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Abstract
For Boolean satisfiability problems, the structure of the solution space is characterized

by the solution graph, where the vertices are the solutions, and two solutions are connected
iff they differ in exactly one variable. Motivated by research on heuristics and the satis-
fiability threshold, in 2006, Gopalan et al. studied connectivity properties of the solution
graph and related complexity issues for constraint satisfaction problems [11]. They found
dichotomies for the diameter of connected components and for the complexity of the st-
connectivity question, and conjectured a trichotomy for the connectivity question. Their
results could be improved based on findings by Makino et al. [15].

Building on this work, we here prove the trichotomy for the connectivity question. Also,
we correct a minor mistake in [11], which leads to a slight shift of the boundaries towards
the hard side.
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1. Introduction

In 2006, P. Gopalan, P. G. Kolaitis, E. Maneva, and C. H. Papadimitriou investigated
connectivity properties of the solution space of Boolean constraint satisfaction problems
[12, 11]. Their work was motivated inter alia by research on heuristics for satisfiability
algorithms and threshold phenomena. Indeed, the solution space connectivity is strongly
correlated to the performance of standard satisfiability algorithms like WalkSAT and DPLL
on random instances: As one approaches the satisfiability threshold (the ratio of constraints
to variables at which random k-CNF-formulas become unsatisfiable for k ≥ 3) from below,
the solution space fractures, and the performance of the algorithms breaks down [17, 16].
These insights mainly came from statistical physics, and lead to the development of the
survey propagation algorithm, which has much better performance on random instances
[16].

Meanwhile, Gopalan et al.’s results have also been applied directly to reconfiguration
problems, that arise when a step-by-step transformation between two feasible solutions of
a problem is searched, such that all intermediate results are also feasible. Recently, the
reconfiguration versions of many problems such as Independent-Set, Vertex-Cover,

c©2014 Delft University of Technology and the authors.



K. W. Schwerdtfeger

Set-Cover Graph-k-Coloring, Shortest-Path have been studied [13, 14], and many
complexity results were obtained. Another related problem for which the solution space
connectivity could be of interest is structure identification, where one is given a relation ex-
plicitly and seeks a short representation of some kind [8]; this problem is important especially
in artificial intelligence.

The solutions (satisfying assignments) of a formula φ over n variables induce a subgraph
G(φ) of the n-dimensional hypercube graph, that is, the vertices are the solutions of φ, and
two solutions are connected iff they differ in exactly one variable.

Figure 1. Depictions of the subgraph of the 5-dimensional hypercube graph induced by a typical
random Boolean relation with 12 elements. Left: highlighted on a orthographic hypercube projec-
tion. Center: highlighted on a “Spectral Embedding” of the hypercube graph by Mathematica.

Figure 2. Subgraphs of the 8-dimensional hypercube graph (with 256 vertices) induced by typical
random relations with 40, 60 and 80 elements.

Gopalan et al. specifically addressed CNFC(S)-formulas (CNF(S)-formulas with con-
stants), see Definition 1, and studied the complexity of the following two decision problems,

• the connectivity problem ConnC(S), that asks for a given CNFC(S)-formula φ whether
G(φ) is connected,

• the st-connectivity problem st-ConnC(S), that asks for a given CNFC(S)-formula φ
and two solutions s and t whether there a path from s to t in G(φ).

Also, they considered

• the maximal diameter of any connected component of G(φ) for a CNFC(S)-formula
φ, where the diameter of a component is the maximal shortest-path distance between
any two vectors in that component.
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They established a common structural and computational dichotomy, and introduced the
corresponding class of tight sets of relations, which properly contains all Schaefer sets of
relations, see Definition 9: For tight sets S, the diameter is linear in the number of variables,
st-ConnC(S) is in P and ConnC(S) is in coNP, while on the other side, the diameter can
be exponential, and both problems are PSPACE-complete. Their results are summarized in
comparison to the satisfiability problem SatC(S) in the table below.

Table 1. Gopalan et al.’s results [11].

S SatC(S) st-ConnC(S) ConnC(S) Diameter

Schaefer P
P

coNP
O(n)

Tight, not Schaefer
NP-compl.

coNP-compl.

Not tight PSPACE-compl. PSPACE-compl. 2Ω(
√
n)

Moreover, they conjectured a trichotomy for ConnC(S): For a certain sub-class of Schae-
fer sets of relations, ConnC(S) is in P, while for all other tight sets it is coNP-complete.

In Section 3 we will argue that Gopalan et al. did not consider repeated occurrences of
variables in constraint applications. As we will see there, repeated variables can make the
problems harder and the diameter exponential in some cases, which leads to a slight shift of
the boundaries.

In Section 4, we prove the conjectured trichotomy for ConnC(S), also with the bound-
aries shifted in the hard direction. Fitted to the correct boundaries, we will introduce the
classes of safely tight and CPSS sets of relations; The supplemental Section 5 will investigate
certain properties of CPSS sets of relations. The following table summarizes our results.

Table 2. Complete classification of the connectivity problems and the diameter for CNF(S)-
formulas with constants, in comparison to Sat.

S SatC(S) st-ConnC(S) ConnC(S) Diameter

CPSS
P

P

P

O(n)Schaefer, not CPSS
coNP-compl.

Safely tight, not Schaefer
NP-compl.

Not safely tight PSPACE-compl. PSPACE-compl. 2Ω(
√
n)

2. Preliminaries

First we introduce some terminology for Boolean relations and formulas. We will use the
standard notions also used in [11], but carefully define substitution of constants and identi-
fication of variables, and distinguish CNF(S)-formulas with and without constants.

Definition 1. An n-ary Boolean relation (or logical relation, relation for short) is a subset
of {0, 1}n (n ≥ 1).
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For an n-ary relation R, we can define an (n− k)-ary relation

R′(x1, . . . , xn−k) = R(ξ1, . . . , ξn)

(0 < k < n). If each ξi ∈ {0, 1, x1, . . . , xn−k} and each variable xi ∈ {x1, . . . , xn−k} occurs
at most once in (ξ1, . . . , ξn), we say R′ is obtained from R by substitution of constants. If
each ξi ∈ {x1, . . . , xn−k}, (and each xi ∈ {x1, . . . , xn−k} may occur any number of times in
(ξ1, . . . , ξn)), R′ is obtained by identification of variables. Note that we allow any permuta-
tion of the variables in both cases.

The set of solutions of a propositional formula φ over n variables defines in a natural
way an n-ary relation [φ], where the variables are taken in lexicographic order. We will often
identify the formula φ with the relation it defines and omit the brackets.

In the following definition note that we write st-ConnC(S) resp. ConnC(S) instead
of st-Conn(S) resp. st-Conn(S) like Gopalan et al., for consistency with the usual nota-
tion Sat(S) for the satisfiability problem without constants and SatC(S) for the one with
constants.

Definition 2. A CNF-formula is a propositional formula of the form C1 ∧ · · · ∧ Cm (1 ≤
m < ∞), where each Ci is a clause, that is, a finite disjunction of literals (variables or
negated variables). A k-CNF-formula (k ≥ 1) is a CNF-formula where each Ci has at most
k literals. A Horn (dual Horn) formula is a CNF-formula where each Ci has at most one
positive (negative) literal.

For a finite set of relations S, a CNFC(S)-formula over a set of variables V is a finite
conjunction C1 ∧ · · · ∧Cm, where each Ci is a constraint application ( constraint for short),
i.e., an expression of the form R(ξ1, . . . , ξk), with a k-ary relation R ∈ S, and each ξj is
a variable from V or one of the constants 0, 1. By Var(Ci), we denote the set of vari-
ables occurring in ξ1, . . . , ξk. With the relation corresponding to Ci we mean the relation
[R(ξ1, . . . , ξk)] (that may be different from R by substitution of constants, or identification
or permutation of variables). A CNF(S)-formula is a CNFC(S)-formula where each ξj is a
variable in V , not a constant.

We define the solution graph and its diameter as in [11]. We use a, b, . . . or a1,a2, . . .
to denote vectors of Boolean values and x,y, . . . or x1,x2, . . . to denote vectors of variables,
a = (a1, a2, . . .) and x = (x1, x2, . . .).

Definition 3. The solution graph G(φ) of φ is the subgraph of the n-dimensional hypercube
graph induced by the vectors in [φ], i.e., the vertices of G(φ) are the vectors in [φ], and there
is an edge between two vectors iff they differ in exactly one variable. We will also refer to
G(R) for any logical relation R (not necessarily defined by a formula).

If a and b are solutions of a formula φ and lie in the same connected component
( component for short) of G(φ), we write dφ(a, b) to denote the shortest-path distance be-
tween a and b. The diameter of a component is the maximal shortest-path distance between
any two vectors in that component. The diameter of G(φ) is the maximal diameter of any
component.

The Hamming distance |a−b| of two Boolean vectors a and b is the number of positions
in which they differ.
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We define the following decision problems for CNF(S)-formulas resp. CNFC(S)-formulas:

• the satisfiability problem Sat(S): Given a CNF(S)-formula φ, is φ satisfiable?

• the satisfiability problem with constants SatC (S): Given a CNFC(S)-formula φ, is φ
satisfiable?

• the connectivity problem (with constants) ConnC (S): Given a CNFC(S)-formula φ,
is G(φ) connected? (if φ is unsatisfiable, then G(φ) is considered connected)

• the st-connectivity problem (with constants) st-ConnC (S): Given a CNFC(S)-formula
φ and two solutions s and t, is there a path from s to t in G(φ)?

The complexity of the problems depends on the kind of relations in S; we now define the
relevant types. Some are already familiar from Schaefer’s classification of Sat, some were
introduced by Gopalan et al., and the ones starting with “safely” are new; IHSB stands for
“implicative hitting set-bounded” and was adopted by Gopalan et al. from [7], where it was
introduced for a refinement of Schaefer’s theorem and the classification of related problems.

Definition 4. Let R be an n-ary logical relation.

• R is 0-valid (1-valid) if 0n ∈ R (1n ∈ R).

• R is bijunctive if it is the set of solutions of a 2-CNF-formula.

• R is Horn (dual Horn) if it is the set of solutions of a Horn (dual Horn) formula.

• R is affine if it is the set of solutions of a formula xi1 ⊕ . . .⊕xim ⊕ c with i1, . . . , im ∈
{1, . . . , n} and c ∈ {0, 1},

• R is componentwise bijunctive if every connected component of G(R) is a bijunctive
relation. R is safely componentwise bijunctive if R and every relation R′ obtained
from R by identification of variables is componentwise bijunctive.

• R is OR-free (NAND-free) if the relation OR = {01, 10, 11} (NAND = {00, 01, 10})
cannot be obtained from R by substitution of constants. R is safely OR-free ( safely
NAND-free) if R and every relation R′ obtained from R by identification of variables
is OR-free (NAND-free).

• R is IHSB− (IHSB+) if it is the set of solutions of a Horn (dual Horn) formula in
which all clauses with more than 2 literals have only negative literals (only positive
literals).

• R is componentwise IHSB− (componentwise IHSB+) if every connected component of
G(R) is IHSB− (IHSB+). R is safely componentwise IHSB− (safely componentwise
IHSB+) if R and every relation R′ obtained from R by identification of variables is
componentwise IHSB− (componentwise IHSB+).

If one is given the relation explicitly (as a set of vectors), the properties 0-valid, 1-valid,
OR-free and NAND-free can be checked easily. Bijunctive, Horn, dual Horn, affine, IHSB−
and IHSB+ can be checked by closure properties:
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Definition 5. A relation R is closed under some n-ary operation f iff the vector obtained
by the coordinate-wise application of f to any m vectors from R is again in R, i.e., if

a1, . . . ,am ∈ R =⇒ (f(a11, . . . , a
m
1 ), . . . f(a1n, . . . , a

m
n )) ∈ R.

Lemma 6. A relation R is

• bijunctive, iff it is closed under the ternary majority operation
MAJ(x, y, z)=(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) [7, Lemma 4.9],

• Horn (dual Horn), iff it is closed under ∧ (under ∨, resp.) [7, Lemma 4.8],

• affine, iff it is closed under x⊕ y ⊕ z [7, Lemma 4.10],

• IHSB− (IHSB+), iff it is closed under x ∧ (y ∨ z) (under x ∨ (y ∧ z), resp.).

Proof. For IHSB− and IHSB+ relations, this can be verified using the Galois correspondence
between closed sets of relations and closed sets of Boolean functions (see [3]). From the table
in [3] we find that the IHSB− relations are a base of the co-clone INV(S10), and the IHSB+
ones a base of INV(S00), and from the table in [2] we see that x∧ (y ∨ z) and x∨ (y ∧ z) are
bases of the clones S10 and S00, resp.

The following examples show that the “safely” classes are properly contained in the
corresponding “unsafe” ones.

Example 7. The relation {001, 110, 111} is OR-free, but not safely OR-free, as identifying
the first two variables gives {01, 10, 11}.

The smallest examples of relations that are componentwise bijunctive, but not safely
componentwise bijunctive, or Horn and componentwise IHSB−, but not safely component-
wise IHSB− are of dimension 4:

Example 8. For the relation RcoNP = {0000, 0100, 1100, 0011, 1011}, both components
{0000, 0100, 1100} and {0011, 1011} are closed under MAJ and under x ∨ (y ∧ z), but the
relation R′ = {000, 010, 110, 001, 101}, obtained from RcoNP by identifying the third and
fourth variable, has only one component that is neither closed under MAJ, nor under x ∧
(y ∨ z): applying MAJ or x∧ (y ∨ z) coordinate-wise to (110, 000, 101) both gives 100 /∈ R′.

For an example of a formula consider

φcoNP = (x ∧ y) ∨ (x ∧ y ∧ (z ∨ w)) ≡ (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z ∨ w) ∧ (y ∨ z ∨ w) ,

which is clearly componentwise bijunctive and componentwise IHSB−, but x∨z∨w, obtained
by identifying y with x, has only one component that is neither bijunctive nor IHSB−.

The following classes of sets of relations are fitted to the structural and computational
boundaries for the connectivity; the term CPSS stands for constraint-projection separating
Schaefer and will become clear in Section 5 from Definition 20 and Lemma 24.

Definition 9. A set S of logical relations is tight ( safely tight) if at least one of the following
conditions holds:
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Figure 3. The solution graphs of the relations RcoNP and R′ from Example 8, drawn on ortho-
graphic hypercube projections; the “axis vertices” are labeled.

1. every relation in S is componentwise bijunctive (safely componentwise bijunctive).

2. every relation in S is OR-free (safely OR-free).

3. every relation in S is NAND-free (safely NAND-free).

A set S of logical relations is Schaefer if at least one of the following conditions holds:

1. every relation in S is bijunctive.

2. every relation in S is Horn.

3. every relation in S is dual Horn.

4. every relation in S is affine.

A set S of logical relations is CPSS if at least one of the following conditions holds:

1. every relation in S is bijunctive.

2. every relation in S is Horn and safely componentwise IHSB−.

3. every relation in S is dual Horn and safely componentwise IHSB+.

4. every relation in S is affine.

3. The Impact of Repeated Variables in Constraints

An upcoming extended version of this paper will give a self contained account, here we
require Gopalan et al.’s definitions and results, and just exactly show how the affected
statements and proofs in [11] need to be modified to take into account repeated occurrences
of variables in constraint applications.

The central concept of structural expressibility (Definition 3.1 in [11]), as well as the
PSPACE-completeness proof for the connectivity problems for 3-CNF-formulas (Lemma 3.6
in [11]) is not affected.

The first mistake is in the generalization of the structural properties from CNFC(S)-
formulas with bijunctive sets S of relations to those with componentwise bijunctive sets S
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in subsection 4.2 of [11], the other mistakes are similar. In the following, we refer to the
Lemmas, Theorems and Corollaries of [11].

As the proofs are stated there, the flaws are quite hard to locate. We have to carefully
distinguish the relation from S used in a constraint of a CNFC(S)-formula as “template” from
the resulting relation for the variables of the formula, see Definition 2. The second paragraph
of the proof of Lemma 4.3 is supposed to show that every component of a CNFC(S)-formulas
ϕ with a set S of only componentwise bijunctive relations is the solution space of a formula
ϕ′ with only bijunctive relations. To construct ϕ′, every constraint Ci in ϕ using a relation
R ∈ S with more than one component is replaced by a constraint containing only one
component of R.

But if in Ci some variables of R are identified, and R only is componentwise bijunctive
and not safely componentwise bijunctive, it is possible that the relation resulting for the
variables of ϕ is not componentwise bijunctive, as we have seen in Example 8, and thus not
every of its components is bijunctive.

So we must change the Lemma to

• Lemma 4.3: Let S be a set of safely componentwise bijunctive relations and ϕ a
CNFC(S)-formula. If a and b are two solutions of ϕ that lie in the same component
of G(ϕ), then dϕ(a, b) = |a− b|, i.e., no distance expands.

In the proof, we replace the second paragraph by

“For the general case, we show that every component F of G(ϕ) is the solution space
of a 2-CNF-formula ϕ. Let R ∈ S be a safely componentwise bijunctive relation.
Then any relation corresponding to a clause in ϕ of the form R(x1, . . . , xk) (the rela-
tion obtained after identifying repeated variables) consists of bijunctive components
R1, . . . , Rm. The projection of F onto x1, . . . , xk is itself connected and must satisfy
R. Hence it lies within one of the components R1, . . . , Rm; assume it is R1. We re-
place R(x1, . . . , xk) by R1(x1, . . . , xk). Call this new formula ϕ1. G(ϕ1) consists of
all components of G(ϕ) whose projection on x1, . . . , xk lies in R1. We repeat this for
every clause. Finally we are left with a formula ϕ′ over a set of bijunctive relations.
Hence ϕ′ is bijunctive and G(ϕ′) is a component of G(ϕ). So the claim follows from
the bijunctive case.”

In consequence, the resulting Corollary must be changed to

• Corollary 4.4: Let S be a set of safely componentwise bijunctive relations. Then...

The proof of Lemma 4.5 is supposed to show by contradiction that every component of G(ϕ)
for a CNFC(S)-formula ϕ with a set S of OR-free relations must contain a unique locally
minimal solution. It is reasoned that if G(ϕ) would contain two locally minimal solutions,
the relation corresponding to some clause Ci in ϕ would not be OR-free. This is correct
up to here, with our Definition 2 of “the relation corresponding to a clause”. From this it
is concluded that some relation in S could not have been OR-free. But actually, Ci could
have been obtained from an OR-free relation that is not safely OR-free by identification of
variables, as we have seen in Example 7. So the Lemma must be changed to

• Lemma 4.5: Let S be a set of safely OR-free relations and ϕ a CNFC(S)-formula.
Every component...
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In the proof, we replace the last sentence of the second paragraph by “So the relation
corresponding to that clause is not OR-free, thus S must have contained some not
safely OR-free relation.”

In consequence, the resulting Corollaries must be changed to

• Corollary 4.6: Let S be a set of safely OR-free relations. Then...

and

• Corollary 4.7: Let S be a safely tight set of relations. Then...

But now for dichotomies to hold, we must show for every not safely tight set S that
ConnC(S) and st-ConnC(S) are PSPACE-complete, and that there are CNFC(S)-formulas
ϕ such that the diameter of G(ϕ) is exponential in the number of variables of ϕ. Therefor,
we extend the structural expressibility of S3 to not safely tight sets of relations; we change
Lemma 3.4 to

• Lemma 3.4: If set S of relations is not safely tight, S3 is structurally expressible
from S.
In the first paragraph of the proof, we replace “not OR-free” with “not safely OR-
free”, “not NAND-free” with “not safely NAND-free”, and note that we can express
x1 ∨ x2 (x1 ∨ x2) by substitution of constants and identification of variables from
any such set of relations. Similarly, in the first paragraph of “Step 1”, we replace
“componentwise bijunctive” by “safely componentwise bijunctive”, and in the second
paragraph of “Step 1” we obtain the required not componentwise bijunctive relation R
from any not safely componentwise bijunctive relation R′ by identification of variables.
The remaining part of the proof need not be modified.

Now we can extend the structural expressibility theorem:

• Theorem 2.7: Let S be a finite set of logical relations. If S is not safely tight, then
every logical relation is structurally expressible from S.

Hereby, we can state the dichotomy theorems as follows:

• Theorem 2.8: Let S be a finite set of logical relations. If S is safely tight, then
ConnC(S) is in coNP; otherwise, ConnC(S) is PSPACE-complete.

• Theorem 2.9: Let S be a finite set of logical relations. If S is safely tight, then
st-ConnC(S) is in P; otherwise, st-ConnC(S) is PSPACE-complete.

• Theorem 2.10: Let S be a finite set of logical relations. If S is safely tight, then for
every CNFC(S)-formula ϕ, the diameter of G(ϕ) is linear in the number of variables
of ϕ; otherwise, there are CNFC(S)-formulas ϕ such that the diameter of G(ϕ) is
exponential in the number of variables of ϕ.

For the inclusion structure of the classes to hold, we now have to show that all Schaefer sets
of relations are safely tight. Therefor, we tighten Lemma 4.2 of [11]:
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• Lemma 4.2: Let R be a logical relation.

1. If R is bijunctive, then R is safely componentwise bijunctive

2. If R is Horn, then R is safely OR-free.

3. If R is dual Horn, then R is safely NAND-free.

4. If R is affine, then R is safely componentwise bijunctive, safely OR-free, and
safely NAND-free.

For the proof, we first note that any relation obtained from a bijunctive (Horn, dual
Horn, affine) one by identification of variables is itself bijunctive (Horn, dual Horn,
affine), which is obvious from the definitions.
Using this fact, it is clear from the definitions of safely componentwise bijunctive, safely
OR-free, and safely NAND-free, that the original proof implies that every bijunctive
relation is safely componentwise bijunctive, every Horn (dual Horn) relation is safely
OR-free (NAND-free), and every affine relation is safely componentwise bijunctive,
safely OR-free, and safely NAND-free.

We have to weaken Lemma 4.8, since it relies on the wrong assumption that ConnC(S) is
in coNP for every tight set S:

• Lemma 4.8: For S safely tight, but not Schaefer, ConnC(S) is coNP-complete.

In the proof, we should clarify that the relation x 6= y is expressible as a CNFC(S)-
formula, not necessarily by substitution of constants only, see Remark 11.

Finally, we have to weaken Lemma 4.13. In the last paragraph of the proof, the connectivity
question for a CNFC(S)-formula ϕ with a set S of componentwise IHSB− relations shall
be reduced to one for a formula using only IHSB− relations. In the last sentence, a false
assumption is used: That every relation corresponding to a clause of ϕ that has only a single
component would be IHSB−. Actually, that relation is guaranteed to be IHSB− only if the
original relation is safely componentwise IHSB−, as we have seen in Example 8. Thus the
Lemma must be changed to

• Lemma 4.13: If S a set of relations that are Horn (dual Horn) and safely compo-
nentwise IHSB− (IHSB+), then there is a polynomial-time algorithm for ConnC(S).
The proof can be retained word-for-word; the necessary comment “(the relation ob-
tained after identifying repeated variables)” is already mentioned in the last paragraph.

In the next section, we will proof that if S is a finite set of Horn (dual Horn) relations
that contains at least one relation that is not safely componentwise IHSB− (IHSB+), then
ConnC(S) is coNP-complete (Lemma 13).

The following example shows cases where the above corrections make a difference.

Example 10. Since the relations from Example 8 are Horn and componentwise IHSB−,
ConnC({RcoNP}) and ConnC({[φcoNP]}) would be polynomial-time decidable by Lemma
4.13 of [11]. But {RcoNP} and {[φcoNP]} are not CPSS, and consequently, ConnC({RcoNP})
and ConnC({[φcoNP]}) are actually coNP-complete.
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The relation
RPSPA = {0001, 0010, 1100, 1110, 1101}

is not Schaefer and not NAND-free (RPSPA(1, 1, x, y) = x ∧ y), but componentwise bijunctive
and OR-free, thus {RPSPA} is tight, and ConnC({RPSPA}) would be coNP-complete by
Lemma 4.8 of [11], st-ConnC({RPSPA}) would be polynomial-time decidable by Theorem
2.9 of [11], and the diameter ofG(φ) linear in the number of variables for all CNFC({RPSPA})-
formulas φ by Theorem 2.10 of [11].

But RPSPA is not safely componentwise bijunctive (as identifying the first two variables
gives R′ = {001, 010, 100, 110, 101}, and MAJ(001, 010, 100) = 000 /∈ R′), and not safely
OR-free (as R′(x, y, 0) = x ∨ y), thus {RPSPA} is not safely tight, and ConnC({RPSPA})
and st-ConnC({RPSPA}) are actually PSPACE-complete, and there are CNFC({RPSPA})-
formulas φ for which the diameter of G(φ) is exponential in the number of variables.

Remark 11. One could of course also consider CNFC(S)-formulas without repeated variables
in constraints. But in this case, one had to check all consequences of this restriction. E.g.,
the proof of Lemma 4.8 in [11] were not valid since the relation x 6= y is not expressible
without identification of variables from every non-Schaefer set of relations. For example, for
R = {1100, 1010, 1110, 0001}, (x 6= y) is R(x, x, x, y), but cannot be obtained from R by
substitution of constants and conjunction only.

4. A Trichotomy for ConnC(S)

In this section, we prove the last piece needed to establish the trichotomy for ConnC(S).
Initially, Gopalan et al. conjectured that ConnC(S) is in P if S is Schaefer, but this

was subsequently disproved by Makino, Tamaki, and Yamamoto [15], who showed that
ConnC(S) is coNP-complete for S = {x ∨ y ∨ z}, which is Horn and thus Schaefer. Con-
sequently, Gopalan et al. conjectured that ConnC(S) is coNP-complete if S is Horn but
not componentwise IHSB−, or dual Horn but not componentwise IHSB+, and already
suggested a way for proving that: One had to show that ConnC({M}) for the relation
M = (x ∨ y ∨ z) ∧ (x ∨ z) is coNP-hard. We will prove this in Lemma 18 by a reduction
from the complement of a satisfiability problem.

Gopalan et al. stated (without giving the proof) they could show that M is structurally
expressible from every set of Horn relations which contains at least one relation that is
not componentwise IHSB−, using a similar reasoning as in the proof of their structural
expressibility theorem.

We give a different proof (which may be somewhat simpler) in Lemma 19, that shows
that M actually is expressible from every set S of Horn relations that contains at least one
relation that is not safely componentwise IHSB− as a CNFC(S)-formula, which is of course
a structural expression.

In this section, when we use results from [11], we refer to the corrected versions from the
last section, where applicable.

Theorem 12 (Trichotomy theorem for ConnC(S)). Let S be a finite set of logical relations.

1. If S is CPSS, ConnC(S) is in P.

2. Else if S is safely tight, ConnC(S) is coNP-complete.
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3. Else, ConnC(S) is PSPACE-complete.

Proof. 1. If S is CPSS, ConnC(S) is in P by Lemmas 4.9, 4.13 and 4.10 of [11], or by our
Theorem 21.

2. If S is Schaefer and not CPSS, it must be Horn and contain at least one relation that
is not safely componentwise IHSB−, or dual Horn and contain at least one relation that is
not safely componentwise IHSB+, and ConnC(S) is coNP-complete by Lemma 13 below.
If S is not Schaefer, the statement follows from Lemma 4.8 of [11].

3. This follows from Theorem 2.8 of [11].

Lemma 13. Let S be a finite set of Horn (dual Horn) relations. If S contains at least
one relation that is not safely componentwise IHSB− (not safely componentwise IHSB+),
ConnC(S) is coNP-complete.

Proof. For sets of Horn relations that contain at least one relation that is not safely compo-
nentwise IHSB−, the coNP-hardness follows from Lemmas 18 and 19 below. The case of sets
of dual Horn relations that contain at least one relation that is not safely componentwise
IHSB+ is analogous. Theorem 2.8 of [11] shows that ConnC(S) is in coNP.

To show the coNP-hardness of M , we first develop a criterion for the disconnectivity of
G(φ) for Horn formulas φ (Lemma 17). Therefor, we introduce the following terms for Horn
formulas; they are also used in the proof of Lemma 19.

Definition 14. Clauses with only one literal are called unit clauses (positive if the literal is
positive, negative otherwise). Clauses with only negative literals are restraints, and the sets
of variables occurring in restraints are restraint sets. Clauses having one positive and one
or more negative literals are implications. Implications with two or more negative literals
are multi-implications.

We say a variable x has a branch to a variable y, if there is an implication y ∨ x ∨ x1 ∨
· · · ∨ xk, k ≥ 0. A variable x is implied by a set of variables U , if setting all variables
from U \ {x} to 1 forces x to be 1 in any satisfying assignment. A set of variables U is
self-implicating if every x ∈ U is implied by U . U is maximal self-implicating, if it contains
all variables implied by U .

Remark 15. A Horn formula can be represented by a directed hypergraph with hyperedges
of head-size one as follows: For every variable, there is a node, for every implication y∨x1∨
· · · ∨ xk, there is a directed hyperedge from x1, . . . , xk to y, for every restraint x1 ∨ · · · ∨ xk,
there is a directed hyperedge from x1, . . . , xk to a special node labeled “false”, and for every
positive unit clause x, there is a directed hyperedge from a special node labeled “true” to x.
For simplicity, we omit the “false” and “true” nodes and let the corresponding hyperedges
end, resp. begin, in the void.

We draw the directed hyperedges as joining lines, e.g., x ∨ y ∨ z = x y z . See the
following figures for more examples.

Lemma 16. The solution graph G(φ) of a Horn formula φ without positive unit clauses is
disconnected iff φ has a locally minimal nonzero solution.
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Proof. This follows from Lemma 4.5 of [11] since the all-zero vector is a solution of every
Horn formula without positive unit clauses, and Horn formulas are safely OR-free by Lemma
4.2 of [11].

Lemma 17. The solution graph G(φ) of a Horn formula φ without positive unit clauses is
disconnected iff φ has a non-empty maximal self-implicating set U containing no restraint
set.

Proof. If G(φ) is disconnected, φ has a locally minimal nonzero solution s by Lemma 16.
Let U be the set of variables assigned 1 in s. Since s is locally minimal, setting any variable
x from U to 0 makes φ false, so x must be implied by U , i.e., x must appear as the positive
literal in an implication clause with all variables from U . Thus U is self-implicating. Also,
U must be non-empty, maximal self-implicating and can contain no restraint set since s is
a solution.

Conversely, if φ has a non-empty maximal self-implicating set U containing no restraint
set, the vector s with all variables from U assigned 1, and all others 0, is a locally minimal
nonzero solution: The implications y1 ∨ · · · ∨ yk ∨ x with some yi /∈ U are satisfied with
yi = 0, and for the ones with all yi ∈ U , also x ∈ U since U is maximal, so these are satisfied
with x = 1. All restraints are satisfied since U contains no restraint set. s is locally minimal
since every variable assigned 1 is implied by U .

Lemma 18. ConnC({(x ∨ y ∨ z) ∧ (x ∨ z)}) is coNP-hard.

Proof. We reduce the no-constants satisfiability problem Sat({X,Y }) with X = x ∨ y ∨ z
and Y = x ∨ y to the complement of ConnC({M}), where M = (x ∨ y ∨ z) ∧ (x ∨ z).
Sat({X,Y }) is NP-hard by Schaefer’s dichotomy theorem (Theorem 2.1 in [18]) since X
is not 0-valid, not bijunctive, not Horn and not affine, while Y is not 1-valid and not dual
Horn.

Let ψ be any CNF({X,Y })-formula. If ψ only contains Y -constraints, it is trivially
satisfiable, so assume it contains at least one X-constraint. We construct a CNFC({M})
formula φ s.t. the solution graph G(φ) is disconnected iff ψ is satisfiable (for an example see
Figure 5). First note that we can use the relations x∨y =M(0, x, y) and x∨y =M(x, 0, y).

For every variable xi of ψ (i = 1, . . . , n), there is the same variable xi in φ. For every
Y -constraint xi ∨ xj of ψ, there is the clause xi ∨ xj in φ also. For every X-constraint
cp = xip ∨ xjp ∨ xkp (p = 1, . . . ,m) of ψ there is an additional variable qp in φ, and for every
xl ∈ {xip , xjp , xkp} appearing in cp, there are two more additional variables apl and bpl in φ.
Now for every cp, for each l ∈ {ip, jp, kp} the constraints qp ∨ apl, (xl ∨ apl ∨ bpl)∧

(
bpl ∨ xl

)
and bpl ∨ qr are added to φ, where r = p+ 1 if p < n, and r = 1 if p = m.

If ψ is satisfiable, there is an assignment s to the variables xi s.t. for every X-constraint
cp there is at least one xl ∈ {xip , xjp , xkp} assigned 1, and for no Y -constraint xi∨xj , both xi
and xj are assigned 1. We extend s to a locally minimal nonzero satisfying assignment s′ for
φ (s′ must be nonzero since ψ contains at least one X-constraint); then G(φ) is disconnected
by Lemma 16: Let all qp = 1, apl = 1, and all bpl = xl in s′. It is easy to check that all
clauses of φ are satisfied, and that all variables assigned 1 appear as the positive literal in
an implication clause with all its variables assigned 1, so that s′ is locally minimal.

Conversely, if G(φ) is disconnected, φ has a maximal self-implicating set U containing
no restraint set by Lemma 17. By starting with any set containing one of φ’s variables and
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Figure 4. An example for the proof of Lemma 18, illustrating the idea. Depicted here is the
hypergraph representation (see Remark 15) of φ for ψ = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7),
as constructed in the proof.

A maximal self-implicating set U of φ corresponds to a big “circulatory” with every variable
assigned 1 that passes through each qp and at least one gadget (xl ∨ apl ∨ bpl) ∧

(
bpl ∨ xl

)
=

xl apl bpl for each p; these gadgets act as “valves”: bpl may only be assigned 1 if xl may be

assigned 1.
For example, U could consist of the variables with the outgoing edges drawn solid; then each

such variable would be implied by U . ψ would become unsatisfiable, and G(φ) connected, e.g. if
the clauses x4 ∨ x6, x4 ∨ x7,x5 ∨ x6 and x5 ∨ x7 were added to ψ.

extending it until it is maximal self-implicating, one finds that U must contain all qp, all
apl, and for every p for at least one l ∈ {ip, jp, kp} both bpl and xl:

E.g., suppose U contains some xl. Then it must also contain bpl for some p, hence also
apl, and then qp as well. This means that U must contain all apl′ and some brl′′ , where
r = p− 1 if p > 1, and r = m if p = 1, and l′′ ∈ {ir, jr, kr}. Therefore U must contain arl′′
and xl′′ , and the implication starts over. For starting with some apl, some bpl, or some qp,
the reasoning is similar.

Then the assignment with all xi ∈ U assigned 1 and all other xi assigned 0 satisfies ψ
since U contains no restraint set.

Lemma 19. The relationM = (x ∨ y ∨ z)∧(x ∨ z) is expressible as a CNFC({R})-formula
for every Horn relation R that is not safely componentwise IHSB−.
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x3 a23 b23 x4 a24 b24 a22 b22

x1
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a11 b11

Figure 5. A more complex example as in Figure 4, with a variable of ψ appearing twice in an
X-constraint: φ for ψ = (x1 ∨ x2) ∧ (x3 ∨ x4 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x4) ∧ (x2).

ψ is satisfiable with the unique solution x1 = x3 = 1 and x2 = x4 = 0, and G(φ) is dis-
connected (with exactly two components, since there is exactly one maximal self-implicating set
containing no restraint set, consisting of the variables with the outgoing edges drawn solid).

Proof. We show thatM = (x ∨ y ∨ z)∧(x ∨ z) = x y z , L = (x ∨ y ∨ z)∧(x ∨ y ∨ z) =

x y z , or K = x∨ y ∨ z = x y z is expressible from R by substituting constants

and identifying variables. We can then express M from K or L as

M(x, y, z) ≡ K(x, y, z) ∧K(z, x, x) ≡ L(x, y, z) ∧ L(z, x, x).

The following steps generate K, L, or M from R.

1. Obtain a not componentwise IHSB− relation R∗ from R by identification of variables.

2. Assign all variables that can take only one value in R∗ that value to obtain a relation
R′. It is clear that R′ still is Horn and not componentwise IHSB−. Now a CNF-
formula representation φ′ of R′ contains no unit clauses, and identification of variables
cannot make φ′ unsatisfiable since there are no clauses with only positive literals (the
all-zero vector is always a solution).

3. Simplify the formula such that the following conditions hold; it is easy to check that the
listed operations do not change the value of the formula and have the stated effects,
and that the conditions are retained throughout the subsequent steps:

(a) No redundant implications: Remove a clause c = x ∨ y1 ∨ · · · ∨ yk (k ≥ 1) if x is
already implied by {y1, . . . , yk} via other clauses. If there are many possibilities,
choose one. Repeat as long as there is such a clause in φ′.
E.g., c would be removed if there were a clause x∨yi1∨· · ·∨yil with {yi1 , . . . , yil} ⊂
{y1, . . . , yk}, or clauses x ∨ q and q ∨ y1 ∨ · · · ∨ yk. If φ′ were (x ∨ y) ∧ (x ∨ z) ∧
(z ∨ y) ∧ (y ∨ z), then x ∨ y or x ∨ z would be removed:
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x

y z

x

y z

x

y z
⇔ ⇔

Now there are no implications where the positive literal is already implied by the
negative literals via other clauses.

(b) No impossible implications: Replace every clause x∨ y1 ∨ · · · ∨ yk by y1 ∨ · · · ∨ yk
if there is a restraint where all variables are from, or implied by, {y1, . . . , yk}.
E.g., if there is a clause r1 ∨ · · · ∨ rl with {r1, . . . , rl} ⊆ {x, y1, . . . , yk}, or clauses
q1∨r1∨· · ·∨rl, q2∨r1∨· · ·∨rl and q1∨q2. If φ′ were (x ∨ y ∨ z)∧(w ∨ y)∧(w ∨ x),
x ∨ y ∨ z would be replaced by y ∨ z:

x y zw x y zw⇔

Now there are no restraints with only variables implied by the variables of an
implication clause.

(c) No redundant branches: Remove the literal yi ∈ {y1, . . . , yk} from a multi-
implication x ∨ y1 ∨ · · · ∨ yk if yi is implied by a set {yi1 , . . . , yil} ⊂ {y1, . . . , yk},
yi /∈ {yi1 , . . . , yil}. If there are many possibilities (e.g. if there are clauses
y1 ∨ y2 ∨ y3 and y1 ∨ y2 ∨ y3), choose one:

x

y1 y2 y3

x

y1 y2 y3

x

y1 y2 y3⇔ ⇔

Repeat this for every multi-implication as long as there is such a literal.
Now there are no implications among the negative literals of implication clauses.

Since φ′ is not IHSB−, it contains a multi-implication. We show that since φ′ is also not
componentwise IHSB−, there must be a multi-implication c s.t.Var(c) is not self-implicating:

If the set of variables of an implication s1 = x1 ∨ x2 ∨ · · · ∨ xk is self-implicating, we can
add the clauses

s2 = x2 ∨ x3 ∨ · · · ∨ xk ∨ x1, s3 = x3 ∨ x4 ∨ · · · ∨ xk ∨ x1 ∨ x2, . . . , sk = xk ∨ x1 ∨ · · · ∨ xk−1

to φ′ without changing its value. Now it is easy to see that s1∧· · ·∧sk ≡ d∨e, with IHSB−
expressions

d = (x2 ∨ · · · ∨ xk) ∧ (x3 ∨ · · · ∨ xk ∨ x1) ∧ · · · ∧ (x1 ∨ · · · ∨ xk−1) , e = x1 ∧ · · · ∧ xk,

and that the solutions of d are not connected to that of e in the solution graphG(d∨e) for k ≥
3. E.g., for k = 3, (x∨y∨z)∧(x∨y∨z)∧(x∨y∨z) ≡ ((y ∨ z) ∧ (z ∨ x) ∧ (x ∨ y))∨(x∧y∧z) =

.

Let R′ = c∧ t1 ∧ · · · ∧ tl, where t1, . . . , tl are the multi-implications, and c = c1 ∧ · · · ∧ ck
all other clauses. Now if for every ti, Var(ti) were self-implicating, R′ could be written as

R′ = c ∧ (d1 ∨ e1) ∧ · · · ∧ (dl ∨ el)
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with IHSB− expressions d1, . . . , dl and e1, . . . , el, and the solutions of no di connected to
that of ei in the solution graph G(di ∨ ei). But then the expansion of the conjunction,

R′ = (c ∧ d1 ∧ · · · ∧ dl) ∨ (c ∧ d1 ∧ · · · ∧ dl−1 ∧ el) ∨ · · · ∨ (c ∧ e1 ∧ · · · ∧ el) ,

would yield a partition of R′ into pairwise disconnected (possibly empty) IHSB− parts (for
each pair of disjuncts, there is at least one i ∈ {1, . . . , l} with di appearing in one disjunct
and ei in the other, and thus the projections to the variables appearing in di and ei are
already disconnected). Since every component of an IHSB− relation is itself IHSB− by
Lemma 4.1 of [11], R′ would then be componentwise IHSB−.

Thus R′ must contain a multi-implication c s.t.Var(c) is not self-implicating, and then
this c has a literal y s.t. y is not implied by Var(c), and the following step is possible:

4. Choose some multi-implication c = x∨y∨z1∨· · ·∨zk (k ≥ 1) such that {x, y, z1, . . . , zk}
is not self-implicating, with y being a variable not implied by {x, z1, . . . , zk}.
Then there is no clause x ∨ a1 ∨ · · · ∨ al with {a1, . . . , al} ⊆ {x, z1, . . . , zk}. Also, by
(3a), there is no clause x∨ a1 ∨ · · · ∨ al with {a1, . . . , al} ( {y, z1, . . . , zk}, and by (3c)
no clause a0 ∨ a1 ∨ · · · ∨ al with {a0, a1, . . . , al} ⊆ {y, z1, . . . , zk}.

Next we trim c to size 3:

5. Identify z1, . . . , zk, call the resulting variable z.
This produces the clause x ∨ y ∨ z from c. It is easy to see that consequentially there
are no clauses x∨ y, x∨ z, no y ∨ x, y ∨ z, y ∨ x∨ z, and no z ∨ y. Thus other clauses
only involving x, y, z can be only from {z ∨ x, z ∨ x ∨ y}. Also, no unit clauses can
emerge, by (3b).

Now we eliminate all restraints:

6. Set all remaining variables not implied by {x, y, z} to 0.
This eliminates all restraints because they must contain at least one variable not
implied by {x, y, z}, and produces no new restraints since any implication with the
positive literal not implied by {x, y, z} must also have some negative literal not implied
by {x, y, z}, and thus vanishes. Also, no unit clauses can emerge.

All remaining variables are now implied by {x, y, z}, and thus can have no branch to y. We
next handle the variables that also imply variables from {x, y, z}. We can’t set them to
constants because this would eventually produce unit clauses or restraints for the variables
x, y, z, so we identify them with x, y or z. We also must be careful not to produce unwanted
implications among {x, y, z}.

7. Identify all remaining variables xi /∈ {y, z} having a branch to x with x, repeat this as
long as there are such xi.
These xi cannot have been implied by {y, z} due to (3a); thus there cannot emerge an
implication x ∨ y, x ∨ z (or x ∨ y ∨ z). Also, the set of these xi cannot have implied y
because of (6) since y is not implied by {x, z}, and thus there neither can emerge an
implication x ∨ y.
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8. Identify all remaining variables xi /∈ {x, z} having a branch to z with z, repeat this as
long as there are such xi.
These xi cannot have been implied by {y} due to (3c); thus there cannot emerge an
implication z ∨ y, only z ∨x or z ∨x∨ y. Analogously to (7), there neither can emerge
an implication y ∨ z or x ∨ z.

All remaining variables other than x, y, z now have no branch to any of x, y, z, and so we
can set them to 1 (since they also do not occur in restraints).

9. Set all remaining variables other than x, y, z to 1.

We are now left with K,L, or M .

5. Constraint-Projection Separating Sets of Relations

In this supplemental section we reveal a common property of all CPSS sets S of relations
and derive a simple algorithm for ConnC(S).

Definition 20. A set S of logical relations is constraint-projection separating, if for every
CNFC(S)-formula φ whose solution graph G(φ) is disconnected, there exists a constraint Ci
s.t. G(φi) is disconnected, where φi is the projection of φ to Var(Ci).

For example, {x ∨ y} is projection-separating (for the proof
see below); e.g., for (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), the projections
to {x, y}, {y, z} and {z, x} are all disconnected. In contrast,
{x ∨ y ∨ z} is not projection-separating: E.g., (x ∨ y ∨ z) ∧
(y ∨ z ∨ w)∧(z ∨ w ∨ x)∧(w ∨ x ∨ y) (see the graph on the right)
is disconnected, but the projection to any three variables is con-
nected.

In Lemma 24 we show that CPSS sets of relations, as defined
in Definition 9, are indeed constraint-projection separating, so
that the following algorithm works.

Theorem 21. Let S be a CPSS set of relations, and φ a CNFC(S)-formula. Then, the
following polynomial-time algorithm decides whether G(φ) is connected:

For every constraint Ci of φ, obtain the projection φi of φ to the variables xi occurring
in Ci by checking for every assignment a of xi whether φ[xi/a] is satisfiable. Then G(φ) is
connected iff for no φi, G(φi) is disconnected (φ[xi/a] denotes the formula with the constants
aj substituted for the variables xij).

Proof. Every projection can be computed in polynomial time since φ is Schaefer, and con-
nectivity of every G(φi) can be checked in constant time. If G(φ) is disconnected, some
G(φi) is disconnected since φ is constraint-projection separating by Lemma 24 below. If
some G(φi) is disconnected, it is obvious that G(φ) cannot be connected.

Lemma 22. Let S be a set of IHSB− (IHSB+) relations and φ a CNFC(S)-formula. Then
for any two components of G(φ), there is some constraint Ci of φ s.t. their images in the
projection φi of φ to Var(Ci) are disconnected in G(φi).
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Proof. We prove the IHSB− case, the IHSB+ case is analogous. Consider any two com-
ponents A and B of φ. Since every IHSB− relation is OR-free, there is a locally minimal
solution a in A and a locally minimal solution b in B by Lemma 4.5 of [11]. Let U and V be
the sets of variables that are assigned 1 in a and b, resp. At least one of the sets U ′ = U \V
or V ′ = V \U is not empty, assume it is U ′. Then for every x1 ∈ U ′ there must be a clause
x1 ∨ x2 with x2 ∈ U since a is locally minimal, and also x2 must be from U ′, else b would
not be satisfying.

But then for x2 there must be also some variable x3 ∈ U ′ and a clause x2 ∨ x3, and we
can add the clause x1∨x3 to φ without changing its value. Continuing this way, we will find
a cycle, i.e. a clause xi∨xi+1 with xi+1 = xj , j < i. But then we already have xj ∨xi added,
thus (si, sj) ∈ {(0, 0), (1, 1)} for any solution s of φ, and there must be some constraint Ci
with both xi and xj occurring in it (the Ci in which the original xi∨xj appeared), and thus
the projections of A and B to Var(Ci) are disconnected in G(φi).

Lemma 23. Let S be a set of bijunctive relations and φ a CNFC(S)-formula. Then for any
two components of G(φ), there is some constraint Ci of φ s.t. their images in the projection
φi of φ to Var(Ci) are disconnected in G(φi).

Proof. The proof is similar to the last one. Consider any two components A and B of φ
and two solutions a in A and b in B that are at minimum Hamming distance. Let L be
the set of literals that are assigned 1 in a, but assigned 0 in b. Then for every l1 ∈ L that
is assigned 1 in a, there must be a clause equivalent to l1 ∨ l2 in φ s.t. l2 is also assigned
1 in a, else the variable corresponding to l1 could be flipped in a, and the resulting vector
would be closer to b, contradicting our choice of a and b. Also, l2 must be assigned 0 in b,
i.e. l2 ∈ L, else b would not be satisfying.

But then for l2 there must be also some literal l3 ∈ L that is assigned 1 in a and a
clause equivalent to l2 ∨ l3 in φ, and we can add the clause l1 ∨ l3 to φ without changing
its value. Continuing this way, we will find a cycle, i.e. a clause equivalent to ln ∨ ln+1 with
ln+1 = lm, m < n. But then we already have lm ∨ ln added, thus if xi and xj are the
variables corresponding to ln resp. lm, then (si, sj) ∈ {(0, 1), (1, 0)} (if ln and lm were both
positive or both negative), or (si, sj) ∈ {(0, 0), (1, 1)} (otherwise), for any solution s of φ.
Also, there must be some constraint Ci with both xi and xj occurring in it (the constraint
in which the clause equivalent to ln ∨ lm appeared), and thus the projections of A and B to
Var(Ci) are disconnected in G(φi).

Lemma 24. Every set S of safely componentwise bijunctive (safely componentwise IHSB−,
safely componentwise IHSB+, affine) relations is constraint-projection separating.

Proof. The affine case follows from the safely componentwise bijunctive case since every
affine relation is safely componentwise bijunctive by Lemma 4.2 of [11].

If the relation corresponding to some Ci is disconnected, and there is more than one
component of this relation for which φ has solutions with the variables of Ci assigned values
in that component, the projection of φ to Var(Ci) must be disconnected in G(φi).

So assume that for every constraint Ci, φ only has solutions in which the variables of
Ci are assigned values in one component Pi of the relation corresponding to Ci. Then
we can replace every Ci with Pi to obtain an equivalent formula φ′. Since S is safely
componentwise bijunctive (safely componentwise IHSB−, safely componentwise IHSB+),
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each Pi is bijunctive (IHSB−, IHSB−), and thus so is φ′, and the statement follows from
Lemmas 22 and 23.

Remark 25. The Lemmas 22 and 23 cannot be generalized to safely componentwise bi-
junctive or safely componentwise IHSB− relations: For sets S of safely componentwise
bijunctive (safely componentwise IHSB−) relations that are not bijunctive (IHSB−), there
are CNFC(S)-formulas with pairs of components that are not disconnected in the projection
to any constraint.

E.g., for the safely componentwise bijunctive relation R = ((x ∨ y) ∧ z)∨(x ∧ y ∧ z), the
CNFC({R})-formula F (x, y, z, w) = R(x, y, z)∧R(y, x, w) has the four pairwise disconnected
solutions a=0000, b=1100, c=0110, and d=1001, but a is connected to b in the projection
to {x, y, z} as well as in the one to {x, y, w}.

Finally, we show that Schaefer sets of relations that are not CPSS are not constraint-
projection separating. Lemma 24 shows that there are non-Schaefer sets that are constraint-
projection separating. It is open whether there are other such sets not mentioned in Lemma
24.

Lemma 26. If a set of relations S is Schaefer but not CPSS, there is a CNFC(S)-formula
φ that is not constraint-projection separating.

Proof. Since S is Schaefer but not CPSS, it must contain some relation that is Horn but
not safely componentwise IHSB−, or dual Horn but not safely componentwise IHSB+.
Assume the first case, the second one is analogous. Then by Lemma 19, we can express
M = (x ∨ y ∨ z) ∧ (x ∨ z) as a CNFC(S)-formula. Consider the CNFC(S)-formula formula

T (u, v, w, x, y, z) =M(u, v, w) ∧M(x, y, z) ∧M(w,w, y) ∧M(z, z, v)

≡ ((u ∨ v ∨ w) ∧ (u ∨ w)) ∧ ((x ∨ y ∨ z) ∧ (x ∨ z)) ∧ (y ∨ w) ∧ (v ∨ z) .

Now G(T ) is disconnected by Lemma 17 since {u, v, w, x, y, z} is maximal self-implicating,
but neither the projection ∃x∃y∃zT ≡ M(u, v, w) to the variables of the first constraint in
the CNF({M})-representation of T , nor the projection ∃u∃v∃x∃zT ≡ y∨w to the variables
of the third one is disconnected. The second and fourth constraints are symmetric to the
first and third ones. Since in the CNFC(S)-representation of T every conjunctM(r, s, t) of T
(r, s, t ∈ {u, v, w, x, y, z}) is a CNFC(S)-formula

∧
iRi(ξ

i) with Ri ∈ S and ξij ∈ {0, 1, r, s, t},
for every constraint Ci of T , the set Var(Ci) is a subset of {u, v, w}, {x, y, z}, {y, w} or {v, z},
and thus also for no Ci the projection to Var(Ci) is disconnected.

6. Related and Future Work

Now that the connectivity and st-connectivity questions as well as the diameter seem to be
settled for CNFC(S)-formulas, a classification for CNF(S)-formulas without constants would
be interesting, as Gopalan et al. already remarked [11]. Another variation are partially
quantified formulas. We have obtained partial results for both cases [20], but a complete
classification is still missing.

Besides CSPs in Schaefer’s framework, there are other ways to look at Boolean satisfia-
bility. Disjunctive normal forms with special connectivity properties were studied by Ekin et
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al. already in 1997 for their “important role in problems appearing in various areas including
in particular discrete optimization, machine learning, automated reasoning, etc.” [9].

Recently, we have investigated the connectivity for B-formulas and B-circuits in Post’s
framework, inter alia in view of circuit-based SAT solvers, and could prove a distinct di-
chotomy: For B ⊆ M, B ⊆ L, or B ⊆ S0, both connectivity problems are in P and the
diameter is linear, while in all other cases, the problems are PSPACE-complete and the
diameter can be exponential [19]. Here, we also could obtain results for partially quantified
formulas already.

There are yet more kinds of representations of Boolean relations, such as binary decision
diagrams and or Boolean neural networks, and investigating the connectivity in these settings
might be worthwhile as well.

Other connectivity-related problems already mentioned by Gopalan et al. are counting
the number of components and approximating the diameter. Also, with regard to recon-
figuration problems, one could try to find the shortest path between two solutions, or the
optimal path according to some measure.

Furthermore, our definition of connectivity is not the only sensible one: One could regard
two solutions connected whenever their Hamming distance is at most d, for any fixed d ≥ 1;
this was already considered related to random satisfiability, see [1]. This generalization
seems meaningful as well as challenging.

Finally, a most interesting subject are CSPs over larger domains; in 1993, Feder and
Vardi conjectured a dichotomy for the satisfiability problem over arbitrary finite domains
[10], and while the conjecture was proved for domains of size three in 2002 by Bulatov [5],
it remains open to date for the general case. Close investigation of the solution space might
lead to valuable insights here.

For k-colorability, which is a special case of the general CSP over a k-element set, the
connectivity problems and the diameter were already studied by Bonsma and Cereceda [4],
and Cereceda, van den Heuvel, and Johnson [6]. They showed that for k = 3 the diameter is
at most quadratic in the number of vertices and the st-connectivity problem is in P, while for
k ≥ 4, the diameter can be exponential and st-connectivity is PSPACE-complete in general.
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