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Abstract

Introduced here is a novel application of Satisfiability (SAT) to the set membership
problem with specific focus on efficiently testing whether large sets contain a given element.
Such tests can be greatly enhanced via the use of filters, probabilistic algorithms that can
quickly decide whether or not a given element is in a given set. This article proposes SAT
filters (i.e., filters based on SAT) and their use in the set membership problem. Both the
theoretical advantages of SAT filters and experimental results show that this technique
yields significant performance improvements over previous techniques. Specifically, a SAT
filter is a filter construction that is simple yet efficient in terms of both query time and filter
size; i.e., SAT filters asymptotically achieve the information-theoretic limit while providing
fast querying. As well, this is the first application that makes use of the random k-SAT
phase transition results and may drive research into efficient solvers for this and similar
applications.
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1. Introduction

This paper describes a novel and simple technique for building efficient set membership
filters (in terms of both the amount of long-term storage and query time) by translating
data sets to instances of Satisfiability (SAT) [8] and solving them with a SAT solver.

c© 2014 IOS Press, the SAT Association, and the authors.
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1.1 Set Membership

Set membership testing is encountered in many computer applications. However, some
terms must first be defined before being able to accurately discuss the topic. Let D be a
particular domain. The element being tested for and the set being tested against will be
drawn from D. Some examples of such a domain may be the collection of all strings in the
English alphabet, the collection of all valid HTML documents, the collection of all digital
JPEG encoded images, or the collection of all binary strings of length 1024. These examples
should make it clear that the domain may be very large, potentially infinite.

The set membership problem is then the following: given an element x ∈ D and a set of
interest Y ⊆ D, determine if x ∈ Y . For the applications presented here, Y will be finite,
but potentially very large. To continue with the example given previously where D is the
set of all strings in the English alphabet, let Y be the set of all words defined in a given
dictionary. The set membership problem is now akin to spell checking, i.e., testing if a
string of characters is a word defined in the dictionary.

1.2 Filters

If the elements of D have a simple representation and if |Y | is small, a näıve approach to
set membership testing can be taken. Namely, list all representations of elements of Y in
an array A of length |Y | and then, given an element x ∈ D, compare the representation of
x against every entry of A. Unfortunately, testing set membership in this way is inefficient
in a variety of situations, particularly when |Y | is very large. For this reason, the set
membership problem is often solved by first querying a filter. A filter is a mathematical
object that can be queried with an element, returning either Maybe or No. In both cases
discussed in later sections (Bloom filters and SAT filters), Maybe is interpreted by the user as
possible presence and No is interpreted as definite absence. Observe that, by contrast, in the
näıve approach a positive response is interpreted as definite presence and No is interpreted
as definite absence. This means that a filter admits false positives, a phenomenon that does
not occur when using the näıve approach. Because of this, a secondary test (such as the
näıve approach) is often used as a fallback when a filter returns Maybe.

Hence, the point of a filter is to provide an efficient primary test for set membership.
The space used to store a filter for Y is ideally far less than the space necessary to store
Y , and the time required to query a filter is ideally far less than the time required to query
Y , even in the case where Y has some natural order and intelligent search can be used.
The trade-off for the decrease in time and space is that, as mentioned above, the answers
returned by the filter are imperfect. An element which passes the filter may require a costly
secondary test, but this test needs to be performed rarely.

1.3 Examples

Set membership filters are truly pervasive in modern computing. For example, [33] states
that Google’s Bigtable makes heavy use of filters and directly supports many popular Google
services such as Google Maps, Google Earth, and Web indexing. In terms of security, Google
Chrome uses filters to detect malicious websites and virus scanners make use of filters to
speed up virus detection [30]. Filters are also used to support network routing, packet
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monitoring, and P2P networks, just to name a few. Two good surveys of different filter
constructions and their uses in real-world applications are provided in [12, 33]. These
surveys provide much more detail on the preceding applications as well as many others.

To give one simple concrete example, consider the set D of all strings of 8 digits. Suppose
some subset Y ⊆ D of the strings are to be stored in a filter. The filter needs to compress
Y in a lossy way such that membership testing is efficient. One possibility is to create a
list FY containing the first digit of all elements in Y . It is easy to see that 0 ≤ |FY | ≤ 10,
which is potentially much smaller than Y . Given a new string x ∈ D, if the first digit does
not appear in FY (a quick test), x cannot be an element of Y and is rejected. If the first
digit is in FY (also a quick test), then maybe x ∈ Y , but further testing is necessary.

1.4 Outline of the Article

This article is structured as follows. § 2 describes a well-known filter construction, namely,
the Bloom filter. § 3 describes a new filter construction, called a SAT filter, of which
instances are built by finding solutions to random k-SAT instances. The SAT filter asymp-
totically achieves the information-theoretic limit; in particular, it is more memory efficient
than the popular Bloom filter while retaining many of its good qualities. § 4 describes
formal methods for comparing filter constructions as well as provides a formal analysis of
both Bloom filters and SAT filters. § 5 shows how to select parameters for SAT filters in
real-world situations. § 6 presents results of an experimental implementation of SAT filters
and also compares Bloom filters against what is currently achievable by SAT filters.1. § 7
provides some concluding remarks.

2. Bloom Filter Construction

In [9], Bloom proposes the following filter construction, although a simplified version is
presented here first. Let D be any set (the domain), let Y ⊆ D with m = |Y |, and let the
memory available for the filter BY be n bits. Choose a hash function h : D → Z that maps
the elements of D uniformly at random into the range [0, n). Initialize all the bits of BY to
0. To store an element y ∈ Y into BY , set the bit at index h(y) to 1, i.e., BY [h(y)] := 1.
To store all of Y , simply store all the elements of Y in turn.

To query the filter BY with an element x ∈ D, check if the bit at index h(x) is set to 1.
If so, the filter produces Maybe. If the bit is set to 0, then x /∈ Y and the filter produces
No.

In the full version of the construction, there are several hash functions h1, . . . , hk. To
store y ∈ Y , compute h1(y), . . . , hk(y), and set the bits of BY to 1 at all of those locations.
Algorithm 1 provides pseudo-code for the full Bloom filter construction. To query BY with
x ∈ D, compute h1(x), . . . , hk(x) and check the bits of BY at all of those locations. If any of
the bits are set to 0, the filter produces No and x is rejected; otherwise, the filter produces
Maybe. Algorithm 2 provides pseudo-code for querying a Bloom filter.

Of course, n and k must be chosen appropriately for a given m. If n is too small or k
too large, all the bits of BY could essentially become set to 1. This means the filter will

1. The efficiency achievable in practice is limited by the ability of current SAT solvers to find solutions to
random k-SAT instances near the threshold for random k-SAT.
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Algorithm 1 BuildBloomFilter(Y ⊆ D,n, k, h1, . . . , hk)
n is the amount of memory available to store the Bloom filter BY , namely |BY |
h1, . . . , hk are functions that map elements of D to [0, n)

1: Initialize all n entries of Bloom filter BY to 0
2: for each element y ∈ Y do
3: for i := 1 to k do
4: index := hi(y)
5: BY [index] := 1
6: end for
7: end for
8: return BY

Algorithm 2 QueryBloomFilter(BY , x ∈ D,n, k, h1, . . . , hk)
n is the amount of memory available to store the Bloom filter BY , namely |BY |
h1, . . . , hk are functions that map elements of D to [0, n)

for i := 1 to k do
index := hi(x)
if BY [index] = 0 then

return No
end if

end for
return Maybe

never reject when queried (i.e., the filter will have a high false positive rate), rendering BY

useless.

3. Satisfiability Filters

This section introduces Satisfiability and SAT filters and provides algorithms for their im-
plementation.

3.1 Satisfiability

Before introducing SAT filters, both the generic SAT instance and a specialization called a
random k-SAT instance will be presented. SAT is a Knowledge Representation mechanism
into which finite-domain Constraint Satisfaction Problems [6, 17] are encoded as Boolean
functions, usually (but not always) expressed as Conjunctive Normal Form (CNF) formulas,
or equivalently, sets of clauses.

A CNF formula is an expression of the form

C1 ∧ . . . ∧ Cm

where the symbol ∧ represents logical conjunction (AND) and each Ci, 1 ≤ i ≤ m, is described
by a clause, i.e., an expression of the form

li,1 ∨ . . . ∨ li,ki
,
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where the symbol ∨ represents logical disjunction (OR) and each lr,s is a literal, i.e., a Boolean
variable or its negation. A pair of literals is said to be complementary if both are the same
variable but have different signs, i.e., xi and xi are complementary literals. Specifically,

l =
{
xi if l = xi

xi if l = xi.

An assignment v is a function from the set of variables Vars into the set Bool, i.e., {0, 1}.
An assignment v satisfies xi if v(xi) = 1 and v satisfies xi if v(xi) = 0. An assignment v
satisfies a clause Ci if for some j, 1 ≤ j ≤ ki, v(li,j) = 1 and satisfies a CNF C1 ∧ . . . ∧ Cm

if v satisfies all Ci, 1 ≤ i ≤ m.

3.2 Random k-SAT

A clause C has width k if it has exactly k distinct literals and no pair is complementary.
A random k-SAT instance is a set of clauses drawn uniformly, independently, and with
replacement from the set of all width k clauses [19]. Random k-SAT instances exhibit quite
regular behavior in terms of the clauses-to-variables ratio. Specifically, this ratio determines
almost certainly (i.e., with high probability) the satisfiability of the set of clauses drawn [1].

A clause can be thought of as a constraint on a putative satisfying assignment. Therefore,
a collection of clauses can be thought of as a set of constraints on a putative satisfying
assignment. Given a random k-SAT instance X , the strength of X (as a set of constraints)
can be measured in terms of the ratio αX = m

n where m = |X | and n = |Vars|.2. Intuitively,
each constraint represents the same “strength” (each only depends on its length, k). Yet,
the ratio αX determines with high probability the satisfiability of X . Specifically, given a
fixed k there exists a number αk such that whenever αX < αk then X is almost certainly
satisfiable, and whenever αX > αk then X is almost certainly unsatisfiable. In [4] it was
found that αk = 2k ln 2−O(k).

In addition to these theoretical results that prove the bound on the growth of αk but
do not provide its closed form, experimental results have established approximate values of
αk for small values of k. These values are given next and are reproduced from [23].

k 1 2 3 4 5 6 7 8 9 10

αk 0 1 4.26 9.93 21.11 43.37 87.79 176.54 354.01 708.92

Polynomial time algorithms exist for solving random-k SAT instances with k < 3. For
k ≥ 3, k-SAT is NP-complete, and no polynomial time algorithms are known for random
instances near the satisfiability threshold, αk. As well, there is evidence of an algorithmic
barrier, i.e., efficient algorithms for solving random k-SAT instances with m/n ≥ 2k ln k

k , for
large k, are unlikely to exist [2]. But, for small k, there are algorithms (such as Survey
Propagation [11]) that can solve random k-SAT instances near the satisfiability threshold.
[16] provides a good survey of different algorithms for solving random k-SAT instances and
the ratios up to which they succeed.

2. The m and n used here are related to the definitions given in § 4 namely, m = |Y | and n is the number
of bits of long-term storage of a filter.
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3.3 SAT Filter Construction

The SAT filter, introduced here, has two stages, building and querying. Both stages, while
analogous to the Bloom filter, operate differently than the Bloom filter.

3.3.1 Building a SAT Filter

The construction of a SAT filter is one-time work that must be performed for a particular
data set Y ⊆ D. This construction consists of three phases that involve converting each
element in Y into a width k clause (where k is small), finding a solution to the set of
clauses via a SAT solver, and encoding the solution in a form amenable for querying. Due
to the use of a SAT solver, one disadvantage of the SAT filter over Bloom filters is that
SAT filters do not allow insertions after they have been built, i.e., SAT filters are static.3.

Formally, SAT filters are offline filters, whereas Bloom filters are online filters [34]. The
major disadvantage of online filter constructions is that, unlike offline filter constructions,
they always use more long-term storage than optimal [22].

Phase One: Building XY During this first phase, each element y ∈ Y is used to produce
a propositional clause via a set of hash functions. Specifically, the hash functions map
each element of D uniformly at random into a set of literals that, when combined using
disjunction, constitute a random width k clause. In this, the SAT filter is different from
a Bloom filter (which creates positions where entries in an array that have value 0 are
converted to a 1).

Remember that a random width k clause has exactly k distinct literals where no pair is
complementary. One way to ensure that this property holds is to add a nonce as input to
each hash function that can modify the hash functions’ outputs to ensure that only width
k clauses are generated. Algorithm 3 demonstrates one way to guarantee width k clauses
are generated correctly.

Phase one is then: use a set of hash functions h1, . . . , hk to create a random width
k clause Cy for each y ∈ Y . All these clauses are conjoined together, creating a CNF
XY , i.e., a random k-SAT instance. § 5 introduces techniques for determining values for
various parameters, such as the number of variables n and number of literals per clause k,
to guarantee XY will be satisfiable.

Phase Two: Finding a Satisfying Assignment for XY In this phase, a SAT solver is
used to find a solution to the random k-SAT instance XY created during Phase One. The
particular SAT solver used is agnostic to SAT filters, as long as the SAT solver is capable
of solving moderate-to-large satisfiable random k-SAT instances.

The Final Phase: Defining the Filter Finally, the solution to XY discovered by the
SAT solver is stored as an array of bits. This array is a representation of the SAT filter.
The array of bits is stored so that index i of the array corresponds to the value (either 1 or
0) of variable xi in the satisfying solution for XY .

The clauses XY can be discarded once a solution has been found, hence the amount of
long-term storage required is the number of bits needed to represent the solution, i.e., n. In

3. Several other filter constructions, such as those described in [13, 14, 15, 24, 26, 29], are also offline filters.
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general, this amount of memory is small compared to the memory required to fully specify
the original data set. Algorithm 4 provides pseudo-code for building a SAT filter.

Algorithm 3 ElementToClause(e ∈ D,n, k, h1, . . . , hk)
k is the number of literals per clause
h1, . . . , hk are functions that map elements of D to [−n, n] \ {0}

1: nonce := 0
2: repeat
3: C := {}, the empty clause
4: for i := 1 to k do
5: literal l := hi(e, nonce)
6: C := C ∪ {l}
7: end for
8: nonce := nonce+ 1
9: until all literals of C are distinct and no pair is complementary

10: return C

Algorithm 4 BuildSatFilter(Y ⊆ D,n, k, h1, . . . , hk)
n is the amount of memory available to store the SAT filter SY , namely |SY |
k is the number of literals per clause
h1, . . . , hk are functions that map elements of D to [−n, n] \ {0}

1: m := |Y |
2: XY := {}, the empty formula
3: for each element y ∈ Y do
4: Cy := ElementToClause(y, n, k, h1, . . . , hk)
5: XY := XY ∪ {Cy}
6: end for
7: if the random k-SAT instance XY is unsatisfiable then
8: return failure
9: else

10: Let SY be a solution to XY

11: return SY

12: end if

3.4 Querying a SAT Filter

Similar to querying a Bloom filter, querying a SAT filter is work that must be done every
time an element is tested for membership in the original data set. Unlike the first phase
(one-time work), which may be quite time consuming, the querying phase (every-time work)
should run very quickly.

To determine if an element x ∈ D is in the original data set Y , first produce a width k
clause Cx from x using the same hash functions used in the construction of the SAT filter
being queried. Next, if for any literal li in the clause, the SAT filter at index i satisfies li
(i.e., either literal li is positive and the SAT filter at index i contains value 1, or literal li is

135



S.A. Weaver et al.

Algorithm 5 QuerySatFilter(SY , x, n, k, h1, . . . , hk)
n is the amount of memory available to store the SAT filter SY , namely |SY |
k is the number of literals per clause
h1, . . . , hk are functions that map elements of D to [−n, n] \ {0}

1: Cx := ElementToClause(x, n, k, h1, . . . , hk)
2: for each literal l ∈ Cx do
3: if SY (l) = 1 then
4: return Maybe
5: end if
6: end for
7: return No

negative and the SAT filter at index i contains value 0), then this phase produces Maybe.
If no literal is satisfied then this phase produces No.

The rationale here is that if the clause Cx is falsified by the SAT filter associated with
Y , then by construction, x is definitely not in Y . If, on the other hand, Cx is satisfied by
the SAT filter, then x may or may not be in Y (a potential false positive). Algorithm 5
provides pseudo-code for querying a SAT filter.

3.5 False Positive Rate, Query Time, and Storing Multiple Solutions

It is important to consider how often a SAT filter will say Maybe, i.e., the false positive
rate. The false positive rate of a SAT filter is the probability that the clause generated
by the query is satisfied by the stored solution. This is equivalent to the probability that
a random width k clause is satisfied by a random solution, i.e., 1 − 2−k. For each literal
in such a clause, there is a 1

2 chance that a random solution contains that literal set to 1.
The false positive rate can be improved as desired by either storing multiple solutions to
multiple SAT instances or storing multiple disparate solutions to a single SAT instance.

By generating s different SAT instances and storing one solution to each, the false
positive rate is improved to (1− 2−k)s because, during SAT filter query, s different clauses
are generated from each element and each have to be satisfied by a different solution. It
is important to note that by storing s solutions, the amount of long-term storage will be
multiplied by s as well. Also, query time is increased because sk hashes are computed,
although all but the first two hashes can be simple (see [21]).

Likewise, storing multiple solutions to a single SAT instance can cause the false positive
rate to come out higher than expected because the solutions may not be independent,
i.e., they are all solutions to the same SAT instance. The amount of increase in the false
positive rate depends on how different the solutions are from one another, i.e., the greater
the correlation between pairs of solutions, the higher the false positive rate will be. If
this approach is to be used, the specific SAT solver used must be capable of finding many
disparate solutions to the same instance.

The benefit of this second approach is that it does not negatively impact query time
since only one clause is generated per query and that clause can be checked against all s
solutions in parallel using bit-packing and word-level operations. For this to be the case,
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the solutions need to be stored such that all s solution bits corresponding to a variable are
stored together.

To give an example set of parameters, a SAT filter with a false positive rate of p ≈ 1
4

and k = 5 needs s = 44 solutions to be stored. According to the results given in § 6, if
m = 216, a SAT filter can be built that will use sn = 145112 bits of long-term storage, a
22% reduction over an optimal Bloom filter’s long-term storage. See Tables 2, 3, and 4 for
metrics on different sized data sets, efficiencies, and query times.

The next section provides the mathematics needed to choose appropriate parameters for
any filter construction and to compare different filter constructions against one another.

4. Filter Efficiency

There are many different filter constructions and also several important factors to consider
when choosing a filter construction. Filters may need to be constructed in a reasonable
amount of time (one-time work) and querying the filter may need to be fast (every-time
work). Also, the particular application making use of the filter may demand the use of an
online filter. This section, however, addresses another aspect, namely, how well a filter uses
the memory available to it.

There is a distinction between the filter construction algorithm and a particular filter
instance output by the algorithm. Given a filter instance F , the false positive rate is

p(F ) = P [F (x) = Maybe | x ∈ D \ Y ] .

In other words, the false positive rate p(F ) is the probability that F passes an element
erroneously. For certain inputs, a filter construction algorithm might output a specific filter
instance F with a higher or lower false positive rate. To measure the quality of a filter
construction, it is necessary to compute an appropriate average of the false positive rate of
filter instances. For a given input set Y , let F (Y ) be the filter instance, and define the false
positive rate of the filter construction under load m to be

p = P [p(F (Y )) | Y ⊆ D, |Y | = m] .

That is, the false positive rate of a filter construction is the probability that a filter instance
F (Y ), built from a uniform random input of size m from the domain D, erroneously accepts
an element from D chosen uniformly at random.

When comparing filter constructions, it is standard to assume that |Y | � |D|; that
is, that the number of input elements |Y | is insignificant compared to the total number of
elements |D|. Further, it is standard to assume that elements are queried from D uniformly
at random. This is the case in essentially all applications, and it simplifies the computation
of the false positive rate, since the false positive rate becomes simply the positive rate. In
addition, the memory available for each element is far less than the memory needed to
represent them perfectly, which is typically assumed to be infinite. This avoids spurious
degenerate situations that complicate an analysis, such as having enough memory to simply
store Y , resulting in a false positive rate of 0.

If the filter is given a lot of memory, it should have a low false positive rate. So, it
is necessary to measure not just the false positive rate of a filter construction, but the
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efficiency, i.e., how well a filter uses the memory available to it. As introduced in [34]
(also see [26]), given a filter with false positive rate p, n bits of memory, and m = |Y |, the
efficiency of the filter is

E = − log2 p

n/m
.

The numerator of E measures the bits of cut-down. For example, if the filter has a false
positive rate of 1/8, then it has 3 bits of cut-down. The denominator is the number of bits
of memory available to represent each item in the filter. Intuitively, some number of bits
are used to specify each y ∈ Y . For example, if there are n = 3 bits available to the filter
and there are m = 6 elements of Y , the filter has half a bit of information available to store
each element y. From an information-theoretic perspective, it is reasonable to conjecture
that the maximum possible cut-down of such a filter is half a bit for a false positive rate of
2−1/2 ≈ 0.71. In fact, this is true. In [34], the authors prove

Theorem 4.1. For any filter, E ≤ 1.

Proof. The proof from [34] is repeated here. For this proof, the definition of a filter needs to
be abstracted somewhat because the following statements are being made about all filters.
First, after applying a hash function, assume that D is the real interval [0, 1], and Y is a
collection of m samples from the uniform distribution. Furthermore, queries from D will
come uniformly at random. After inserting all the elements of Y in F , the filter produces n
bits, which could be in any one of 2n different configurations. A subset of [0, 1] is associated
with each memory configuration on which the filter responds Maybe. Note that the subset
that is produced must contain all the input elements. So, a filter construction can be
thought of as a collection of subsets of [0, 1], together with some algorithm that takes Y
as input and produces a subset of [0, 1] that contains Y . For a filter F , A ∈ F is used to
mean that A is one of the possible output subsets. If the filter gives the set A as output,
then the false positive rate is µ(A) where µ denotes Lebesgue measure. Since the input Y
is random, the output set A is also random. The probability of selecting A as output is
denoted by P(A), and the filter’s false positive rate is

p = E(µ(A)) =
∑
A∈F

P(A)µ(A).

Recall that the output set A must contain Y , so the probability of the filter producing A is
at most the probability that all the input elements are in A. Because the input is uniform
random, P(A) ≤ µ(A)m. This yields

p ≥
∑
A∈F

P(A)1+1/m.

There is also the constraint that
∑

A∈F P(A) = 1, simply because some output must be
selected. An easy application of the Hessian test from calculus shows that this constrained
minimization problem has a minimum when the P(A) are all equal. Let N be the total
number of sets in the filter.4. Then, the minimum occurs at P(A) = 1/N for all A. So,

p ≥ N
[ 1
N

]1+1/m

=
[ 1
N

]1/m

.

4. This is a better measure than 2n because it allows for filter sizes that are not powers of 2.
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This gives an upper-bound, i.e., the information-theoretic limit on efficiency, namely

E = − log2 p

log2N/m
≤

1
m log2N

log2N/m
= 1.

4.1 Bloom Filter Efficiency

For a specific filter construction, it is usually straightforward to analyze efficiency. What
is really being compared between filtering algorithms is the asymptotic efficiency, i.e., the
efficiency that filters can achieve as the memory available to them becomes large.

Presented here is the efficiency of the Bloom filter. Recall the description of the algo-
rithm from § 2; the same notation will be used here. First, compute the probability that a
given bit is set. It is:

P(bit i is set) = 1−
[
1− 1

n

]km

.

When querying, k bits are checked; to pass, all the bits must be set5., so

p =
[
1−

[
1− 1

n

]km
]k

which gives an approximation
p ≈

[
1− e−km/n

]k
.

As n gets large, the false positive rate converges to the approximation. Critically, the false
positive rate converges from above, so an asymptotic upper bound on the efficiency can be
achieved.

Plugging this into the efficiency formula,

E = − log2 p

n/m
≤
−k log2

(
1− e−km/n

)
n/m

.

Using the first and second derivative, it is simple to see that the expression on the right
is maximized when m/n = ln 2/k, and the maximum is ln 2. Therefore, Bloom filters can
achieve an efficiency of at most ln 2.

The mathematics of the construction of Bloom filters are well-known, and there are
guidelines that allow for the selection of suitable n and k and the selection of a uniform and
independent choice of hash functions h1, . . . , hk (see [25][Sec. 5.5]).

4.2 SAT Filter Efficiency

An asymptotic analysis of the SAT filter is performed here. For a given element x ∈ D,
to pass a SAT filter comprised of the solutions to s random-k SAT instances means that

5. As shown in [10], the common assumption that all the bits are set independently is incorrect. This error
causes the derivation below to result in a slightly lower false positive rate than achievable in practice.
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at least one of the k literals in each of x’s corresponding s clauses6. is set to 1. For a
random k-SAT solution, each bit is set with probability 1/2, so the false positive rate, i.e.,
the probability of passing x is

p = (1− 2−k)s.

Also, recall that a SAT filter uses sn bits of long-term memory. Therefore, the efficiency of
a SAT filter is

E =− log2((1− 2−k)s)
sn/m

=− log2(1− 2−k)
n/m

.

As previously described, the ratio m/n (i.e., αXY
) must be selected carefully so that the

problem is solvable in practice; this is SAT-solver-dependent. However, there are theoretical
bounds that determine, with high probability, whether or not a random k-SAT instance is
satisfiable, or rather, that a random k-SAT filter can be built. In [4], the authors prove

Theorem 4.2. if m/n < 2k ln 2 − O(k), then as k, n,m → ∞, a random k-SAT instance
with n variables and m clauses is almost surely satisfiable, and unsatisfiable otherwise.

That is, as k gets large, a large random k-SAT instance with m/n < 2k ln 2 − O(k) is
highly likely to be satisfiable. In order to maximize the efficiency of a SAT filter, m/n should
be as large as possible while keeping the random k-SAT instance satisfiable. Theorem 4.2
gives a lower bound; hence, setting m/n = 2k ln 2− k gives a satisfiable problem with high
probability as k grows. Plugging this into the efficiency formula produces the following
estimate:

E =− log2(1− 2−k)
n/m

≥− (2k ln 2− k) log2(1− 2−k).

A simple calculus argument shows that the expression on the right tends to 1 as k tends to
infinity. Therefore, SAT filters can theoretically achieve the information-theoretic limit in
terms of efficiency.7.

Since the first derivative of the SAT filter efficiency function is always positive, SAT filter
efficiency is a monotonically increasing function. Thus, efficiency increases as k increases,
i.e., there is not a specific value of k that will maximize SAT filter efficiency. On the positive
side, there are diminishing returns as k grows, so small k (say five or six) can give near
optimal efficiency (see Figure 1).

Note that the every-time work for a SAT filter is similar to that of a Bloom filter. There-
fore, SAT filters can be queried quickly while achieving near perfect efficiency. Although
building a SAT filter requires more work than a Bloom filter, this is typically not critical
because many common applications spend far more time querying than building.

6. Depending on the implementation choice in § 3.5, these may all be the same clause.
7. § 6 provides results indicating currently achievable SAT filter efficiency.
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Figure 1. Theoretically Achievable SAT Filter Efficiency for Various k.

Bloom filters are very fast to construct and very fast to query, but their achieved effi-
ciency is far from optimal. Other filter constructions, such as Compressed Bloom filters [24],
achieve higher efficiency at the expense of both more one-time work and more every-time
work, whereas the SAT filter retains the fast every-time work of the Bloom filter with near
optimal efficiency.

5. SAT Filter Parameters

This section discusses the selection of parameters for SAT filters (see Table 1). Definitions
for each of the parameters are given first. A SAT filter uses the following parameters:

Table 1. SAT Filter Parameters.

p the false positive rate of a SAT filter
s the number of SAT instances per SAT filter
n the number of variables per SAT instance
m the number of clauses per SAT instance
k the number of literals per clause
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A value for k should be selected first. As stated earlier, a small k (say five or six) is
sufficient to achieve near perfect efficiency. This is good because the time it takes to query
a SAT filter increases with k.

A value for n should be selected next. The phenomenon of the random k-SAT phase
transition (see § 3.2) allows n to be appropriately selected so that there is a high probability
of the SAT instance being satisfiable, while keeping the size of the filter (long-term storage)
as small as possible. Hence, being able to solve random satisfiable k-SAT instances right
at the phase transition allows filters to be built that use a small amount of long-term
storage, thus achieving high efficiency. However, the closer αXY

is to αk, the harder the
SAT instance is for SAT solvers to solve. As shown in § 4.2, the information-theoretic limit
acts as a barrier, denying access to satisfiable random k-SAT instances that otherwise could
be used to build filters with an efficiency greater than theoretically possible.

The size of the data set m = |Y | is assumed to be given. Letting αXY
= eαk, where

0 < e ≤ 1 corresponds to the power of the SAT solver being used, n can be determined as
follows,

n = m

eαk
.

Finally, values for either s or p should be selected. These parameters bring about a
trade-off between the amount of long-term storage (sn) and the false positive rate. The
lower the false positive rate, the higher the amount of long-term storage. The lower the
amount of long-term storage, the higher the false positive rate.

If the amount of long-term storage is known, p can be determined as follows,

p = (1− 2−k)s.

If, instead, the false positive rate is known, s can be determined as follows,

s =
⌈ log2 p

log2(1− 2−k)

⌉
.

The amount of one-time memory needed (in bits) to build all SAT instances simultane-
ously for a given filter is (assuming 64-bit integers are used to represent literals)

64kms.

If enough memory is available to hold all the SAT instances, they can be solved in parallel;
otherwise, they can be solved sequentially. Although the previous equation shows the
memory necessary to store the clauses for all SAT instances, there is typically additional
memory needed for other SAT solver data structures (such as an occurrence list or incidence
graph) that can cause this number to grow by an order of magnitude while a SAT solver is
at work.

6. Experimental Results

As a proof of concept, four dictionaries were built consisting of 214, 215, 216, and 217 random
strings. To ensure that random k-SAT instances were generated, the strings were trans-
formed into clauses using the MurmurHash3 hash function [5] combined with a technique
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described in [21], namely, the set of hashes hi(x) = h1(x) + ih2(x) for 3 ≤ i ≤ k can be used
without increasing the false positive rate of the filter.8. Finally, SAT filters were generated
for k = 3 . . . 6 with p ≈ 1

4 and αXY
(i.e., m/n) set according to a range of values.

Most SAT solvers have not been designed to efficiently solve random k-SAT instances
because there has not been a driving application. Nevertheless, the annual SAT competi-
tion [7] has encouraged the implementation of such solvers by continuing to offer a track
for random instances. One solver that performs well in the random track is Dimetheus [20],
a highly parameterized solver that implements Survey Propagation [11], a message passing
heuristic shown to perform well on random k-SAT instances with m/n near the threshold.
Unfortunately, Dimetheus does not work well (without tuning) when m/n is significantly
less than the threshold. However, another SAT solver, WalkSAT [32] is good at solving
random k-SAT instances when m/n is significantly less than the threshold.

Table 2 presents the time taken to build multi-instance SAT filters, that is, s SAT
instances were generated per filter and one solution was found for each (as discussed in
§ 3.5). The SAT instances were solved sequentially using a dovetailing of Dimetheus and
WalkSAT. Run-times of Dimetheus are in bold and those of WalkSAT are not.

SAT filters built in this way achieve the desired false positive rate. This was verified
experimentally by querying each SAT filter with 227 random elements (as in Table 4),
calculating the observed false positive rate and comparing it to the desired false positive
rate.

In Table 2, the symbol “-” is used to denote that the filter could not be built within 2000
seconds. The vertical bar represents the location of the random k-SAT threshold for each
k. These results demonstrate that SAT filters can be built near the information-theoretic
limit. Although SAT filter build times seem large (as compared to Bloom filters), achieving
higher efficiency (less long-term storage) at the expense of more one-time work is often
acceptable.

All results were collected using an early 2009 MacBook Pro with a 3.06-GHz Intel Core
2 Duo processor and 4 GB of RAM. All times are reported in seconds. All sizes are reported
in bits.

Tables 3 and 4 provide a comparison between the sizes and query times of the smallest
SAT filters built versus optimal Bloom filters built using the same data set and false positive
rate and the optimal k = 2 hash functions. These tables show that it is possible to build
SAT filters that if, for example, p ≈ 1

4 and k = 5, use 22% less long-term storage than
Bloom filters and accept more than 300, 000 queries a second (although roughly 14 times
slower than Bloom filters).

SAT filter query time can be decreased by either decreasing k (which may increase
long-term storage, i.e., decrease efficiency) or storing multiple solutions to a single-instance
(as discussed in § 3.5) and making use of optimization techniques such as bit-packing and
word-level instructions. This second option produces SAT filters that can be queried within
an order of magnitude of Bloom filters, although, currently, at the expense of more one-time
work in finding disparate solutions to a single random k-SAT instance (per SAT filter). The
discovery of such solutions has been achieved here by calling a SAT solver many times on the
same SAT instance. After each call, the average Hamming distance was calculated between

8. Though, for single-instance SAT filters, this relation does not provide sufficient entropy to achieve small
false positive rates.
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Table 2. Seconds Taken to Build Multi-Instance SAT Filters for p ≈ 1
4

E 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97

k = 3, s = 11→ p ≈ 23.02%

m = 214 1 1 2 137 - - - - - - - -
m = 215 1 3 15 101 - - - - - - - -
m = 216 2 6 67 101 - - - - - - - -
m = 217 7 17 116 120 - - - - - - - -

k = 4, s = 22→ p ≈ 24.18%

m = 214 1 1 1 1 1 2 6 39 - - - -
m = 215 1 1 1 2 2 9 19 62 - - - -
m = 216 1 2 2 4 10 26 36 71 - - - -
m = 217 4 5 7 11 25 62 74 144 - - - -

k = 5, s = 44→ p ≈ 24.74%

m = 214 1 1 1 1 4 33 183 285 1436 - - -
m = 215 1 1 2 4 21 96 97 117 349 - - -
m = 216 3 3 5 8 71 211 219 222 548 - - -
m = 217 7 9 14 23 471 484 499 517 626 - - -

k = 6, s = 89→ p ≈ 24.62%

m = 214 1 2 6 29 54 68 115 235 - - - -
m = 215 3 11 105 105 110 123 167 389 - - - -
m = 216 7 79 250 251 258 268 324 671 - - - -
m = 217 21 555 567 569 579 604 640 1283 - - - -

Table 3. Bloom Filter Size Versus SAT Filter Size (in bits). [Each pair of filters (Bloom and
SAT) were built with optimal parameters given the same dictionaries and false positive rate. The
parameters used to build the SAT filters are those with highest efficiency from Table 2.]

m = 214 m = 215 m = 216 m = 217

Bloom SAT Bloom SAT Bloom SAT Bloom SAT

k = 3, s = 11→ p ≈ 23.02% 50090 42856 100179 85734 200356 171446 400715 342914
k = 4, s = 22→ p ≈ 24.18% 48419 37708 96837 75416 193674 150832 387348 301664
k = 5, s = 44→ p ≈ 24.74% 47638 36256 95275 72556 190550 145112 381099 290268
k = 6, s = 89→ p ≈ 24.62% 47797 37202 95593 74404 191186 148897 382371 297794
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Table 4. Seconds Taken to Query the Bloom and SAT Filters from Table 3 with 227 Random
Elements.

m = 214 m = 215 m = 216 m = 217

Bloom SAT Bloom SAT Bloom SAT Bloom SAT

k = 3, s = 11→ p ≈ 23.02% 30 84 30 84 30 84 30 85
k = 4, s = 22→ p ≈ 24.18% 31 186 31 186 31 185 31 185
k = 5, s = 44→ p ≈ 24.74% 31 415 31 410 31 401 31 421
k = 6, s = 89→ p ≈ 24.62% 31 1034 31 1031 31 1028 31 1011

all pairs of solutions found up to that point. If accepting the latest solution caused the
average Hamming distance to fall below some predetermined limit, a handful of k-clauses
were added to the instance to block the parts (the backbone) of the non-accepted solution
that were most similar to already accepted solutions.9. This process was repeated until s
disparate solutions were found.

The results of building and querying a few single-instance SAT filters are presented in
Table 5. The table shows that SAT filters can be built that use less long-term storage than
Bloom filters and also have comparable query time and false positive rates. These results
also provide evidence that to achieve the desired false positive rate, the average Hamming
distance of the set of solutions found needs to be at least 50% of the total number of
variables.

Table 5. Build Time, Filter Size, Query Time, and Achieved False Positive Rate for Single-
Instance SAT Filters Built with E = 0.75 and m = 214. [Two sets of filters were built, one where
the average Hamming distance of the set of s solutions (taken pairwise) was at least 50% of the
total number of variables, and one with at least 49%. Each filter was queried with 227 random
elements (as in Table 4).]

Build Time Size Query Time Achieved p

Hamming Distance = 50%

k = 4, s = 22→ p ≈ 24.18% 20802 44748 47 24.20%
k = 5, s = 44→ p ≈ 24.74% 610 44000 51 24.86%
k = 6, s = 89→ p ≈ 24.62% 643 44144 61 25.09%

Hamming Distance = 49%

k = 4, s = 22→ p ≈ 24.18% 18 44748 47 26.14%
k = 5, s = 44→ p ≈ 24.74% 14 44000 51 27.33%
k = 6, s = 89→ p ≈ 24.62% 10 44144 61 28.16%

9. The method used here is ad hoc. One avenue of future research is to discover more rigorous methods for
finding many disparate solutions to a given SAT instance.
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7. Conclusions and Future Work

A SAT filter is a simple offline filter construction that is efficient in terms of both the
amount of long-term storage and query time, i.e., SAT filters asymptotically achieve the
information-theoretic limit and support fast queries. This filter can be used effectively for
testing set membership in large families of sets, providing significant improvements over
current techniques such as the standard Bloom filter, as well as its compressed version [24].

The SAT filters described here are more appropriately called random k-SAT filters. They
provide a novel application of random k-SAT along with new insights into the random k-
SAT phase transition. To the best of the authors’ knowledge, SAT filters are the first
instance of using random k-SAT for a real-world application, and hence a good instance of
theory supporting practice. These investigations show that the study of random k-SAT is
no longer “purely academic.” A renewed research effort into random SAT could help create
SAT solvers capable of solving instances much nearer to the k-SAT threshold than currently
achievable. This would enable more efficient SAT filters to be built, saving both time and
memory for the many applications making use of filters.

There is potential for this work to be generalized and applied to other domains where
random phase transitions exist. More SAT filter constructions could be developed that
use different ways of generating random clauses [28] or that use other kinds of constraints.
For example, pairs of randomly chosen solutions to random Not-All-Equal (NAE) k-SAT
instances are uncorrelated [3] (not true for random k-SAT [27, 4]), and so single-instance
SAT filters may be easier to build using width k NAE constraints. Also, random k-XORSAT
instances are solvable in polynomial time [31], and so SAT filters could be built without
solving an instance of an NP-complete problem.10.
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