
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 89-94

PackUp: Tools for Package Upgradability Solving∗

system description

Mikoláš Janota mikolas@sat.inesc-id.pt

Inês Lynce ines@sat.inesc-id.pt

Vasco Manquinho vmm@sat.inesc-id.pt

INESC-ID/IST, Technical University of Lisbon, Portugal
Rua Alves Redol n. 9
1000-029 Lisboa, Portugal

Joao Marques-Silva jpms@ucd.ie

Complex and Adaptive Systems Laboratory (CASL)

University College Dublin, Belfield

Dublin 4, Ireland

Abstract

This paper presents PackUp1. (PACKage UPgradability with Boolean formulations) a
framework for solving the the software package upgradability problem. Earlier versions of
the framework (cudf2msu, cudf2pbo) participated in the 3rd MISC-live, an international
competition organized by the European project MANCOOSI. The framework encodes the
problem as a weighted partial MaxSAT formula and invokes a dedicated solver to solve the
formula. The framework supports two types of solvers: weighted partial MaxSAT solvers
and optimization pseudo-Boolean (OPB) solvers. The paper discusses the design of the
framework and the specifics of the problem encoding.

Keywords: package upgradability problem, MaxSAT, Boolean optimization

Submitted April 2011; revised June 2011; published January 2012

1. Introduction

Package management systems gained popularity in the last few decades due to the success of
Linux distributions by facilitating management of software on an operating system. Indeed,
typically a single command is sufficient to install or upgrade a piece of software—a package.

Package management is computationally difficult because of interactions between pack-
ages: a package may depend on other packages or it might conflict with other packages. A
package manager must maintain the packages in a configuration that satisfies dependencies
and does not cause conflicts. Finding such configuration is called the package upgradability
problem and is known to be NP-complete [5].

Satisfying the requirements of dependencies and conflicts is typically insufficient since
users have preferences over package configurations. For instance, a user may want to change

∗ This work is partially supported by SFI PI grant BEACON (09/IN.1/I2618), EC FP7
project MANCOOSI (214898), FCT grants ATTEST (CMU-PT/ELE/0009/2009), BSOLO
(PTDC/EIA/76572/2006), iExplain (PTDC/EIA-CCO/102077/2008) and INESC-ID multiannual fund-
ing from the PIDDAC program funds.

1. http://sat.inesc-id.pt/~mikolas/sw/packup

c©2012 Delft University of Technology and the authors.

http://sat.inesc-id.pt/~mikolas/sw/packup

PackUp: Tools for Package Upgradability Solving

the system as little as possible. This motivates package managers that not only maintain
correct configurations but also yield configurations optimal with respect to a given criterion.

This paper presents PackUp, a framework for solving the package upgradability problem
specified in the Common Upgradability Description Format (CUDF) [8]. The underly-
ing technology are Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization
(PBO) solving. Two instances of an earlier version of the framework (cudf2msu, cudf2pbo)
participated in the 3rd live MANCOOSI International Solver Competition (MISC Live 3)2.

where they have jointly won 4 out of 5 tracks.

2. Problem Statement

The package upgradability problem has two parts. One part comprises the package universe,
which defines a set of packages, their versions, dependencies, conflicts, as well as other
information. The second part of the problem is the user request, which specifies packages to
be installed, removed, updated, etc. The solution to the problem is a subset of the package
universe whose installation satisfies constraints between the packages and the user request.

In practice, different languages for describing package upgradability problems have been
introduced (e.g. rpm, debian). To facilitate evaluation of solvers, the MANCOOSI project
developed a standardized format called CUDF (Common Upgradability Description For-
mat); PackUp supports CUDF 2.0 [8], the most up-to-date version at the time of writing.

Since the full description of CUDF 2.0 is beyond the scope of this paper, only the
prominent features of the format are considered. Each package has a name, version, depen-
dencies, conflicts, recommended packages, and information whether the package is installed
or not. A package universe is modeled as a package description, which is a partial function
from name-version pairs to a tuple of the package’s properties. For a package description
φ, name p, and version v, we write φ(p, v). installed, φ(p, v). conflicts, φ(p, v). depends, and
φ(p, v). recommends, for the respective properties of package p with version v.

The installed property of a package determines if the package is installed and has either
the value true or false. The other properties hinge on the concept of constraints, which are
triples (p, relop, n), where p is a package name, n a version number, and relop is one of the
binary operators =, 6=,≥,≤. A package description φ satisfies a constraint (p, relop, n) iff
there is a package in φ that is installed, has the name p, and version v satisfying v relopn.
For instance, (x,=, 4) is satisfied by descriptions where φ(x, 4). installed = true and (x,≥, 4)
is satisfied by descriptions where φ(x, v). installed = true for some v ≥ 4.

The conflicts property is a set of constraints corresponding to packages that must not
be installed along with the pertaining package, i.e. if φ(x, v). installed = true then none of
the φ(x, v). conflicts can be satisfied. For instance, φ(p, 1). conflicts = {(x,=, 2), (y, 6=, 3)}
means that version 1 of package p conflicts with version 2 of package x and with all the
versions of the package y except for version 3. For simplicity, we assume that only (y, 6=, v)
is allowed to be a member of φ(p, v). conflicts when p = y.

The depends property is a conjunction of disjunctions of constraints under the stan-
dard semantics of conjunction and disjunction. Hence, if φ(x, v). installed = true then
φ(x, v). depends must be satisfied. For instance, φ(p, 2). depends = ((x,≥, 3) ∧ (y,≥, 3)) ∨

2. http://www.mancoosi.org/misc-live/20101126/

90

http://www.mancoosi.org/misc-live/20101126/

M. Janota et al.

CUDF input PackUp CUDF solution

MaxSAT OPB

Figure 1. Workflows in PackUp

(z,≥, 10) means that version 2 of package p requires a version 10, or higher, of package z,
or, packages x and y in version at least 3.

The recommends property has the same format as depends but is not enforced and is
used only for expressing optimization criteria.

A request is a pair of sets of constraints (li, ld) where li determines the packages that
must be installed and ld determines the packages that must be removed. Given a package
description φ and a request (li, ld), a solution to the package upgradability problem is a
package description ψ s. t. ψ differs from φ only on the installed properties; all the depends
properties are satisfied; no conflicts properties are violated in ψ; all constraints in li are
satisfied and no constraints in ld are satisfied by the installed packages.

The following text utilizes the following auxiliary definitions. We write iφ(p) for the set
of versions of a given package, i.e. iφ(p) = {v | (p, v) ∈ Dom(φ) ∧ φ(p, v). installed = true}.
Several measures determine how much a solution ψ changes the original package universe φ:
number of packages removed, i.e. removed(φ, ψ) = | {p | iφ(p) 6= ∅ ∧ iψ(p) = ∅} |, number of
new packages, i.e. new(φ, ψ) = | {p | iφ(p) = ∅ ∧ iψ(p) 6= ∅} |, number of packages changed,
i.e. changed(φ, ψ) = | {p | iφ(p) 6= iψ(p)} |, packages not up-to-date, i.e. notuptodate(φ, ψ) =
| {p | iψ(p) 6= ∅ ∧ vmax /∈ iψ(p)} |, and unsatisfied recommends, i.e. unmet-recommends(φ, ψ)
is the number of unsatisfied disjunctions in recommends property of installed packages in ψ.

A criterion is a tuple (f1, . . . , fn) where fi is one of removed , new , changed ,
and notuptodate, e.g. (removed ,new). A score of a solution ψ for an initial in-
stallation φ is the tuple (f1(φ, ψ), . . . , fn(φ, ψ)). Given a package description φ,
request (li, ld), and a criterion T , a solution is optimal iff its score is minimal
among all the other solutions w.r.t. lexicographic ordering. For instance, for the
criterion (removed , changed) a solution ψ1 is better than ψ2 iff removed(φ, ψ1) <
removed(φ, ψ1) ∨ (removed(φ, ψ1) = removed(φ, ψ1) ∧ changed(φ, ψ1) < changed(φ, ψ1)).

3. The Framework

Figure 1 schematically depicts the possible workflows in PackUp. The input given in CUDF
is encoded into a weighted partial MaxSAT formula. This formula is either solved by a
MaxSAT solver or by an OPB solver (which may be called multiple times, see Section 3.2).
If the formula is solved, PackUp produces a CUDF solution from the formula’s solution.

3.1 Encoding

The encoding is performed in the following sequence of steps.

1. read in the problem: reads the problem into dedicated data structures;

91

PackUp: Tools for Package Upgradability Solving

Table 1. Definition of the operators C andD for constraints.

relop C [x, (q, relop, n)] D [x, (q, relop, n)]

= ¬x ∨ ¬xnq ¬x ∨ xnq
6= (¬x ∨ u�n−1

q) ∧ (¬x ∨ u�n+1
q) ¬x ∨ i�n−1

q ∨ i�n+1
q

≥ ¬x ∨ u�nq ¬x ∨ i�nq
≤ ¬x ∨ u�nq ¬x ∨ i�nq

2. slice: traverses the data structures obtained in the previous step and discards all
packages that are certainly unnecessary to provide a solution [9];

3. encode package constraints and request: captures conflicts, depends, and the request;

4. encode preference: captures the given preferences;

5. encode auxiliary variables: generates additional formulas giving semantics to auxiliary
variables used in the previous steps.

The following relies on standard notions from propositional logic, namely clause is a
disjunction of literals and a literal either a Boolean variable or its negation. The problem
is encoded as a weighted partial MaxSAT formula [4], which comprises two sets of clauses:
hard clauses and soft clauses where each soft clause has a non-negative weight. A solution
to such a formula is a variable valuation that satisfies all the hard clauses and maximizes the
sum of weights of satisfied soft clauses. A soft clause c with weight W is denoted as (W, c).

Whether a package p with version v is installed or not, is modeled by a Boolean vari-
able xvp. Constraints are encoded with the use of the following four types of variables, called
interval variables (similar to order encoding [7]):

• u�vp — all versions greater than or equal to v of p are uninstalled

• u�vp — all versions less than or equal to v of p are uninstalled

• i�vp — at least one version greater than or equal to v of p is installed

• i�vp — at least one version less than or equal to v of p is installed

To define the encoding, we use two auxiliary operators C and D. The operators cor-
respond to the encoding of conflicts and dependencies, respectively. Table 1 defines the
operators at the level of single constraints. So for instance C

[
xvp, (q,≤, n)

]
yields the for-

mula ¬xvp ∨ u�nq , which represents that if version v of p is installed, then all the packages

q with versions less or equal to n must be uninstalled. Analogously, D
[
xvp, (q,≤, n)

]
yields

¬xvp∨ i�nq which represents that if version v of p is installed, then at least one package q with
a version less or equal to n must be installed. Observe that C [x, (q, relop, n)] always yields
one or two clauses and that D [x, (q, relop, n)] always yields one clause.

To extend C to a set of constraints l, we take the conjunction of encodings of the con-
straints in the set. To extend D to a conjunctive normal form of constraints, we reconstruct
the conjunctive normal form from the translations of those constraints:

C[x, l] =
∧
r∈l
C[x, r] D[x, l1 ⊕ l2] = D[x, l1] ⊕ D[x, l2],where ⊕ ∈ {∨,∧}

92

M. Janota et al.

To give the interval variables their intended meaning, we generate the following clauses
for each package p and version v.

Ivp = (¬ i�vp ∨xvp ∨ i�v+1
p) ∧ (¬u�vp ∨¬xvp) ∧ (¬u�vp ∨u�v+1

p)

∧ (¬ i�vp ∨xvp ∨ i�v−1
p) ∧ (¬u�vp ∨¬xvp) ∧ (¬u�vp ∨u�v−1

p)

where xvp for nonexistent packages is treated as false, unneeded interval variables are not
generated, and the formulas are simplified accordingly.

To encode the non-preferential part of the upgradability problem comprising a package
description φ and a request (li, ld), we generate the following formula:

r ∧ D(r, li) ∧ C(r, ld) ∧
∧
Ivp ∧∧

(p,v)∈Dom(φ)
D[xvp, φ(p, v). depends] ∧ C[xvp, φ(p, v). conflicts]

where r is a fresh variable corresponding to an always-installed package.
To encode preferences, we generate soft clauses capturing the objective to minimize

the functions in the given criterion. The weights for these clauses are generated in such a
way that they will capture the lexicographic ordering on the scores [1], i.e. for a criterion
T = (f1, . . . , fn) the weight for clauses capturing minimization of the function fi is defined
as Wi = 1 + Σj<iWj × cj where cj is the number of clauses generated for the function
fj . Hence, in the following we assume that for the functions removed , new , changed and
notuptodate their corresponding weights Wr, Wn, Wc, and Wu, respectively, were generated
for the given criterion T with Wi = 0 if fi does not appear in T .

Given a package description capturing the initial installation φ for the individual func-
tions we use the following rules. For the function removed : If iφ(p) 6= ∅ then generate

the soft clause (Wr, i�1
p). For the function new : If iφ(p) = ∅ then generate the soft clause

(Wn,u�1
p). For the function changed : Let sp be a fresh variable then generate the following

hard clauses ¬sp∨xvp if φ(p, v). installed = true and ¬sp∨¬xvp if φ(p, v). installed = false; add
the soft clause (Wc, sp). For the function notuptodate: Let tp be a fresh variable; generate
the hard clauses ¬xvp ∨ tp for all (p, v) ∈ Dom(ψ); generate the soft clause (Wn,¬tp ∨xvmax

p)
where vmax is the maximal version of p appearing in φ. For the function unmet-recommends:
For each clause in c ∈ D(xvp, φ(p, v). recommends) generate the soft clause (Wu, c).

3.2 Computing a Solution

Once the problem is encoded as a weighted partial MaxSAT formula, an out-of-the-box
solver can be used to solve it. Then, an optimal solution to the upgradability problem is a
solution that installs those packages whose corresponding variables have the value true in
the solution to the formula.

Previous research showed that out-of-the-box solvers do not cope well with large weights
resulting from lexicographic ordering [1]. Hence, PackUp enables solving the formula itera-
tively, where each component of the lexicographic ordering is minimized separately (cf [1]).
However, this iterative approach requires an OPB solver and a MaxSAT solver needs to
implement it internally; this is indeed the case for the solvers msuncore and bmo-pblex.

We should note that the suitability of the underlying solver may depend on the given
criterion. For instance, the solver msuncore searches on the lower-bound of the optimization

93

PackUp: Tools for Package Upgradability Solving

function [3, 6] and therefore is suitable for problems where the optimum is not too far from
the best theoretical result. In contrast, bmo-pblex and minisat+ search on the upper-
bound [2] and therefore are expected to perform well on problems with high deviation from
the best theoretical result.

4. Summary

This paper presents the framework PackUp for solving the upgradability problem. The core
functionality of the system is the encoding of the problem as a weighted partial MaxSAT
formula. A somewhat unique feature of this encoding is the use of interval variables, which
are similar to the order encoding used in SAT-based constraint solving [7].

The framework is engineered in such a way that it can be connected to any MaxSAT
or OPB solver. As such, together with minisat+, PackUp provides an open source and free
software solution to the package upgradability problem. Last but not least, the architecture
enables other researchers to freely experiment with their solvers.

References

[1] Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques-Silva, and Pascal Rapi-
cault. Solving Linux upgradeability problems using Boolean optimization. In Inês Lynce
and Ralf Treinen, editors, LoCoCo, pages 11–22, 2010.

[2] Brian Borchers and Judith Furman. A two-phase exact algorithm for MAX-SAT and
Weighted MAX-SAT problems. J. Comb. Optim., 2(4):299–306, 1998.

[3] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin
Biere and Carla P. Gomes, editors, SAT, pages 252–265. Springer, 2006.

[4] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
pages 613–631. IOS Press, 2009.

[5] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak,
Xavier Leroy, and Ralf Treinen. Managing the complexity of large free and open source
package-based software distributions. In ASE, pages 199–208, 2006.

[6] Vasco M. Manquinho, João P. Marques-Silva, and Jordi Planes. Algorithms for weighted
Boolean optimization. In Oliver Kullmann, editor, SAT, pages 495–508. Springer, 2009.

[7] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling
finite linear CSP into SAT. Constraints, 14(2):254–272, 2009.

[8] Ralf Treinen and Stefano Zacchiroli. Common upgradeability description format
(CUDF) 2.0. Technical Report 003, MANCOOSI, November 2009.

[9] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. OPIUM: Optimal
package install/uninstall manager. In ICSE, pages 178–188, 2007.

94

	Introduction
	Problem Statement
	The Framework
	Encoding
	Computing a Solution

	Summary

