Journal on Satisfiability, Boolean Modeling and Computation 8 (2014) 149-171

Reweighted Belief Propagation and
Quiet Planting for Random K-SAT

Florent Krzakala fk@espci.fr
Laboratoire de Physique Statistique, Ecole Normale Supérieure, 45 rue d’Ulm

Universié P. et M. Curie, Paris, France
ESPCI ParisTech, 10 rue Vauquelin, UMR 7083 Gulliver, Paris 75000, France.

Marc Mézard mezard@lptms.u-psud.fr
Ecole Normale Supérieure, 45 rue d’Ulm, Paris France.

Université Paris-Sud € CNRS, LPTMS, UMRS8626,

Bat. 100, Université Paris-Sud 91405 Orsay, France.

Lenka Zdeborova lenka.zdeborova@cea.fr
Institut de Physique Théorique, IPhT,

CEA Saclay, and URA 2306, CNRS,

91191 Gif-sur-Ywvette, France.

Abstract

We study the random K-satisfiability problem using a partition function where each
solution is reweighted according to the number of variables that satisfy every clause. We ap-
ply belief propagation and the related cavity method to the reweighted partition function.
This allows us to obtain several new results on the properties of random K-satisfiability
problem. In particular the reweighting allows to introduce a planted ensemble that gener-
ates instances that are, in some region of parameters, equivalent to random instances. We
are hence able to generate at the same time a typical random SAT instance and one of its
solutions. We study the relation between clustering and belief propagation fixed points and
we give a direct evidence for the existence of purely entropic (rather than energetic) barriers
between clusters in some region of parameters in the random K-satisfiability problem. We
exhibit, in some large planted instances, solutions with a non-trivial whitening core; such
solutions were known to exist but were so far never found on very large instances. Finally,
we discuss algorithmic hardness of such planted instances and we determine a region of
parameters in which planting leads to satisfiable benchmarks that, up to our knowledge,
are the hardest known.

KEYWORDS: random satisfiability, belief propagation, planted ensemble, average hardness,
entropic barriers, planted constraint satisfaction
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1. Motivation

The satisfiability of Boolean formulas is a fundamental problem in theoretical computer
science. It was the first problem shown to be NP-complete [14, 22, 41], and it is of central
relevance in various practical applications, including artificial intelligence, planning, hard-
ware and electronic design, automation, verification and more. It can thus be thought of as
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the “Ising model” of computer science. Ensembles of randomly generated instances of the
satisfiability problem have emerged in computer science as a way of evaluating algorithmic
performance and addressing questions regarding the average case complexity.

An instance of the random “K-SAT” problem consists of N Boolean variables and
M clauses. Each clause contains a subset of K distinct variables chosen uniformly at
random, and each clause forbids one random assignment of these K variables out of the
2K possible ones. The instance is satisfiable if there exists an assignment of variables that
simultaneously satisfies all clauses. In this case we call such an assignment a solution to the
instance. When the density of constraints, defined as « = M/N, is increased, the formulas
become less likely to be satisfiable. In the thermodynamic limit, i.e. when N — oo at
fixed «a, there is a sharp transition from a phase, @ < a.(N), in which the formulas are
almost surely satisfiable to a phase, @ > a.(NN), where they are almost surely unsatisfiable
[15]. Although the convergence of the sequence a.(N) as N — oo is still an open problem,
it is widely believed that this sequence is convergent, and therefore that there is a phase
transition at o, = limy_00 (V). It is also a well known empirical result that the hardest
instances are found near to this threshold [11, 32, 17].

Random K-SAT has attracted the interest of mathematicians, computer scientists and
statistical physicists. One very fruitful methodological direction to study random K-SAT is
the belief propagation (BP) algorithm [43, 21], which is closely related to the cavity method
that was developed in statistical physics for studies of mean field spin glasses [28, 27]. The
results and insights coming from the cavity method are remarkable. The satisfiability
threshold and other phase transitions in the structure of solutions have been described in
[7, 31, 29, 18]. In particular, it was shown that for K > 3 the space of solutions for highly
constrained but still satisfiable instances splits into exponentially many (in N) clusters
which are far away from each other. Another important concept studied recently in random
K-SAT [47, 35, 4] is the one of frozen variables: a given variable is frozen relatively to a
given cluster of solutions if the variable is fixed to the same value in all the solutions of
this cluster. Clearly any local search procedure which approaches a cluster must identify
correctly the frozen variables.

The reader should note that, from a mathematical point of view, the majority of the
results obtained with the cavity method are only conjectures since certain assumptions
of the method were not proven yet. However, those assumptions are widely believed to
be correct and hence these results, as well as the results of the present article, should be
regarded as “presumably-exact conjectures” based on the so far heuristic, but sophisticated
“cavity method”, and the related “replica method”. Notably a number of the predictions
coming from this method (e.g. the existence of clustering of solutions) have been confirmed
rigorously in random K-SAT [26, 3]. And an even larger number of these “presumably-
exact conjectures” have been proven for other random constraint satisfaction problems
such as coloring of random graphs, NAE-SAT or K-XOR-SAT since for those problems
some methodological simplifications arise, see e.g. [12, 13, 33].

In spite of the large corpus of results/conjectures obtained in recent years via the cavity
method, there are still many open questions in random K-SAT, even on this heuristic level.
Let us mention the main ones.

e The relation between detailed properties of the energy landscape (where “energy”
is defined as the number of unsatisfied clauses, and its domain are all the possible
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assignments) as predicted by the cavity method on one hand, and what is found by
numerical simulations on the other hand is still not fully established. In the limit
of large K, the situation is relatively well under control [18, 2]: phase transitions
in the space of solutions can be identified with a threshold beyond which a large
class of simple algorithms (or at least the methods used to analyze them) fail. How-
ever, for small K the algorithmic limits are strongly algorithm-dependent, and many
algorithmically-relevant questions about the energy landscape are still largely open.
In particular, relatively simple stochastic-local-search algorithms have been found to
be efficient in the regimes of the density of constraints where clustering of solutions
occurs [46].

e Another annoying observation is that so far no one has been able to find solutions
of large (consider e.g. N > 10°) random K-SAT formulas with frozen variables (i.e.
variables which take the same value in all solutions) in spite of the fact that theory
clearly predicts their existence [31, 49] at large enough density of constraints.

e Another aspect of this paradox is the fact that it was impossible so far to find numer-
ically non-trivial solutions of the BP equations, while the theory shows that there are
exponentially many of them (each associated with one cluster of solutions), and ac-
tually an algorithm like survey propagation is precisely based on the idea of counting
the BP fixed points associated with frozen clusters [31].

In this work we shall address some of these open issues by developing a ‘quiet planting’
procedure for the random K-SAT problem. Planting is a way to generate a K-SAT instance
with a known solution. Instead of generating the clauses randomly and then trying to find
a solution, one first generates a special random configuration of variables, which we call the
‘planted configuration’ and then one generates the clauses in such a way that each clause
is satisfied by the planted configuration. By construction the planted configuration is a
solution of the instance so generated, one says that it has been ‘planted’ in the instance.
Unfortunately, the naive planting that we have just described generates some instances that
are very distinct from typical random K-SAT instances. A more careful procedure, called
‘quiet planting’, allows to generate K-SAT instances that have the same distribution as
fully random instances (when the density of constraints is below the threshold a., to be
defined later). Therefore quiet planting is a procedure that provides a random instance
together with a solution. So far quiet planting had been developed for other constraint
satisfaction problems [2, 19, 20, 50]. In this paper we study quiet planting in K-SAT. In
order to do so, we introduce and study the reweighted belief propagation and the associated
cavity method results. This study allows to answer several of the important open questions.
From a mathematically rigorous point of view we provide new conjectures about the random
K-SAT problem. More specifically, we address the following points:

e We find numerically some non-trivial BP fixed points by initializing BP in the quietly-
planted configuration. This shows that such non-trivial fixed points do exist, as ex-
pected from the cavity method analysis. This answers a long-lasting question asked
by random K-SAT practitioners who could not find these non-trivial BP fixed-points.
They exist, but they are hard to find, and one needs a special procedure like quiet
planting in order to see them.
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e Clusters are often imprecisely described in literature as connected components of the
“solution graph”. This is defined as a graph in the space of solutions where edges
connect solutions that differ in no more than some number d > 1 of variables (the
precise value of d depends on the problem or on the author). Hence to walk from one
such cluster to another one, it is necessary to violate a number of clauses n(d) > 0 on
the way, this is called an ’energetic’ barrier between clusters. It is known that clusters
separated by energetic barriers exist (in the appropriate range of «), when K is large
enough. Here we show the existence of different type of barriers, called “entropic
barriers”. These occur whenever a connected component of the solution graph is
made of two subsets of solutions connected by a very narrow path of solutions: The
path from one subset to another does not require violation of any clause, but this
path is rare and a random walker would need a very long time, typically a time that
diverges exponentially when N — co. Using the reweighted BP we explicitly show
that entropic barriers do exist in random K-SAT. Entropic barriers had been known
to exist in simple spin glass models (see for instance [5, 45, 39]), but it is the first time
that they are found in K-SAT.

e An interesting problem which has been studied on several occasions in the literature
[6, 36] is: how to plant a solution in a 3-SAT problem such that the resulting formula is
nevertheless very hard. In this paper we clarify in which region the planted instances
are hard, namely in the shaded region in Fig. 2. Qualitatively we reach the same
conclusions as [6]. We give the exact boundary of the hard region (whereas the
calculations in [6] were only approximate) and we provide more detailed heuristic
arguments for this result. In the end we have a way to create the hardest known
(at least to the authors) satisfiable 3-SAT formulas. Note that the hard ensemble
discussed here is closely related to the one of [16].

2. Reweighting in random K-SAT

The satisfiability problem is defined over N Boolean variables s; € {0,1}, and M clauses.
Each clause contains K variables. If a variable ¢ is negated in the clause a we set J;q, = 1,
otherwise we set J;, = 0. A clause a is satisfied if and only if

na=» (1=04.4,) >0, (1)

1€0a

where Oa is the set of variables belonging to the clause a. Here we introduced n, as the
number of variables that are satisfying the clause a.

Let us first define the standard probability measure over solutions. We assume that
there exists at least one solution, and we define the partition function as the number of
solutions:

Z = Z H Ca({si}ieﬁa) ) (2)
{si} @

where C, = 1 if clause a is satisfied and C, = 0 otherwise. The sum is over all the
2NV assignments of variables. One introduces a ‘Boltzmann’-type measure as the uniform
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measure over all solutions:
1
p{si}) = [ Ca{si}icon)- (3)

The cavity method (or BP) can be used to study heuristically the properties of this ‘stan-
dard’ measure.

Let us now define a reweighted measure. We introduce K parameters A1, ..., Ax which
are non-negative real numbers, and we define the ‘A-measure’ as:

1

ma{si}) = 7N I [Cal{si}icon) Matsiticon)] (4)

Where the reweighted partition function is defined as

Z(\) = Z H [Ca({si}ieé‘a) ATLa({Si}'LEBa)} . (5)
{si} @

We denote the vector of A = (A1, A2,...,Ax). In order to have a unique measure
associated with each vectors A\, we choose to fix the normalization

1:%(6)». (6)

r=1

(note that any normalization procedure that breaks the symmetry of (4) with respect to a
global multiplication of all components of A would be fine, we chose eq. (6) because it leads
to convenient simplifications in some expressions that follow). The standard measure and
partition function are recovered when all components of A are equal: Vr A\, = 1/(25% —1).

The main subject of this paper is to generalize the cavity-method-based conjectures on
the phase diagram of random K-SAT to the generalized reweighted K-SAT problem with
vector-parameter A, and to discuss new interesting results which can be derived using the
generalized measure (4). There are some properties that do not depend on the reweighting
parameters A (as long as A\, > 0 forall » = 1,..., K), for instance the satisfiability threshold
or the freezing transition, which is the density of constraints at which strictly all clusters
start to contain frozen variables. But other physically important phase transition defined
in [18, 35] such as the clustering or the condensation transitions do depend on reweighting
parameters.

Note that special cases of the reweighted partition function were studied previously. In
particular, [1] used the set of reweighting parameters

r

_r
27{(:1 (Ir{)'yr

as a tool to be able to use the second moment method to obtain a lower bound on the
satisfiability threshold. Indeed, the success of this reweighting in the second moment cal-
culations inspired our study. The same reweighting was later used in several other rigorous
works in conjunction with the second moment method. Let us also mention the work of
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[36] where planting according to the reweighting (7) was studied numerically, together with
the first and second moments calculations. However, it seems that the authors of [36] did
not notice that for a special value of v the generated instances are equivalent to random
instances, which is one of the crucial points in the present paper. Reweighted planting was
also studied in [6] as a way to create hard instances. We shall comment on all these results
later in the light of our findings.

3. Belief propagation for the reweighted partition function

The reweighted partition function (5) can be computed via the belief propagation (BP)
algorithm [43, 21]. The BP result is exact on trees, and it corresponds to the Bethe ap-
proximation on sparse random graphs. Considering the probability measure (4), we define

gf’ as the probability that the constraint a is satisfied, conditioned on the fact that the
value of variable ¢ is s;. Similarly, st'j%a is the probability that the variable j takes value s;
conditioned on the fact that the constraint a has been removed from the graph. According
to belief propagation these messages then satisfy the set of equations

Xz_>a — Hbeaz\a wgz‘” (8)
” [Theona V07" + Theona ¥67°
. 1
wg;n = Za—i Z G(K -1- Z 5Jja75j) )\K_l_zjeaa\i(s H X]_m
{si}jea\i j€da\i ]E@a\z
. 1
wtllj}m = ga—i Z )\K_Zjeaa\ié H Xj_m (10)
{sj}jcaa\i JGaa\Z
where the normalization Z% " ensures that waﬁl + WHZ = 1, and () is the Heaviside

step function. Once these messages (i.e. the solution of these equations) have been found,
the marginal probability that variable ¢ takes value s;, denoted by xéi, can be computed as:

Hbeaz b—>z
[Toeoi ¥ +Hb€8@ 5

The log-partition function can then be computed using the Bethe formula. This gives the
“free-entropy” density:

s(\) = — logZ (Z log Z* + Z log Z" — Z log Zm> (12)

(11)

st

where

Zi H d)a—n + H wa—n’ (13)

a€di a€oi

7% = 3 0K = 65s) M-S e LI X (14)
{3 }'LEBa i€0a i€da

Zia — z—)awa—m _|_Xzi—>a,¢?—>i' (15)
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4. Quiet planting in random K-SAT

A reweighting parameter set A* is defined as “magic” when the set of eqs. (8-10) has a
solution (fixed point) for which the messages do not depend on the edge (ai), i.e. x17% = xs,
and @7 = 1), for all (ai). Such a solution (fixed point) is referred to in the statistical
physics literature as the “factorized” fixed point of belief propagation. We shall see that

problems defined with magic reweigthing have special properties.

4.1 Magic reweigthing and quenched-annealed equivalence

Since in random K-SAT the negations are chosen at random there is a global symmetry
between 0’s and 1’s. A factorized fixed point of BP hence also has to be symmetric, i.e.

a7 = xi=% = 1/2 for all (ai) and s. With the use of normalization (6) it is easy to see
that Egs. (9)-(10) permit such a fixed point if and only if \ satisfies

% = i <I:__11> A% (16)

Note that, if we restrict to the power-law choice of the reweighting parameters (7) made in
[1, 36], we recover from (16) the condition for the special value v = v* used in these works,
defined by:

L= 1+ 1 =7"). (17)

In what follows we will mostly speak about the general \* magic reweighting, but sometimes
we focus for simplicity on the power-law choice of v*. We urge the reader not to confuse
the two, as v* is only one special point in the space of magic reweigthings.

The free-entropy density (12) in the case of a factorized BP fixed point is equal to

spp(A*) = (1 — aK)log2, (18)

this is obtained simply by evaluating eq. (12) for 97 = yi7¢ = 1/2.
We now define the quenched and annealed free-entropy density as

. 1

Sannealed()\) = ]\}gnoo N lOgE[Z()‘)} P (19)
. 1

Squenched (A) = A}gnoo N]E[log Z(N)]. (20)

where Z()) is the partition function defined in (5) and the expectation is with respect to
the measure (4). These names are motivated from properties of glassy material after a fast
(quenched) or slow (annealed) decrease of temperature. It follows from the cavity method
that under certain conditions the Bethe free-entropy density of the factorized fixed point is
equal to the quenched free-entropy density sgp(A*) = Squenched (A*) in the thermodynamic
limit N — oco. The condition for this equality to hold is that the density of constraints, «
should be smaller than a threshold value where a thermodynamic phase transition called
the “condensation transition” occurs. This transition is defined by the non-analyticity of
the quenched free-entropy.
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Let us now compute the annealed free-entropy density of the reweighted ensemble with
arbitrary A. We get

K alN
E[Z(\)] = 2V [Z A <I: > 21](] _ gNg-aKN (21)
r=1

where in the second equality we used the normalization condition (6). We see that the
annealed free-entropy density equals the Bethe free-entropy density of the factorized BP
solution (18) found for A = X\*, Sannealed = Sfpp(A*). This is actually a general property,
see [38]. Consequently, at low enough density of constraints, the quenched free-entropy
density at A* is equal to the annealed free-entropy density. This last property is the crucial
point that makes quiet planting in the sense of [2, 20, 50] possible.

4.2 Quiet planting in the reweigthed ensemble
The definition of the A-reweighted planted ensemble is the following:

1. Choose the geometry of the random K-SAT formula as before (M clauses where each
contains a uniformly-chosen random K-tuple of variables).

2. Define a special configuration, called the planted configuration, by assigning randomly
1/2 of the variables to the value 0 and the other 1/2 to 1.

3. Define the probability p(r) by:

p(r) = (I:))\ for r>0, p(0)=0. (22)

For each clause a, choose a random integer r, > 0 from this distribution, and then
choose at random one out of the (5) configurations of negations for which the planted
configuration satisfies the clause by r, different variables.

In this planted ensemble, the probability that a randomly chosen clause is satisfied by r
variables from the planted configuration is thus equal to p(r) defined in (22).

First of all notice that since every planted configuration is consistent with the same num-
ber of instances the planted configuration has all the properties of a configuration sampled
uniformly at random from the corresponding probability measure p(\), eq. (4). This is a
very generic property of planting. Furthermore, it is easy to see that this planting procedure
generates instances randomly but in general not uniformly over all instances. Every planted
instance appears with probability proportional to its partition function Z(A). Hence the
planted ensemble of instances is in general very different from the random ensemble. Only
in the case when the annealed free-entropy density equals the quenched one, the fluctuations
of Z(\) are small enough (in the large N limit) so that the planting procedure generates
instances statistically equivalent to the random ones. This property called “quiet plant-
ing” means that every property that holds with high probability in the random ensemble
holds also with high probability in the planted ensemble and vice versa, as discussed in
[2, 20, 51, 40].

156



REWEIGHTED BP FOR RANDOM K-SAT

To summarize, when one uses magic-reweighting, with constraint densities smaller than
the corresponding condensation phase transition [18], the annealed free-entropy density
equals the quenched one and the planting is quiet. This means that the planting procedure
has the following two properties: First it creates formulas of the satisfiability problem
that are statistically equivalent to random formulas in the thermodynamic limit N — oc.
Second, the planted configuration has all the properties of a configuration sampled randomly
from the measure p(A*). In physics language, the planted configuration is an “equilibrium
configuration” of the measure pu(A*) (while it is not an equilibrium configuration of the
uniform measure over all solutions). In the next sections we explore consequences of these
simple but very useful properties.

4.3 Cavity equations in the “magically” reweighted ensemble

Iterating the BP equations on a given instance generated with quiet planting until a fixed
point is reached is easy and provides an experimental access to the study of phase transitions
in this problem. However, the very notion of phase transition is an asymptotic one (it exists
only in the thermodynamic limit N — o0), and it is thus very useful to get a control of
this thermodynamic limit. This is done in the cavity method by studying an ensemble of
planted problems. The corresponding distributional equations can be solved efficiently with
population dynamics technique [27], these equations are referred to as the replica-symmetric
cavity equations.

In the present case the object studied by the cavity method is the probability P (1)
that at the ¢-th iteration of BP equations a message arriving on a site ¢ takes the value
¥ = (¥o, 1), conditionally on the fact that the planted configuration on i is equal to s;. It
satisfies:

) )
BN | R o) TR
J;

i J=1 {s;}

K—-1 oo lj
JTL S o T1 Pk dvtise - () (23)
j=1 ;=1

k=1
where the function F({¢*i}) is obtained by combining (9-10) with (8)

Fr({why) = Z 0(K —1—26 )M s, Hstw (24)

s I=L k=1

Fign({wh}) = Z st H st], (25)

{ jlk‘fl

and g(l;) is the Poisson distribution with mean oK. The probability distribution P({s;}, s;)
is obtained by drawing a random variable J; uniformly from {0, 1} and then a number r of
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variables s;’s such that s; # J;, where r is drawn from the distribution p(r):

p(r) = —T’p(T) if Ji S; 26
p(r) SE ) # Si (26)
)= =Py g (27)

2= (K = 1")p(r")

Where p(r) is given by (22). The planted initialization then corresponds to P;?it(z/z) =
d(¢ — u) where us; = 1 and uj_s; = 0. The average Bethe free-entropy is expressed along
the same lines.

5. Phase transitions in the reweighted ensemble, or how to use quiet
planting

Following the argumentation in [19], the quietly-planted satisfiability instances have in
general three sharp phase transitions as the density of constraints increases. The simplest
way to locate these phase transitions is to directly perform the planting, and then iterate
till convergence the reweighted BP equations (8-10) on the resulting instance, with two
possible initializations:

e “Random initialization”. One initializes messages x*~® and 1%~ as random vectors
drawn uniformly from the set of normalized vectors. In the cavity equations, PSOZ_ ()
is the uniform density over the set ¥ + ¢ = 1.

e “Initialization in the planted configuration”. One initializes the messages in the
planted configuration, i.e. x{7% =1, x;* = 0 if variable 7 was planted 1 or x{7% =0,
X57% = 1 if variable i was planted 0. The distribution Psoi (1) in the cavity equations

is the one induced by this choice, using Eqs. (9-10).

Let us summarize the general scenario found in quiet planting. The following results
can be found empirically by performing the numerical experiment of iterating BP equations
on large instances (which is easily done), but the real control of the phase transitions is
done through the asymptotic analysis of the distributional equations of the cavity method
written in the previous section.

In order to describe the various phases of the system, we use a vocabulary borrowed
from statistical physics. We say that a system is “ferromagnetic” when the expectation of
a variable has a positive correlation with the planted configuration (in the same way that
a system of spins is ferromagnetic if the variables -the spins - have a positive correlation
with a given spatial orientation, the orientation of the magnetic moment of the material).
If we call 7 the planted configuration, the probability measure u({s;}) is ferromagnetic if in
expectation the configurations sampled from the measure have strictly positive overlap with
the planted configuration, where the overlap ¢ is defined as: ¢ = limy_,oo(1/N) ZZ]\; (s =
7i) — p(si # 7)) > 0. If this overlap is zero we call the measure “paramagnetic”.

As a function of the constraint density « we find four different phases in the quietly-
planted satisfiability, identified by the behavior of the fixed points obtained from iterating
BP with our two different initial conditions.
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e For oo < a4 the system is in a purely paramagnetic phase. BP converges towards the
factorized fixed point when started from the two initializations. The overlap between
the BP fixed point and the planted configuration is zero. It turns out that ag4 is the
clustering threshold. In this phase the set of solutions forms one cluster, two random
configurations from this cluster are completely uncorrelated, the planted configuration
is simply one of them, and there is no way to tell which one.

e For ay < o < « there is a paramagnetic phase with a subdominant (metastable)
ferromagnet. BP started from the random initialization converges to the factorized
fixed point, whereas BP started from the planted initialization converges to a fixed
point with positive overlap with the planted configuration. The Bethe free-entropy
of this second fixed point is smaller than the annealed free-entropy and hence the
paramagnet is still the dominant solution. The Bethe free-entropy of the factorized
fixed point is still equal to the quenched free-entropy. It turns out that «. is the
condensation threshold. In this phase there are exponentially many clusters of roughly
the same size, the planted configuration belongs to one of them and there is no way
to tell which one it belongs to.

e For a, < a < o there is a ferromagnetic phase with a subdominant (metastable)
paramagnet. Like in the previous phase, BP started from the random initialization
still converges to the factorized fixed point, whereas BP started from the planted
initialization converges to a fixed point with positive overlap with the planted con-
figuration. But this time the Bethe free-entropy of the BP fixed point obtained from
the planted initialization is larger than the Bethe free-entropy of the factorized fixed
point. Hence the planted cluster dominates the measure. It is now the Bethe free-
entropy of the BP fixed point obtained from the planted initialization that is equal
to the quenched free-entropy. In this phase the planting is not quiet anymore, in
the sense that the properties of planted and random instances are different. For in-
stance random instances become typically unsatisfiable for o« > a5 > . (a5 being the
satisfiability threshold), whereas the planted ones are always satisfiable.

e For oy < « there is a ferromagnetic phase. In this phase the two initializations give the
same result: in both cases BP converges to a fixed point which is correlated with the
planted configuration. Hence it is easy to find a solution correlated with the planted
configuration.

We emphasize here that the planting is “quiet” only for a < «., whereas the properties
of the random and planted ensemble are different for a > a.

In the above discussion the phases have been identified by analyzing the behavior of
BP fixed-points. It turns out that the phase transitions found in this way also correspond
to phase transitions in the geometrical properties of the space of solutions of satisfiability
found in previous works. We shall state this correspondence here without proof.

In the random K-SAT ensemble, reweighted with the parameter A*, a4 is the threshold
that corresponds to the clustering (called dynamical 1RSB in statistical physics) transition
of the measure p(A\*). For @ < a4 the set of solutions form one cluster. The planted
configuration is one configuration of this cluster, it has no special property. The threshold
o, is the condensation (called static 1RSB in statistical physics) transition of the measure
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1(A*). The phase transition at a; is a point beyond which the paramagnetic phase ceases
to exist. In the language of magnetic systems, «a; is called the spinodal threshold.

Another important property that follows from the analysis of quiet planting [19] is that
the part of the phase space that is not correlated with the planted configuration remains
unchanged in the whole region of «, i.e. also for @« > a.. Notably for & > ay (where
o is the satisfiability threshold in the random SAT ensemble) only solutions correlated to
the planted configuration exist in the planted ensemble. In the random K-SAT ensemble
without planting, «; does not have a physical interpretation, but at this point the BP
iterations stop to converge.

The transition point «; is investigated by computing the local stability of the factorized
BP fixed point with respect to small random perturbations. This is done by linearizing
equations (8-10) via expansion around the factorized fixed point and analyzing the largest
eigenvalue x of the associated linear operator. The following analytical formula then locates
the phase transition between a phase in which an infinitesimal random perturbation is
damped to zero from a phase where this perturbation gets amplified in the direction of the
planted configuration:

K-2 (K-2 K (K-2 A
= % where = Z;j_ll (KT_ I)A’” + Z;j? (;;—_21) - -1 (28)
K(K - 1)$ Zr:l ( r ))\T Zr:l (7"71 ))\T

In order to locate the other phase transitions, oy and ., we have solved the cavity equations
(23)-(27) using the population dynamics [27].

In Fig. 1 we plot the full phase diagram for quietly planted 3-SAT. In this case the vector
A* has only one free parameter, we chose it to be Ao, the other two components are then
given from conditions (6) and (16). The phase transition is continuous, i.e. ag = a. = oy,
for A5 > 0.118(3). It is discontinuous, i.e. ag < a. < oy, for A5 smaller than this threshold.
Within our numerical precision this tri-critical point in random 3-SAT agrees with the value
of A3 = 0.1180 corresponding to the v* reweighting (7). We did not find a theoretical reason
for this.

For the general case of K > 3 we keep for simplicity to the power-law reweighting of
(7) with the condition (17), as it was used in [1, 36]. Fig. 2 shows, in the case K = 4,
the properties of the BP-fixed points, starting from the two possible initial conditions.
The overlap of the resulting fixed points with the planted configurations allows to find the
threshold «g. The difference of the Bethe entropies of the paramagnetic and ferromagnetic
fixed point allows to locate the first-order phase transition a.

Table 1 summarizes the values of these phase transitions for different values of K. For
comparison we also give the dynamical and condensation phase transitions in the canonical
non-reweighted K-SAT that corresponds to A, = 1/(2K — 1) forall r =1,..., K.

6. Results unveiled by quiet planting
6.1 Non-trivial whitening and BP fixed points

In the standard K-SAT problem, without reweighting or planting, the iteration of BP equa-
tions starting from a generic random initial condition typically have two possible behaviors,
depending on the value of «. Either they always converge to the same fixed-point, that we
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Figure 1. The phase diagram of quietly-planted reweighted 3-SAT in the plane of the reweighting
parameter A3 and the density of constraints cv. We remind that the other two reweighting param-
eters A\] and A3 are obtained using conditions (6) and (16). Note that the boundary value A5 = 0
in some sense reduces the problem into planted 3-XOR-SAT, and A5 = 1/6 to the planted NAE-
SAT. Both these cases were studied in [30, 10] and phase transitions in these cases were known
(the SAT/UNSAT transition for these problems is shown as a red cross). The SAT/UNSAT transi-
tion does not depend on A3, except for these two boundary cases. The black dot corresponds to the
phase transition for the power-law reweighted ensemble with parameter 7*, which is indistinguish-
able within our accuracy from the point where the transition goes from a first order (dash-dotted
blue line) to a second order (full black line) one. The curve «; is dashed in the region where it cor-
responds to a spinodal of the first order phase transition and not the second order phase transition.
The shaded region marks the part of the phase diagram where planting with the corresponding \*
creates extremely hard (as will be quantified in section 6.3) 3-SAT satisfiable instances.

call the “trivial” fixed point, or they do not converge at all (as in 3-SAT for o > 3.86).
On the other hand, the statistical physics description of the clustered phase starts from
the assumption that there should exist one different and non-trivial BP fixed point for
each cluster of solutions, and then counts the number of non-trivial BP fixed points via
an augmented-BP-like approach. This counting finds an exponentially large number of BP
fixed points, indicating an exponentially large number of clusters [31, 25].

However, on the algorithmic size, working with instances of large sizes (think of e.g.
N > 10%), even when we are able to find satisfiable assignments in the clustered region, the
BP algorithm initialized in that assignment either converges back to the trivial fixed point,
or (in 3-SAT) does not converge at all, in apparent contradiction with the basic assumption.
This long-lasting open question had a correspondence in the coloring of random graphs. In
the case of coloring it was resolved in [20, 50] where it was explained using the cavity method
that the solutions found by slow simulated annealing indeed do not have a corresponding
BP fixed point, whereas BP initialized in a random solution (obtained via quiet planting)
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Figure 2. Phase diagram of the 7* planted 4-SAT, obtained by the population dynamics solution
of the cavity equations, population size was 5-10%. The overlap between the planted configurations
and the BP fixed point when BP is initialized a) randomly - blue curve - showing a phase transition
at ag, b) in the planted configuration - green curve - showing a phase transition at ;. A careful
reader will remark that the blue curve jumps up in the overlap a bit before the constraint density
oy, this is dues to a strong finite size correction associated to this phase transition. The red curve
is the difference between the paramagnetic free-entropy (18) and the free-entropy corresponding
to the BP fixed point obtained from the planted initialization. It becomes positive at the first order
phase transition & = a.: for @ < a, the paramagnetic phase is the dominant one, for o > a the
ferromagnetic phase is the dominant one.

leads indeed to a non-trivial BP fixed point. Whereas one could conjecture that the same
reason probably applies to K-SAT there was no tool to check this explicitly. The quiet
planting that we study in this paper permits such an explicit check for a first time.

To construct a large random K-SAT formula and a non-trivial BP fixed point we proceed
as follows: A planted graph at \* is equivalent to non-planted random graph as long as the
constraint density is a < a.(A*). This gives us a tool to generate both a typical instance
of K-SAT and one of its solutions. We then initialize BP from the planted solution, and
then iterate the canonical BP equations (non-reweighted, i.e. BP at 5\), we observe that
this canonical BP converges to a non-trivial fixed point whenever a > ap PO (v*). From
Table 1 we see that app ) (v*) < ac(y*) for K > 5. This shows that for K > 5 we have
a non-empty interval of constraint densities where a non-trivial BP fixed point exist on
a random formula. Note, however, that in this case (unlike for the coloring) the planted
configuration is not a typical configuration with respect to the uniform measure over all
solutions ,u(j\), therefore the corresponding non-trivial BP fixed point does not describe a
random cluster relative to tbe original, flat, measure. Note also that the fact that for K > 3

one has app s (7*) < aq(A) is a direct evidence for the presence of small subdominant

clusters in the paramagnetic region where a single large cluster still dominates the flat p(\)
measure.

Freezing of variables was argued to be an important ingredient in understanding the
relation between the structure of the space of solutions and the algorithmic hardness of
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Kllas |~ o | ol | ol | ag | a2 | el | a3 | of
3 || 4.27 0.61803 | 2.991 | 2.991 | 2.991 || 3.86 | 3.86 3.93 2.574 | 4.29
1903 | 0.83920 | 8.01 | 840 | 1001 | 935 | 9547 | 8.75 | 7.313 | 0.63
5 || 21.12 || 0.92756 | 17.2 19.30 | 35.40 || 19.16 | 20.80 || 17.7 17.617 | 194
6 | 43.4 0.96595 | 34.5 | 41.3 111.1 || 36.53 | 43.08 || 34.7 39.026 | 37.7

Table 1. For various values of K we give the satisfiability threshold «a [24], the “quiet" value of
the parameter y*, the corresponding dynamical, oz;ly*, condensation, az* ,and spinodal, ozf , thresh-
olds for the reweighted probability measure p(7*) in random K-SAT. Recall that quiet planting
generates typical random graphs for density of constraints smaller than az*. For comparison we
remind the dynamical and condensation thresholds for the K-SAT with no reweighting, i.e. for the

N *

measure (), from [18]. The column « gives the density of constraints beyond which even

v ~

BP(})
canonical BP (at \) converges to a non-trivial fixed point if initialized in the planted configuration.
The ag:l q column is taken from [37, 1], it is the rigorous lower bound on the satisfiability threshold
that is obtained by computation of the reweighted second moment. The work of [37, 1] also implies
that the annealed free-entropy density equals the quenched one in the range o < ag; q- Our ar-
guments lead us to conjecture that actually the annealed free-entropy density equals the quenched
one in the whole range o < ozz*. The last column oz}* is the constraint density beyond which the

planted solution lies in a frozen cluster.

random constraint satisfaction problems [48]. A variable is frozen in a cluster if it takes the
same value in all solutions belonging to that cluster. Within the assumptions of the cavity
method one can investigate if a solution belongs to a frozen cluster or not by iterating the
BP equations initialized in the solution and monitoring whether for some nodes 7 the BP
messages stay completely polarized (i.e. xi = 1 or x) = 1). In fact a simpler version of
BP can be written for such monitoring, it is called “warning propagation” or “whitening”
in the literature [42, 8, 9, 23]. There is a long-standing open question in the field which
concerns this whitening [48]. Whereas, for instance, the survey-propagation algorithm is
based on the existence of solutions with a non-trivial whitening result, when one tries to run
the whitening algorithm on solutions found by heuristic algorithms on large (think e.g. of
N > 10%) K-SAT instances, the whitening result was always observed to be trivial. In [50]
it was shown for the coloring problem that random solutions do indeed have a non-trivial
whitening, as expected from the theoretical calculations. This same work has also given
theoretical reasons explaining why the solutions found by local algorithms do not have a
corresponding non-trivial whitening. Now we show that random K-SAT formulas do have
solutions with a non-trivial whitenings.

Importantly, warning propagation has no dependence on the reweighting A, hence if a
cluster is frozen at one value of A it must be frozen for all A. Table 1 gives the values of
constraint density o beyond which the planted solution lies in a frozen cluster. We use the
quiet planting procedure, which generates a typical instance in which the planted solution
is also typical, as long as o < a.(v*). We see that, for K > 6, the planted solution lies in a
frozen cluster on typical random instances of K-SAT (in the range af(v*) < a < ac(7%)).

163



F. KRZAKALA ET AL.

1

c ——
A\Ql@i@\-”%@f@ BB K KKK KK
08 |
5 ¥
S 06 \
8 \
;:: \
8 04
2 =36 —+—
o=37
| =38 k|
027 4239 o \
a=40 \
o=41 ---O--
oot o

0O 2 4 6 8 10 12 14 16 18 20
BP iterations

Figure 3. Non-trivial whitening in the random 6-SAT problem: here N = 107, the instance
was created by planting, but for constraint density where planting provides instances equivalent to
random ones. When o > 38 a non trivial whitening core is obtained for the planted solution. No
solution to such a large instance of random K-SAT problem with a non-trivial whitening core had
ever been found so far.

6.2 Direct evidence for purely entropic barriers

Often researchers define clusters not via BP fixed points, but as connected components
in an auxiliary graph where vertices are satisfying configurations and edges are drawn
between vertices that differ in the value of only one (or some other sublinear in N number
of) variable. It has been pointed out on many occasions that there might be important
differences between these two definitions. The first definition is more meaningful from the
physics point of view, because the BP fixed points are assumed to correspond to basins
of attraction of local Monte Carlo Markov chains with detailed balance condition (such
MCMC are used to model the behavior of true physical dynamics in materials). A basin
of attraction is defined as a part of the configurational space in which the MCMC will
stay blocked for a time that grows with the size of the system faster than a power law.
Actually, it is often argued that the escape time should grow exponentially with system
size N, based on a computation of a large deviation function (called the free energy): this
function has a minimum corresponding to the cluster (the basin of attraction) in question
and all the barriers around this minimum scale linearly with N. Since the MCMC acts as
a kind of random walk in the landscape given by this free energy function, it takes with
high probability an exponential time to find such a path (in the same way it would take
exponential time to obtain a configuration on binary variables with more than 60% of ones
if one started from a random string of N elements and flipped variables randomly, one by
one).

The barrier in this free energy can have only two possible origins (in general it is a
combination of the two)

e Energetic barrier: Consider all possible paths from one solution to another (one step
being a flip of one variable), if each such path violates at least B clauses at some step,
then we say there is an “energetic barrier” of size B between the two solutions.
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e Entropic barrier: Consider an exponentially large subset of all solutions (covering an
exponentially small fraction of all solutions), even if the energetic barrier between this
subset and most of the other solutions is zero it can still be that a random walk will
spend exponential time before escaping from the subset in question. Such a situation
is called an entropic barrier.

The existence of clusters in the “energetic” sense, i.e. with the energetic barriers between
cluster growing linearly with N, was proved for K-SAT with large K in [26, 3]. It is perfectly
plausible that clusters with purely entropic barriers exist. Such a situation was described
in simple spin glass models (see for instance [5, 45, 39]), but so far it was not found in a
random constraint satisfaction problem.

Using quiet planting in K-SAT we show that in some region of parameters there are
purely entropic clusters in random K-SAT. Consider a planted instance in the regime where
the following three conditions are met: there is a planted cluster, the planting is quiet
ac(v*) > a > ag4(v*) and simultaneously the canonical BP converges to a trivial fixed point
a < agps) (v*) (for values see Table 1). Recall that the set of satisfying configurations
(“solutions”) is independent of the reweighting A. If we initialize the BP reweighted by
~* in the planted configuration the iterations will converge to a non-trivial fixed point,
meaning that there is a planted cluster in the measure reweighted p(~*). If we run canonical
non-reweighted BP the iterations will converge to the factorized fixed points (from both
initializations - in the planted configurations and in the fixed point of the reweighted BP),

meaning that there is no planted cluster in the flat measure p(A). Hence the dynamics of
non-reweighted BP was able to escape from the region that formed a cluster in the measure
m(y")-

Relying on the conjectured relation between BP fixed points and basins of attraction
of Monte Carlo Markov chains the above result translates into the following numerical
experiment with a MCMC random walk in the space of solutions.

First, initialize in the planted configuration, consider a MCMC random walk that sat-
isfies the detailed balance condition with respect to the measure p(A*). This random walk
will be restrained in proximity of the planted configuration and stay there for a very long
time. We conjecture that this time is exponential in the size of the system based on the
possible calculation of the barrier in the free energy and the relation between clusters and
fixed points of BP equations. We do not attempt to have a full numerical confirmation of
such exponential scaling: in the numerical experiment of Fig. 4 we content ourselves with
a time long enough to see a saturation of the overlap with the initial configuration in the
logarithmic time-scale.

In a second part of this numerical experiment, consider a Monte Carlo that satisfies the
detailed balance with respect to the z()\) measure. This MCMC will be able to walk far
away from the planted configuration in relatively short time. This means that it manages
to find some paths that were very rare in the measure p(A*) but are now easy to find in
u(;\) Using such paths, the second procedure escapes to a large distance from the planted
configuration. These experiments are illustrated in Fig. 4. This provides a strong empirical

evidence for the existence of purely entropic barriers.
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Figure 4. Illustration of the existence of purely entropic barriers: a solution is planted using
v*, a = 8.2, N = 10°, K = 4. Then a Monte-Carlo simulation satisfying detailed balance for
the measure p1(\*) is performed starting from this planted configuration: the system is trapped in
a cluster and does not exit it for a very long time. Switching then to a new Monte Carlo, which
satisfied detailed balance for the measure ,u(j\), i.e. the flat measure over all solutions, makes it
very easy for the MCMC to exit this cluster and decorrelate from the initial solution. This gives a
strong evidence for the presence of entropic barriers and the fact that the dynamics can be trapped
even in absence of frozen variables or energetic barriers.

6.3 How hard is A\*-planted K-SAT

Hardness of the v*-planted (we remind that v* is only a special point in the space of A\*)
random 3-SAT instances was investigated in [36] for DPLL, WalkSAT and Survey Propa-
gation algorithm. The authors found empirically a region where all the three algorithms
fail or scale exponentially with the size of the system. Our results actually show that for
simulated annealing or for belief propagation decimation random ~*-planted 3-SAT is easy.
Indeed, for o > a;(v*) the BP and MCMC dynamics is attracted close to the planted con-
figuration and hence finding a solution nearby is easy. For a < a;(v*) the planted formula
is equivalent to a random formula, and it is so sparse that MCMC will equilibrate in linear
time and hence simulated annealing will find a solution in linear time, in this region also
BP decimation works [34, 44]. On the other hand for K > 4 the y*-planted K-SAT has
a hard region for values of as < a < ;(7*). Indeed for a < «y(v*) the planted cluster is
hidden to the MCMC and BP dynamics and for o > «; there are no solutions other than
those belonging to the planted cluster. At this point we should mention that whereas we
do not make any claim about hardness for an arbitrary algorithm, the class of algorithms
for which the planted cluster is hard to find for a > o, seems to be quite large, it includes
the local search algorithms, as well as message-passing ones. But for instance it would not
include algorithms such as Gaussian elimination for constraint satisfaction problems that
are linear over some field, such as the K-XOR-SAT problem.

The algorithmic hardness of \*-planted 3-SAT formulas was studied in [6] using a walk-
SAT algorithm. We revisit the corresponding phase diagram in view of our results. We show
that the conclusions of [6] were qualitatively correct, but the correct boundary of the “hard”
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region is different from what was estimated in [6] (as the statistical physics calculations in
that work were only approximate). Most importantly we give further theoretical justification
for why the A*-planted random 3-SAT formulas are (together with benchmarks from [16])
the hardest satisfiable formulas on the market of hard satisfiable benchmarks.

We remind that the space of solution in the A*-planted formulas can be split in two
parts. The first part includes all the solutions (satisfying assignments) that would exist
anyway in the non-planted random 3-SAT. The second part includes solutions correlated to
the planted configuration. Algorithmic search for a solution belonging to the first part is
just as hard (or as easy) as it is in the canonical random K-SAT. Notably for a > « this
space is empty (canonical random SAT is unsatisfiable). It follows from our results above
that for a > oy it is easy to find a solution correlated with the planted configuration, to do so
one can use A*-reweighted BP or A\*-reweighted MCMC. We argue that, for a < «qq, finding
solutions correlated to the planted one is hard. Finding a configuration (not necessarily a
solution) correlated to the A*-planted configuration may be seen as an inference problem
and running M\*-reweighted MCMC is then a Bayes-optimal algorithm for this inference
problem. The cavity method predicts that a barrier of size linear in the system size would
have to be overcome in order to find a configuration correlated to the planted one. Hence
the running time of the MCMC would become exponentially large below the transition
(and above ag4). Concerning algorithms such as BP, the metastable state in which MCMC
is blocked corresponds to a stable BP fixed point and one would have to initialize the BP
messages extremely close to the planted configuration to find another fixed point. With
random initializations this event would be exponentially rare. Clearly if it is exponentially
hard to find any configuration correlated to the planted configuration, it will be even harder
to find a solution correlated to the planted configuration. To conclude, the boundary of the
hard region is given by a < a; in order not to find the planted configuration, and at the
same time « sufficiently large for the canonical random K-SAT to be hard or better not to
have any solutions at all for & > a. This region is depicted by shading in Fig. 1 for 3-SAT.

Let us also describe explicitly the relation between the benchmarks described here and
those of [16]. Instances generated by the A*-planting with Aj close to zero can be seen as a
planted XOR-SAT formulas with “a bit of nonlinearity”. If moreover we restrict ourselves
to the regular formulas where every variable appears in the same number of clauses then
we are exactly in the setting of [16] who introduced planted regular XOR-SAT formulas
with “a bit of nonlinearity” as the hardest known satisfiable benchmarks. Moreover the
kind of nonlinearity that quiet planting adds by taking a nonzero value of A3 is not easy to
discover, even if the exact protocol of how the instances were created was known. Note that
the regular instances are taken in order to lower the total number of variables (e.g. the leaves
of random instances do not contribute to the overall hardness and can hence be omitted).
The analysis presented in this paper can be used for regular instances straightforwardly.

7. Conclusions

In this paper, we have studied the reweighted measure over solutions of the random K-
satisfiability problem, where each solution is reweighted according to the number of variables
that satisfy every clause. This problem has been addressed both analytically, using the
cavity method, and numerically, using belief propagation and Monte-Carlo Markov chains.
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The main results of this study are the following: (i) The reweighting allows to introduce
a planted ensemble that generates instances that are equivalent to random instances in
some region of the phase diagram. In this case, we are thus able to generate simultaneously
a typical SAT instance and one of its solutions. (ii) We have used this property to give a
strong evidence for the existence of purely entropic (rather than energetic) barriers between
clusters in some region of the phase diagram. This is a fundamental point demonstrating
that the physical definition of clusters as basins of attraction (or belief propagation fixed
points) is not equivalent to the geometric definition of clusters as disconnected components
in the solution space. Such equivalence was often wrongly assumed in the literature and
leads to confusions. (iii) We have used the quiet planting property to display explicitly, for
the first time, solutions of large random K-SAT problems leading to a non-trivial whitening
core: while such solutions where known to exist, they were so far never observed on very large
instances. (iv) We discuss the algorithmic hardness of these planted instances and determine
a region of parameter in which quiet planting leads to hard satisfiable benchmarks.
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