
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 95-100

QMaxSAT: A Partial Max-SAT Solver

system description

Miyuki Koshimura∗ koshi@inf.kyushu-u.ac.jp

Tong Zhang zhang@ar.is.kyushu-u.ac.jp

Hiroshi Fujita fujita@inf.kyushu-u.ac.jp

Ryuzo Hasegawa hasegawa@inf.kyushu-u.ac.jp

Department of Informatics,

Graduate School of Information Science and Electrical Engineering,

Kyushu University, Fukuoka, Japan

Abstract

We present a partial Max-SAT solver QMaxSAT which uses CNF encoding of Boolean
cardinality constraints. The old version 0.1 was obtained by adapting a CDCL based SAT
solver MiniSat to manage cardinality constraints. It was placed first in the industrial
subcategory and second in the crafted subcategory of partial Max-SAT category of the
2010 Max-SAT Evaluation. The new version 0.2 is obtained by modifying version 0.1 to
decrease the number of clauses for the cardinality encoding. We compare the two versions
by solving Max-SAT instances taken from the 2010 Max-SAT Evaluation.

Keywords: partial Max-SAT solver, Boolean cardinality constraints, CDCL solver

Submitted January 2011; revised June 2011; published January 2012

1. Introduction

Max-SAT is an optimization version of SAT which tries to find an assignment that max-
imizes the number of satisfied clauses [15, 14]. This is a natural extension of SAT if we
want to know the degree of unsatisfiability. There are two approaches to solve Max-SAT:
approximation and exact algorithms. The former computes near-optimal solutions while
the latter computes optimal ones. This paper considers exact solutions.

The exact solvers can be classified into two approaches. The one implements a branch
and bound scheme and applies several techniques tailored to Max-SAT [19, 13, 16]. Another
makes use of a state-of-the-art SAT solver as an inference engine. We call this approach
SAT-based approach. QMaxSAT (Q-dai1. Max-SAT solver) follows SAT-based approach and
uses a CDCL (Conflict Driven Clause Learning) SAT solver MiniSat [9] version 2.0 as an
inference engine.

SAT-based solvers are further classified into two: satisfiability-based [6] and unsatisfiability-
based [1, 17]. QMaxSAT is a satisfiability-based solver. Satisfiability-based and unsatisfiability-
based solvers deal with a sequence of satisfiable and unsatisfiable instances, where each in-
stance is generated from the previous one by adding cardinality constraints, and terminate

∗ This work was supported by JSPS KAKENHI(20240003).
1. Kyushu University is called “Kyushu Daigaku” or “Q-dai” in Japanese.

c©2012 Delft University of Technology and the authors.



M. Koshimura et al.

when unsatisfiable and satisfiable instances are found, respectively. A model of the latest
satisfiable instance corresponds to a Max-SAT solution.

The paper is structured as follows. In Section 2, we overview the SAT-based approach.
Section 3 and 4 present QMaxSAT version 0.1 and 0.2, respectively. In Section 5, we report
our experiments. In Section 6, we present some concluding remarks.

2. SAT-Based Max-SAT

For unsatisfiable SAT instances, usual SAT solvers tell nothing but “unsatisfiable.” In order
to get more information from unsatisfiable instances or add constraints to them, blocking
variables are introduced. Satisfiability-based solvers add the variables to all clauses in a
Max-SAT instance while unsatisfiability-based solvers add ones to all clauses in an unsatis-
fiable subset of the instance.

Satisfiability-based Max-SAT Given a Max-SAT instance φ = {C1, . . . , Cn}, a new
blocking variable bi is added to each clause Ci (1 ≤ i ≤ n). Solving the Max-SAT problem for
φ is reduced to minimize the number of true blocking variables in φ′ = {C1∨b1, . . . , Cn∨bn}.
A minimal satisfying assignment can readily be found by iterative calls to the solver. First
run a SAT solver on φ′ without constraints to get an initial model and count the number k
of true blocking variables in the model, then add the constraint saying that the number of
true blocking variables have to be less than k, and run the solver again. If the problem is
unsatisfied, k is the optimum solution. If not, the process is repeated with the new smaller
solution. This iteration is essentially the same as the one in solvers for pseudo-Boolean
optimization [20] and an algorithm for MAXONES [5].

There are two satisfiability-based solvers participated in the 2010 Max-SAT Evalua-
tion: Sat4j-MaxSAT [6] and QMaxSAT. Sat4j-MaxSAT translated Max-SAT problems into
pseudo-Boolean optimization ones and solve them with a pseudo-Boolean solver Sat4j-PB.
The minimization of the number of true blocking variables is treated as an objective func-
tion min :

∑n
i=1 bi in Sat4j-PB. Sat4j-PB manages the objective function natively, while

QMaxSAT manages the minimization by a CNF encoding of cardinality constraints as men-
tioned in Section 3.

Unsatisfiability-based Max-SAT Let ϕ be a Max-SAT instance. We iterate the fol-
lowing process until ϕ becomes satisfiable: Run a SAT solver on ϕ. If ϕ is unsatisfiable, we
extract an unsatisfiable subset US = {C1, . . . , Cm} from ϕ and introduce m new blocking
variables bi(1 ≤ i ≤ m). Then, we build new ϕ by replacing Ci with Ci∨bi (1 ≤ i ≤ m) and
adding a CNF encoding of

∑m
i=1 bi = 1. If ϕ is satisfiable, the iteration terminates. The

number of iterations indicates the number of falsified clauses in a Max-SAT solution of the
original ϕ. Note that this iteration is based on the original Fu and Malik work [11]. There
are several works for improving this work [1, 17].

3. Version 0.1

The Partial Max-SAT (PMS) problem for a CNF formula, in which some clauses are declared
to be soft and the rest are declared to be hard, is the problem of finding an assignment that
satisfies all the hard clauses and the maximum number of soft clauses.

96



QMaxSAT: Q-dai Max-SAT Solver

Let C = H∪S be a PMS instance consisting of a set H of hard clauses and a set S of soft
clauses. Assume that S consists of n soft clauses, that is, S = {S1, . . . , Sn}. We introduce
n new blocking variables bi(1 ≤ i ≤ n) and construct a new clause set Cb = H ∪ Sb where
Sb = {S1 ∨ b1, . . . , Sn ∨ bn}. Finding a PMS solution of C is reduced to find the minimal
integer k satisfying Cb and

∑n
i=1 bi ≤ k, that is, minimize the number of true blocking

variables while satisfying Cb.
The constraint

∑n
i=1 bi ≤ k is called the cardinality constraint. There are several works

on encoding cardinality constraints into CNF formulas [4, 21, 10, 18, 3, 8]. QMaxSAT uses
the encoding of Bailleux and Boufkhad [4]. In this encoding, we introduce n new variables
vi(1 ≤ i ≤ n) for n blocking variables bi(1 ≤ i ≤ n). Then, we make a CNF formula
C(b1, · · · , bn, v1, · · · , vn) saying:

1. If m blocking variables are assigned 1, the first m variables vi(1 ≤ i ≤ m) are going
to become assigned 1.

2. If m blocking variables are assigned 0, the last m variables vn−i+1(1 ≤ i ≤ m) are
going to become assigned 0.

The encoding needs O(n · log n) auxiliary variables and O(n2) clauses. With the encoding,
we encode the constraint l ≤

∑n
i=1 bi ≤ k by setting the first l variables vi(1 ≤ i ≤ l) to 1,

and the last n− k variables vi(k < i ≤ n) to 0.

Algorithm 1 QMaxSAT

1: A = Cb; {Cb : PMS instance augmented with blocking variables}
2: M = ∅; first = true;
3: while (solve(A)) do
4: Let M be a model of A;
5: “count the number k of true blocking variables in M”;
6: if (first) then
7: first = false;
8: A = A ∧ C(b1, · · · , bn, v1, · · · , vn); {augment the constraint to A}
9: end if

10: for i = k to n do
11: vi = 0;
12: end for{add the constraint

∑n
i=1 bi < k}

13: end while
14: return M;

Algorithm 1 shows the QMaxSAT algorithm. The function solve(A) denotes the core
part of the SAT solver which returns false when a SAT instance A is unsatisfiable and
true when A is satisfiable. In the latter case, a model M of A is obtained through an array
from which we count the number k of true blocking variables in M (lines 4,5).

After we obtain the first model of Cb, we build a CNF formula C(b1, · · · , bn, v1, · · · , vn)
which encodes a cardinality constraint (line 8). For every model obtained through solve(A),
we introduce extra constraint (lines 10,11,12). The k decreases as the procedure progresses
and is bounded below by 0. Thus, k converges to a non-negative integer at which we obtain
a PMS solution (line 14). We conclude that C is unsatisfiable if M keeps the initial value ∅.

97



M. Koshimura et al.

4. Version 0.2

A drawback of version 0.1 arises from the number of clauses for encoding Boolean cardinality
constraints. Assuming that there are tens of thousands of soft clauses, the encoding needs
hundreds of millions clauses. In our experience, the clauses cannot be held in 4GB memory
when the number of soft clauses is greater than nine thousands.

There are several CNF encodings of cardinality constraints with better space complexity
than that of version 0.1. For example, Eén and Sörensson propose the use of BDDs, that
guarantee a space complexity of O(n · k1), and sorting networks, that guarantee a space
complexity of O(n · log2n) [10] where k1 is the number of true blocking variables in the first
model M in the procedure (see Algorithm 1). Sinz also proposes a sequential counter with
O(n · k1) space complexity [21].

Our choice is to improve the Bailleux and Boufkhad’s encodings because of its simplicity
as follows. The encoding includes the following conjunction of clauses:∧

0 ≤ α ≤ bn/2c
0 ≤ β ≤ dn/2e
α+ β = σ
0 ≤ σ ≤ n

(C1(α, β, σ) ∧ C2(α, β, σ))

where n is the number of soft clauses, C1(α, β, σ) and C2(α, β, σ) are the CNF represen-
tations of the relations α + β ≤ σ and σ ≤ α + β, respectively. We can eliminate clauses
C1(α, β, σ) and C2(α, β, σ) satisfying k1 < σ ≤ n because such clauses are meaningless when∑n

i=1 bi < k1. This elimination reduces the number of clauses for the encoding from O(n2)
to O(n · k1).

Recently, CNF encodings of cardinality constraints with better space complexity than
the above encodings are proposed [3, 8]. They guarantee O(n · log2k1) space complexity.
Replacing the current encoding with these new encodings is one of the future works.

5. Experimental Results

We implemented QMaxSAT 2. based on MiniSat 2.0. We modified only the top-level part
of MiniSat to manipulate cardinality constraints. The other parts remain unchanged. All
parameters also maintain default values.

Table 1 summarizes the results obtained by running the two versions of QMaxSAT on
the PMS problems of the fifth Max-SAT evaluation (Max-SAT 2010) [12, 2]. The problems
are divided into three different categories: random, crafted, and industrial. The second
column shows the number of instances of the corresponding category. The third and fourth
columns show the average cpu time in seconds for instances solved by version 0.1 and 0.2,
respectively. The number in parentheses indicates the number of solved instances. The
experiments are done on Core i5-750 (4-core 2.66GHz) machine with 4GB memory. We set
the timeout to 1800 seconds.

We succeeded in increasing the numbers of solved instances with the new version 0.2
from 294 to 295 for the crafted category and from 379 to 391 for the industrial category.

2. QMaxSAT is available from http://sites.google.com/site/qmaxsat/.

98

http://sites.google.com/site/qmaxsat/


QMaxSAT: Q-dai Max-SAT Solver

Table 1. Comparison of two versions for partial Max-SAT problems of Max-SAT 2010

#INS. v. 0.1 v. 0.2

Random 240 45.0 (31) 30.5 (31)

Crafted 385 101.7 (294) 94.8 (295)

Industrial 497 55.3 (379) 67.1 (391)

Recall that the old version 0.1 was the winner of the industrial category. Thus, the new
version 0.2 beats the winner.

There are 13 instances for which the old version fails to generate the cardinality con-
straints because they have many soft clauses. They all are in the industrial category and
the number of their soft clauses are from 9188 to 101248. For these 13 instances, the new
version succeeds in generating the cardinality constraints. It also succeeds in solving 8 of
13 within 1800 seconds.

6. Conclusion

We have presented QMaxSAT, a partial Max-SAT solver based on a SAT solver MiniSat.
Experimental results show that QMaxSAT is good for problems in the industrial and crafted
category while it is not so good for those in the random category. This phenomenon coin-
cides with that of MiniSat for SAT problems. Thus, it seems reasonable to claim that the
efficiency of QMaxSAT comes from that of MiniSat and the CNF encoding of cardinality
constraints.

We implemented QMaxSAT by adapting MiniSat to manage cardinality constraints for
soft clauses. The implementation is simple in the sense that we modified only the input
routine and the main function of MiniSat for introducing blocking variables and manipu-
lating the cardinality constraints on them. The source level difference between QMaxSAT
and MiniSat is in a hundred and ten of lines which includes a C++ code for generating
cardinality constraints. This means that the syntactical difference is about 5 %.

The QMaxSAT implementation is modular and one could plug in (i) another encoding
of cardinality constraints, and (ii) another SAT solver. Replacing the encoding or SAT
solver with others is an interesting future work. We also plan to extend QMaxSAT to solve
weighted Max-SAT problems.

References

[1] Carlos Ansótegui, Maŕıa Luisa Bonet, and Jordi Levy. Solving (Weighted) Partial
MaxSAT through Satisfiability Testing. In Proc. of SAT 2009, pages 427–440, 2009.

[2] Josep Argelich, Chu-Min Li, Felip Manyà, and Jordi Planes. The First and Second
Max-SAT Evaluations. JSAT, 4:251–278, 2008.

[3] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-Carbonell.
Cardinality Networks and Their Applications. In Proc. of SAT 2009, pages 167–180,
2009.

99



M. Koshimura et al.

[4] Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints. In Proc. of CP 2003, pages 108–122, 2003.

[5] Olivier Bailleux and Yacine Boufkhad. Full CNF Encoding : The Counting Constraints
Case. In Proc. of SAT 2004, pages 263–268, 2004.

[6] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. JSAT, 7:59–64, 2010.

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, 185 of FAIA. IOS Press, 2009.

[8] Michael Codish and Moshe Zazon-Ivry. Pairwise Cardinality Networks. In Proc. of
LPAR-16, pages 154–172, 2010.

[9] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Proc. of SAT 2003,
pages 502–518, 2003.

[10] Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2:1–26, 2006.

[11] Zhaohui Fu and Sharad Malik. On Solving the Partial MAX-SAT Problem. In Proc.
of SAT 2006, pages 252–265, 2006.

[12] Federico Heras, Javier Larrosa, Simon de Givry, and Thomas Schiex. 2006 and 2007
Max-SAT Evaluations: Contributed Instances. JSAT, 4:239–250, 2008.

[13] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSat: An Efficient
Weighted Max-SAT Solver. J. of Artificial Intelligence Research, 31:1–32, 2008.

[14] Katsutoshi Hirayama and Makoto Yokoo. *-SAT: Extentions of SAT. J. of JSAI,
25(1):105–113, 2010. in Japanese.

[15] Chu Min Li and Felip Manyà. MaxSAT, Hard and Soft Constraints, chapter 19, pages
613–631. Volume 185 of Biere et al. [7], 2009.

[16] Han Lin, Kaile Su, and Chu-Min Li. Within-Problem Learning for Efficient Lower
Bound Computation in Max-SAT Solving. In Proc. of AAAI-08, pages 351–356, 2008.

[17] Vasco Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for Weighted
Boolean Optimization. In Proc. of SAT 2009, pages 495–508, 2009.

[18] Joao Marques-Silva and Inês Lynce. Towards Robust CNF Encodings of Cardinality
Constraints. In Proc. of CP 2007, pages 483–497, 2007.

[19] Knot Pipatsrisawat and Adnan Darwiche. Clone: Solving Weighted Max-SAT in a
Reduced Search Space. In Proc. of AI 2007, pages 223–233, 2007.

[20] Olivier Roussel and Vasco Manquinho. Pseudo-Boolean and Cardinality Constraints,
chapter 22, pages 695–733. Volume 185 of Biere et al. [7], 2009.

[21] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In Proc. of CP 2005, pages 827–831, 2005.

100


	Introduction
	SAT-Based Max-SAT
	Version 0.1
	Version 0.2
	Experimental Results
	Conclusion

