
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 123-128

IOS Press

MUSer2: An Efficient MUS Extractor

system description

Anton Belov anton.belov@ucd.ie

CASL/CSI, University College Dublin

Dublin, Ireland

Joao Marques-Silva jpms@ucd.ie

CASL/CSI, University College Dublin, Dublin, Ireland

IST/INESC-ID, Lisbon, Portugal

Abstract

Algorithms for extraction of Minimally Unsatisfiable Subformulas (MUSes) of CNF for-
mulas find a wide range of practical applications, including product configuration, knowledge-
based validation, hardware and software design and verification. This paper describes the
MUS extractor MUSer2. MUSer2 implements a wide range of MUS extraction algorithms,
integrates a number of key optimization techniques, and represents the current state-of-
the-art in MUS extraction.

Keywords: Minimal unsatisfiability, MUS extraction, SAT applications

Submitted June 2012; revised August 2012; published December 2012

1. Introduction

A minimally unsatisfiable subformula (MUS) of an unsatisfiable CNF formula F is any
minimal, with respect to set inclusion, subset of clauses in F that is still unsatisfiable.
MUSes find a wide range of practical applications. Some of the applications from the early
2000’s that motivated the interest in algorithms for computing MUSes include type debug-
ging in programming languages, circuit error diagnosis, and error localization in automotive
product configuration data. However, by the late 2000’s it became clear that some of the
technologies that traditionally relied on the computation of non-minimal unsatisfiable sub-
formulas of propositional formulas (the unsatisfiable cores) can benefit significantly, and
are willing to pay the price, for the computation of MUSes. As a result, development of
effective MUS extraction algorithms is currently a very active area of research.

This paper describes an MUS extractor MUSer2. MUSer2 implements a number of MUS
(and group-MUS) extraction algorithms and includes various important optimization tech-
niques, such as clause-set refinement and model rotation. The tool is SAT solver agnostic
— that is, it treats SAT solvers in a black-box manner — this allows for experimentation
with various SAT solvers, and allows to easily capitalize on the advancements in SAT solv-
ing. The tool includes a built-in tester that allows to check whether a computed clause-set
is indeed an MUS — this feature simplifies the implementation of new algorithms. As

This work is partially supported by SFI grant BEACON (09/IN.1/I2618), and by FCT grants ATTEST
(CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/123051/2010).

1574–0617 c© 2012 IOS Press, the SAT Association, and the authors.

A. Belov and J. Marques-Silva

demonstrated in Section 3, MUSer2 outperforms by a wide margin the top MUS extractors
from SAT Competition 2011. MUSer2 is an open-source (GPLv3) software. The tool is
available for download from http://logos.ucd.ie/wiki/doku.php?id=muser. A longer
version of this paper, presented at Pragmatics of SAT 2012 workshop, is also available from
the website, and includes a complete bibliography and additional experimental data.

We assume familiarity with propositional logic, its clausal fragment, and commonly used
terminology and notation of the area of SAT. A CNF formula F is minimally unsatisfiable
if (i) F is unsatisfiable, and (ii) for any clause C ∈ F , the formula F \ {C} is satisfiable.
We denote the set of minimally unsatisfiable CNF formulas by MU. A CNF formula F ′ is
a minimally unsatisfiable subformula (MUS) of a formula F if F ′ ⊆ F and F ′ ∈ MU. The
set of MUSes of a CNF formula F is denoted by MUS(F). (In general, a given unsatisfiable
formula F may have more than one MUS.) A clause C ∈ F is necessary for F if F is
unsatisfiable and F \{C} is satisfiable. Necessary clauses are often referred to as transition
clauses. The set of all necessary clauses of F is precisely

⋂
MUS(F). Thus, F ∈ MU if and

only if every clause of F is necessary. The problem of deciding whether a given CNF formula
is in MU is DP-complete [13]. Motivated by several applications, minimal unsatisfiability
and related concepts have been extended to CNF formulas where clauses are partitioned
into disjoint sets called groups [9, 12]. Throughout the paper, m denotes the number of
clauses in the input CNF formula F , m = |F|, and k denotes the number of clauses in the
largest MUS M, k = |M|. Over the years, three main approaches have been proposed for
computing an MUS: constructive or insertion-based [5], destructive or deletion-based [4, 1]
and dichotomic [7, 6]. Constructive approaches require O(m × k) calls to an NP-oracle
(e.g. a SAT solver), destructive approaches require O(m) calls, and dichotomic approaches
require O(k × logm) calls. See [10] for a recent overview of MUS extraction algorithms.

2. MUSer2 — Functionality and Features

Prior to the overview of the functionality and the features of MUSer2 we note that the core
of the tool does not make any distinction between the CNF and the group-CNF formulas.
All algorithms and optimization techniques that we describe in this section in terms of CNF
formulas (resp. MUSes), are also implemented in MUSer2 for group-CNF formulas (resp.
group-oriented MUSes).

2.1 Algorithms

The current version of MUSer2 implements the following MUS extraction algorithms.

The hybrid algorithm [11]. This is an instantiation of the deletion-based approach to
MUS extraction: the necessary clauses are detected on transition from UNSAT to SAT, as in
the deletion-based approach, however the MUS is built bottom-up, as in the insertion-based
approach. The pseudocode of the algorithm is presented in [11]. The algorithm requires
O(m) SAT solver calls in the worst case, however in the presence of various optimizations
described below, many practical instances are solved with significantly smaller number of
calls, often as few as two.

The dichotomic algorithm [7, 6]. The worst-case number of SAT solver calls required
by this algorithm is O(k × logm) (see details in [10]). Given the logarithmic dependency

124

http://logos.ucd.ie/wiki/doku.php?id=muser

MUSer2: An Efficient MUS Extractor

on the size of the input formula, and the linear dependency on the size of the MUS, the
algorithm might be expected to perform comparably or better than the hybrid approach
in some cases. However, on practical instances this does not seem to be the case, with the
dichotomic approach performing notably worse than the hybrid — see Fig. 1.

The insertion-based, or constructive, algorithm [5]. The detailed pseudocode of the
algorithm is available in [10]. This algorithm requires O(m × k) calls to a SAT solver in
the worst case, and so, even in the presence of all relevant optimizations, does not scale on
practical MUS extraction problems (see Fig. 1).

2.2 Optimization techniques

MUSer2 includes the implementation of a number of optimization techniques, some of which,
namely clause-set refinement and recursive model rotation, are essential for effective MUS
extraction. The optimizations described below are applicable to all MUS extraction algo-
rithms from Section 2.1.

Clause-set refinement and trimming. When, during the computation of an MUS, a
SAT solver determines that a current subformula is unsatisfiable, the unsatisfiable core
returned by the solver must contain at least one MUS. Thus, all clauses that fall outside
of the core can be discarded. This optimization technique, referred to as clause-set re-
finement [11], is crucial for reducing the number of SAT solver calls in MUS extraction
algorithms. Clause-set refinement can also be used as a preprocessing technique, i.e. prior
to testing any of the clauses for the necessity. In this case, a SAT solver is invoked itera-
tively on computed unsatisfiable cores until no changes are detected between calls (cf. [16]).
For large problem instances, iterating the computation until a fixed point can be inefficient,
and so MUSer2 implements a simpler alternative of iterating the computation for a constant
number of times, or until the size change in the computed unsatisfiable subformulas is below
a given threshold. We refer to this preprocessing technique a clause-set trimming.

Recursive model rotation (RMR). RMR [2] is an improved variant of model rotation
— a powerful optimization technique introduced in [11]. Model rotation is initialized with
an assignment to the variables of the current approximation of an MUS under which there
is a single falsified clause. Such an assignment is a witness of the necessity of the clause.
For deletion-based algorithms the witnesses are returned by the SAT solver whenever the
removal of some clause makes the current working formula satisfiable. For insertion-based
and dichotomic algorithms the witness is available on the termination of the inner loop.
Given a witness, model rotation makes local changes to the truth-values in the witness
with the attempt to obtain a witness for another clause, thus proving the clause necessary
without a SAT solver call. In RMR this process is performed recursively — see [2] for
details, the pseudocode, and an evaluation of the effectiveness of the technique.

Redundancy removal. This technique consists of adding extra constraints to the working
formula prior to SAT solver calls. In the context of hybrid MUS extraction algorithm this is
done by adding to the formula the negation of the removed clause (or the CNF representation
of the negation of the removed group of clauses) prior to the call. This technique was first
used in [15], in the context of a constructive MUS extraction algorithm, and in [11] in the
context of the hybrid algorithm. Note the integration of redundancy removal and clause-set

125

A. Belov and J. Marques-Silva

refinement is not immediate, since the clauses from the redundancy removal technique can
be part of the computed unsatisfiable core. We refer the reader to [11] for details.

2.3 SAT solver interface

One of the notable features of MUSer2 is the fact that SAT solvers are treated in a black-box
manner. That is, a SAT solver is accessed through a thin wrapper around the solver’s API.
The requirements from the API are minimal: SAT solvers that support incremental SAT
are expected to be able to solve with assumptions, to return models, and in the case of
unsatisfiable outcomes, to return the set of failed assumptions (this is needed for clause-
set refinement and trimming). SAT solvers that do not support incremental SAT solving
are expected to return models, and to provide an unsatisfiable core — the latter, again,
only in the case refinement or trimming are used. The advantage of this design of MUSer2

is that it allows to easily plug in and experiment with different SAT solvers, and even use
different SAT solvers during the MUS extraction. Additional potential benefit of this design
is that MUSer2 may provide a platform for evaluation of the performance of incremental SAT
solvers. The design, however, is not without a cost. For once, there is an extra layer of
data-structures — MUSer2 maintains its own copy of clauses of the formula. Additionally,
MUSer2 is unable to squeeze extra performance by making modifications inside SAT solver.
However, we work on the premises that (i) most of the time in MUS extraction is spent in
SAT solving, and (ii) it is very difficult to keep any particular SAT solver up-to-date on
the newly developed SAT solving techniques, and so simply plugging in a faster SAT solver
into the MUS extractor can be a more effective alternative.

The currently publicly available version of MUSer2 includes the wrappers for SAT solvers
minisat-2.2.0 (http://minisat.se/) and picosat-935 [3]. We are planning to add
wrappers to additional SAT solvers in the near future.

2.4 Other features

Additional useful features of MUSer2 include: (i) control over the ordering of clauses during
MUS extraction; (ii) testing of the computed MUSes by means of a thoroughly externally
tested implementation of the hybrid algorithm with refinement and RMR — the use of
hybrid algorithm for MUS testing is motivated by the frequent requirement to test large
MUSes within reasonable time limits; (iii) output of the computed MUSes (resp. group-
MUSes) in CNF (resp. GCNF) formats; (iv) comprehensive statistics.

3. Experimental Data

In this section we present the results of experimental evaluation of MUSer2 on the 295
benchmark instances from the MUS track SAT Competition 2011 1.. The experiments were
performed on an HPC cluster, where each node is dual quad-core Intel Xeon E5450 3 GHz
with 32 GB of memory. Each algorithm was run with a timeout of 1800 seconds and a
memory limit of 4 GB per input instance.

The cactus plot in Fig. 1 presents (i) the comparison of the performance of MUSer2 with
the top three MUS extractors from SAT Competition 2011, namely MoUsSaka [8] which

1. http://www.satcompetition.org/.

126

http://minisat.se/
http://www.satcompetition.org/

MUSer2: An Efficient MUS Extractor

Figure 1. Runtimes of various extractors on the benchmarks from the MUS track of SAT Com-
petition 2011. Time limit 1800 sec, memory limit 4 GB.

was ranked 3-rd, and Haifa-MUC [14] without (resp. with) preprocessing, which was ranked
1-st (resp. 2-nd); (ii) the comparison of the performance of MUSer2 with picomus-941

[3]; (iii) the comparison of the performance of hybrid MUS extraction algorithm with the
dichotomic and the insertion-based MUS extraction algorithms in MUSer2; and, finally, (iv)
the comparison of the performance of the hybrid algorithm in MUSer2 using minisat-2.2.0

and picosat-935 [3] SAT solvers. In the plot, HYB refers to the hybrid algorithm, DICH
to the dichotomic, and INS to the insertion-based algorithm. Clause-set trimming was not
used in the experiments, and the redundancy removal technique is not yet implemented in
the insertion-based and the dichotomic algorithms.

A number of observations can be made. First, we note that MUSer2 significantly outper-
forms the winners of SAT Competition 2011. Beside solving extra 25 instances compared
to Haifa-MUC, its notably faster than the three extractors on the problems of medium to
high difficulty. Similarly, the comparison of MUSer2 using picosat-935 with picomus-941

demonstrates clearly the effectiveness of the algorithms and optimizations implemented in
MUSer2. We also conclude that the hybrid algorithm is significantly more effective that
the insertion-based and the dichotomic algorithms, despite the optimizations integrated
into these algorithms 2.. Finally, we note that in the context of MUSer2 and the selected
benchmark instances, minisat-2.2.0 is a more effective SAT oracle than picosat-935.

4. Conclusions and Future Work

In this paper we presented a state of the art MUS extractor MUSer2. Future work on the
tool includes implementation of additional MUS extraction algorithms and optimization
techniques, and integration of additional SAT solvers.

2. The redundancy removal optimization is not implemented in the two algorithms, however, based on our
experience, it is highly unlikely to close such a significant performance gap.

127

A. Belov and J. Marques-Silva

References

[1] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing and solving
over-determined constraint satisfaction problems. pages 276–281, 1993.

[2] A. Belov and J. Marques-Silva. Accelerating MUS extraction with recursive model
rotation. In FMCAD, 2011.

[3] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 2:75–97, 2008.

[4] J. W. Chinneck and E. W. Dravnieks. Locating minimal infeasible constraint sets in
linear programs. INFORMS Journal on Computing, 3(2):157–168, 1991.

[5] J. L. de Siqueira and J.-F. Puget. Explanation-based generalisation of failures. In
ECAI, pages 339–344, 1988.

[6] F. Hemery, C. Lecoutre, L. Sais, and F. Boussemart. Extracting MUCs from constraint
networks. In ECAI, pages 113–117, 2006.

[7] U. Junker. QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems. In AAAI Conference on Artificial Intelligence, pages 167–172,
2004.

[8] S. Kottler. Description of the SApperloT, SArTagnan and MoUsSaka solvers for the
SAT-Competition 2011. http://www.satcompetition.org/2011/, 2011.

[9] M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

[10] J. Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications. In
ISMVL, pages 9–14, 2010.

[11] J. Marques-Silva and I. Lynce. On improving MUS extraction algorithms. In SAT,
pages 159–173, 2011.

[12] A. Nadel. Boosting minimal unsatisfiable core extraction. In FMCAD, October 2010.

[13] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J. Comput.
Syst. Sci., 37(1):2–13, 1988.

[14] V. Ryvchin and O. Strichman. Faster extraction of high-level minimal unsatisfiable
cores. In SAT, pages 174–187, 2011.

[15] H. van Maaren and S. Wieringa. Finding guaranteed MUSes fast. In SAT, pages
291–304, 2008.

[16] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In DATE, pages 10880–
10885, 2003.

128

	Introduction
	MUSer2 — Functionality and Features
	Algorithms
	Optimization techniques
	SAT solver interface
	Other features

	Experimental Data
	Conclusions and Future Work

