the phase (or polarity) of the variable to branch on first. It can be fixed
(negative or positive first, user defined), random, or based on previous assignment (RSAT
phase saving[5]), etc. The application of each strategy can be checked by monitoring the
indexes of decision variables on the dedicated graphs, which allows to easily check their
implementation.

Conflict clause minimization Minisat 1.13 introduced two conflict minimization pro-
cedures to reduce further the clause derived by conflict analysis. Sat4j implements both,
called simple and expensive simplifications. Such feature can also be deactivated. While
clause minimization works usually pretty well on CNF, there are some cases with instances
containing long pseudo-boolean constraints where clause minimization is ineffective. The
successful application of such features should decrease the size of learned clauses. The
amount of reduction could be used to measure the effectiveness of the technique. Figure
1(b) shows an example of successful use of clause minimization.

Random walk Sometimes the heuristics keep the solver in a part of the search tree with
few chances to escape. This can be seen by looking at the index of the variables chosen by
the heuristics over time. Sometimes, some patterns may occur (see Figure 1(a) left part).
In order to escape from the bad choices of the heuristics, a common practice is to pick a
variable at random, which is often referred to as making a random walk. Sat4j allows to
add random walks with a given probability to the heuristics. Its action can be checked by
looking at the distribution of the decision variable indexes over time (see Figure 1(a) right
part).

Learned constraints deletion strategy Recent works suggest that aggressive deletion
strategy is important. Several measures of the importance of the learned clause can be
used: activity, as in the original Minisat, i.e. clauses that contribute often to a conflict,
or Literals Blocks Distance (LBD), as defined in Glucose[1], that partition clauses by the
number of different decision levels involved during its creation. Those measures are used
to remove periodically the worst half learned clauses from the solver. We allow the user to
choose one of those evaluation schemes, and to cleanup the database periodically (every x
conflicts) or on demand (the user asks directly the solver to perform the cleanup).

Restart strategy Restarts strategies have received also a lot of attention those recent
years, especially dynamic restart strategies, i.e. strategies that adapt themselves to the
instance. Sat4j provides only static restart strategies at the moment (the one inherited
from Minisat, the one used in Picosat and a Luby-style one). However, we also allow the

200

on the fly solver configuration

end user to decide when to restart. Restarts are represented as vertical bars when they
occur on most graphs (see Figure 1).

Prebuilt solvers Sat4j comes with a wide range of prebuilt solvers for both decision and
optimization problems. The configuration that performs the best on a wide range of bench-
marks from the application category of the SAT competition is the default one. However, a
different configuration can perform much better on a specific class of benchmarks. Prebuilt
solvers are thus useful for us to record combination of features that proved to be useful.

4. Conclusion

We introduced in Sat4j 2.3.2 a new feature to allow our end users to get a better under-
standing of the effects of the various parameters available in our CDCL solver1.. That
feature is based on the possibility to log various information during the search, to display
that information live using Gnuplot, and more importantly to allow the end user to change
at runtime those parameters to drive the solver during the search. It is to the best of our
knowledge the first time that such feature is implemented in a SAT solver.

While SAT solvers have been thought as black boxes, push-button technology by many
users, delivering search monitoring and control to the end user gives her the power to gain
a better understanding of the behavior of the solver on her particular problem.

Thanks to the visualization of the literals returned by the heuristics, we found a bug
in our implementation of the RSAT phase strategy that was introduced between Sat4j 1.7
and Sat4j 2.0, when Sat4j was decomposed into modules to avoid dependencies on third
party code in the core sat and pseudo boolean components. The phase was no longer
properly recorded and we could notice it by looking at the phase of the decision variables
(only negative literals showed up). Since that bug was not making the solver incorrect, and
that many changes that prevented the solver to behave exactly as the 1.7 release happened
during the release of Sat4j 2.0, that problem remained unnoticed for four years.

Thanks to the “remote control”, i.e. the GUI that allows to easily set the various
parameters of a CDCL solver in Sat4j, one end user reported that she could quickly find a
configuration that provided solutions of better quality than any of the pre-built solvers. As
suggested by an anonymous referee, we plan to allow recording and replaying the dynamic
setup of the solver to build a fully customized solver.

We believe that such a tool can be useful in many contexts. First, it helps us to under-
stand why Sat4j is behaving poorly on particular benchmarks. The situation of “generate
and test” described earlier is a real issue that we met on a specific class of benchmarks.
Second, users of Sat4j that would like to find the most appropriate settings for their prob-
lem can use that interactive tool to do it: we developed that tool for them, and from their
early feedback, the tool suits them. Finally, such a tool is also useful for teaching CDCL
architecture to students: many strategies are available in Sat4j and the newcomer to CDCL
architecture can see live the effect of changing a single parameter. While all SAT solvers
have the ability to log information about their state, few have the capability to allow on
the fly configuration: this is only possible if some kind of runtime configuration exists in

1. The tool is available for download from Sat4j usual web page: http://download.forge.objectweb.org/
sat4j/sat4j-pos12.tgz.

201

http://download.forge.objectweb.org/sat4j/sat4j-pos12.tgz
http://download.forge.objectweb.org/sat4j/sat4j-pos12.tgz

D. Le Berre and S. Roussel

the solver, which is rarely the case for SAT solvers designed for speed (where most param-
eters are fixed at compile time). As such, we believe that Sat4j is currently a really nice
framework for teaching boolean satisfaction and optimization courses.

References

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT
solver. In Proceedings of IJCAI’09, pages 399–404, jul 2009.

[2] Frank Hutter, Holger H. Hoos, and Thomas Sttzle. Automatic algorithm configuration
based on local search. In AAAI, pages 1152–1157. AAAI Press, 2007.

[3] D. Le Berre and A. Parrain. The sat4j library, release 2.2 system description. Journal
on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[4] David Martinez. Résolution interactive de problèmes de satisfaction de contraintes. PhD
thesis, Ecole nationale supérieure de l’aéronautique et de l’espace, Toulouse, FRANCE,
1998.

[5] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for
satisfiability solvers. In Proceedings of SAT’07, 4501 of LNCS, pages 294–299. Springer,
2007.

[6] Carsten Sinz and Edda-Maria Dieringer. Dpvis - a tool to visualize the structure of sat
instances. In Fahiem Bacchus and Toby Walsh, editors, SAT, 3569 of LNCS, pages
257–268. Springer, 2005.

[7] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Oliver Kullmann,
editor, Proceedings of SAT’09, 5584 of LNCS, pages 237–243. Springer, 2009.

[8] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-
based algorithm selection for sat. J. Artif. Intell. Res. (JAIR), 32:565–606, 2008.

202

	Introduction
	Monitoring a CDCL solver behavior
	On-the-fly solver configuration
	Conclusion

