
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 83-88

TG-Pro: A SAT-based ATPG System

system description

Huan Chen huan.chen@ucd.ie

Joao Marques-Silva jpms@ucd.ie

CASL/CSI, University College Dublin

Dublin

Ireland

Abstract

Automatic Test Pattern Generation (ATPG) is arguably one of the practical applica-
tions that motivated the development of modern Boolean Satisfiability (SAT) solvers in
the mid 90s. Despite the interest of using SAT in ATPG, the original model remained
mostly unchanged for nearly two decades, even in the presence of renewed interest in ap-
plying modern SAT technology to large-scale hardware designs. This paper describes the
SAT-based ATPG system TG-Pro. In contrast to all SAT-based ATPG work over the last
two decades, TG-Pro is based on a new fundamentally different SAT-based ATPG model.
Experimental results, obtained on well-known and publicly available benchmarks, demon-
strate that TG-Pro achieves major performance improvements over other well-established
SAT-based ATPG models.

Keywords: ATPG, Boolean SAT, EDA

Submitted June 2011; revised November 2011; published January 2012

1. Introduction

TG-Pro is a system for Automatic Test Pattern Generation (ATPG) based on Boolean
Satisfiability (SAT). The system integrates the SAT-based core model TG-Pro [3] (TG-Pro
1.0) — SAT-based Test pattern Generation with efficient fault Propagation constraints. In
contrast to earlier work on SAT-based ATPG [5,9,10,12,14,16], TG-Pro uses a fundamen-
tally different model. With the objective of achieving increased performance, TG-Pro 2.0
develops several optimizations to the core model [3], by exploiting the different aspects of
how SAT is used for ATPG.

ATPG has been the subject of extensive research for more than four decades. Initial
work focused on structural algorithms [7, 13], and more recently, on SAT. Concrete SAT-
based models include NEMESIS [9, 10], TEGUS [16], TG-GRASP [12] and most recently
PASSAT [5,14].

Motivated by the need for more efficient ATPG algorithms for handling large industrial
designs, there has been a renewed interest in SAT-based ATPG models and algorithms [4,
5, 14]. Nevertheless, the core SAT-based ATPG model has remained essentially unchanged
since the seminal work of T. Larrabee in 1989 [9]. As shown in [3], existing SAT-based
ATPG models encode the Boolean difference between the good and the faulty circuits, but
add additional variables and constraints for tackling key practical performance drawbacks
of the basic Boolean difference model. This paper describes TG-Pro, an ATPG system

c©2012 Delft University of Technology and the authors.

H. Chen and J. Marques-Silva

USP

Database
Fault

Fault Simulation

(TG−Pro−U)

(TG−Pro)(TG−Pro−I)
Incremental SAT

MiniSAT 2.0

Previously
Matured Tech.

Structural−based

(TG−Pro−S)

MiniSAT 09z

Simplification

Any Generic

Database

Clause

Circuit

Fault List

Easy faults

Feedback

Feedback Hard Faults
Aborted Faults

Structural ATPG Engine

SAT−based ATPG Engine

SAT−based Core

Previous
SAT−based

Models

−− TG−Pro−ALL

P{i, re}coSAT SAT solver

(optional)
FAN−based Deterministic TPG

TG-Pro 2.0

Figure 1. The architecture of TG-Pro 2.0

based on a fundamentally different SAT-based model [3]. Instead of using the standard
SAT-based model with good, faulty and sensitization variables, the new model [3] eliminates
the faulty variables altogether by using a modified semantics for the sensitization variables
as well as a new formalization of the propagation constraints. The result is a fairly different
SAT-based ATPG model, with a significantly smaller number of used variables, and with a
negligible increase in the number of used clauses. Experimental results obtained on publicly
available industrial benchmarks for ATPG demonstrate that, for individual target faults,
TG-Pro can outperform existing ATPG systems by a few orders of magnitude.

2. ATPG

Fabricated Integrated Circuits (ICs) may be subject to defects that may cause circuit failure.
Automatic Test Pattern Generation (ATPG) consists of computing input assignments that
allow demonstrating the existence or absence of each target fault, or proving no such an
assignment exists. An output of ATPG is the classification of the fault: when such an
assignment exists, the fault is said to be detectable; when no such an assignment exists, the
fault is said to be undetectable. Undetectable faults are often referred to as redundant since
undetectable faults are the result of redundancy in circuits [1].

TG-Pro assumes the Single Stuck-at Fault (SSF) model, which is the most widely used
model for representing fabrication defects [1]. In the SSF model, a single connection in the
circuit is assumed to be stuck at a given logic value, either 0 or 1, denoted respectively by
stuck-at 0 (or simply sa-0) and stuck-at 1 (or simply sa-1). Traditional ATPG algorithms [7,
8, 13] exploit the circuit structure. However, it is generally accepted that these algorithms
can be ineffective on large industrial circuits [3,5,14]. SAT-based ATPG [3,5,9,10,12,14,16]
is a well-known alternative, consisting of encoding the ATPG problem into a SAT formula,
which can then be solved with a SAT solver.

3. TG-Pro ATPG System 2.0

3.1 System Overview

Figure 1 presents TG-Pro 2.0 architecture. TG-Pro is written in C++ and is compiled
into a single binary that simplifies the deployment of the tool. TG-Pro consists of three
functional components: Fault Database, SAT-based ATPG Engine and Structural ATPG

84

TG-Pro: A SAT-based ATPG System

Engine. Fault Database interacts with the two engines in the way of selecting appropriate
faults to suitable engines and analyzing the solving results from the engines. The archi-
tecture of the TG-Pro is conventional to the industrial settings, e.g. [5], where faults can
be fed to different engines. The Structural ATPG Engine applies FAN-based Deterministic
TPG [1, 7] and Fault Simulation [1, 11] to tackle the easy faults. The SAT-based ATPG
Engine is the core component of the system, in which the hard faults are solved. The
SAT-based ATPG Engine of TG-Pro 2.0 is characterized by the following features:

• The new SAT-based model TG-Pro [3] is the kernel of TG-Pro.

• TG-Pro re-implements existing SAT-based ATPG fault propagation models, includ-
ing NEMESIS [9, 10], TEGUS [16], TG-GRASP [12] and PASSAT [5, 14]. The re-
implementation involves key features of their corresponding algorithms but not all.

• TG-Pro implements several additional optimizations:
TG-Pro-Z: problem-sensitive restarts [15];
TG-Pro-S: structure-aware simplification;
TG-Pro-U: static Unique Sensitization Points (USPs) [1, 7];
TG-Pro-I: incremental CNF formula generation [6];
TG-Pro-ALL: with all above optimizations.

• TG-Pro interfaces a modern SAT solvers [6, 15] through their APIs. This scheme
facilitates exploiting further advances, e.g. [2], in SAT solvers.

3.2 SAT-based ATPG Models

Traditional SAT-based models [5, 9, 10, 12, 14, 16] define three variables for each node that
is either in the transitive fanout of fault site, or is in the immediate fanin of one of those
nodes:

• x
G: Represents the value of the node in the good circuit.

• x
F : Represents the value of the node in the faulty circuit.

• x
S : Encodes the sensitization status.

These three types of variables are used to define constraints for propagating the fault to a
primary output. A good circuit denotes a circuit without fault and a faulty circuit denotes
a circuit with fault. xs is referred to as the sensitization variable of node x and takes value
1 only if the value of x differs in the good and the faulty circuits. As indicated before,
TG-Pro re-implements standard 3-Variable models [5,9,10,12,14,16] and implements the
new 2-Variable model [3]. The remainder of this section describes these models.

Standard 3-Variable Model

This category corresponds to the model used in NEMESIS [9, 10], TEGUS [16], TG-
GRASP [12] and PASSAT [5, 14]. Given a gate in the fanout cone of a fault, with in-
puts u and v, output x and fanout nodes y and w, different models encode slightly variant
semantics of sensitization variable.

TEGUS Model: In the SAT-based ATPG model used in NEMESIS, TEGUS and PAS-
SAT, the sensitization variable of each node in the fanout cone of the fault is defined as
[xS → (xG 6= x

F)]∧ [xS → (yS ∨w
S)]. TG-GRASP Model: In contrast, in the TG-GRASP

model, the sensitization variable is defined as [xS → (xG 6= x
F)] ∧ [(xG 6= x

F) → x
S].

It is straightforward to conclude that the sensitization variables in the two models have
different semantics. Whereas in the NEMESIS, TEGUS and PASSAT model, setting the

85

H. Chen and J. Marques-Silva

sensitization variable to 1 implies that the fault must then propagate through that node
to a primary output, in the TG-GRASP model the sensitization variable of a node x only
indicates whether the fault effect propagates to node x. The different semantics of the
sensitization variables leads in practice to somewhat different performance.

New 2-Variable Model

In contrast, TG-Pro [3] uses only two types of variables for each node x in the fanout cone
of the fault site. As before, xG denotes the value in the good circuit. In addition, the new
model uses only the sensitization variables x

S and avoids the use of the faulty variables
x
F . The semantics of xS is similar to the one used in the TG-GRASP [12] model. This

means that setting the sensitization variable of node x to 1 does not necessarily imply
propagation to a primary output. Furthermore, given that the faulty variables no longer
exist, alternative constraints need to be specified, which do not involve faulty variables.
These modified constraints are represented by CNF formulas ϕ1 to ϕ5 [3]:

• ϕ1: If any input of a gate assumes a controlling value [1] and is not sensitized, then
the gate output is not sensitized, i.e., x

S = 0.

• ϕ2: If all inputs of a gate are not sensitized, then the gate output is not sensitized.

• ϕ3: If any two inputs are sensitized but their logic values differ, then the output is
not sensitized.

• ϕ4: For any two inputs of a gate, if one is not sensitized with a non-controlling value [1]
while the other one is sensitized, then the output is sensitized.

• ϕ5: For any two inputs of a gate, if both are sensitized and their logic value is the
same, then the output is sensitized.

These conditions capture all possible conditions for either propagating the fault effect from
a gate inputs to the gate outputs, or for blocking propagation. It is straightforward to show
that one of the primary outputs becomes sensitized for an input assignment iff the fault is
detectable for that assignment.

3.3 System History and Availability

Currently, TG-Pro is the only publicly available SAT-based ATPG system being main-
tained and developed 1.. The first release Ver. 1.0 [3] of TG-Pro fully implements all
existing SAT-based ATPG fault propagation models and partially implements their corre-
sponding ATPG algorithms. The second release Ver. 2.0 extends TG-Pro with structural
analysis [1, 7, 11], and a number of SAT-based techniques outlined in Section 3.1. The offi-
cial website of TG-Pro is: http://logos.ucd.ie/wiki/doku.php?id=tg-pro, where the
tool, documentation, benchmark files and demos are publicly available.

4. Experimental Results

TG-Pro is implemented in C++. The experimental results of TG-Pro were obtained on
a Linux server with 2.93-GHz Intel Xeon processor X3470 and 8-GB RAM. Experiments
were performed on publicly available benchmarks for ATPG, namely ISCAS’85, ISCAS’89

1. ATPG in SIS – http://embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm is publicly
available but it outdated and it is no longer maintained.

86

http://logos.ucd.ie/wiki/doku.php?id=tg-pro
http://embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm

TG-Pro: A SAT-based ATPG System

Table 1. Performance comparison between the representative ATPG systems

Bench. Circuit Name #Faults
Total run time (seconds)

SPIRIT [8] TIGUAN [4] PASSAT 3. [5, 14] TG-Pro

IS
C
A
S
’8
5

c1908 1879 0.23 0.95 0.64 [14] 0.01
c2670 2747 0.42 2.60 0.91 [14] 0.11
c3540 3428 0.20 5.17 3.83 [14] 0.02
c5315 5350 0.20 3.65 1.44 [14] 0.01
c6288 7744 0.36 7.61 6.57 [14] 0.01
c7552 7550 0.58 5.83 3.31 [14] 0.53

IS
C
A
S
’8
9

s9234 6927 1.05 6.47 3.53 [14] 0.61
s13207 9815 2.78 6.99 3.64 [14] 0.21
s15850 11725 4.13 12.68 9.18 [14] 0.93
s35932 39094 5.25 17.28 2.96 [14] 2.95
s38417 31180 10.98 23.16 4.21 [14] 2.28
s38584 36303 14.75 22.23 4.84 [14] 1.76

IT
C
’9
9

2

b14 22802 7.34 23.10 19.00 [5] 2.68
b15 21988 52.03 66.82 24.00 [5] 27.00
b17 76625 262.30 252.40 142.00 [5] 248.79
b18 264047 1555.73 706.92 1350.00 [5] 920.01
b20 45459 24.52 70.60 56.00 [5] 9.93
b21 46154 39.67 73.46 59.00 [5] 8.01
b22 67536 156.00 90.97 95.00 [5] 18.56

Exp. Conf.

SPIRIT CPU: Intel Xeon X3470 2.93-GHz MEM: 8-GB OS: Windows
TIGUAN CPU: Intel Xeon X3470 2.93-GHz MEM: 8-GB OS: Linux
PASSAT for ISCAS 3. [14] CPU: AMD XP 2200+ MEM: 512-MB
PASSAT for ITC 3. [5] CPU: Intel Xeon 3-GHz MEM: 32-GB OS: Linux
TG-Pro CPU: Intel Xeon X3470 2.93-GHz MEM: 8-GB OS: Linux

and ITC’99 2. (see [3] and TG-Pro official website for details). For each circuit, all faults
were targeted. Due to space restrictions, only representative circuits are shown.

Table 1 compares the performance of the representative ATPG systems, namely the
structural ATPG system SPIRIT [8], the thread-parallel ATPG system TIGUAN [4], the
most recent SAT-based ATPG systems PASSAT [5,14], and TG-Pro. In the experiments,
TG-Pro accomplished the testing of all ISCAS’85, ISCAS’89 and ITC’99 2. benchmarks
with zero aborted faults. As can be concluded, supported by experimental data obtained
on well-known and publicly available industrial benchmarks for ATPG, TG-Pro achieves
observable performance improvements over the other well-established ATPG systems.

5. Conclusion

SAT-based ATPG motivated in part the development of modern SAT solvers. Nevertheless,
the core SAT-based model for ATPG has remained unchanged for almost two decades, even
in the presence of the renewed interest in applying SAT to industrial circuits [5, 14]. The
TG-Pro ATPG system integrates a recent and new SAT-based ATPG model [3], and
develops several new techniques for the optimizing the use of SAT solvers. Experimental
results demonstrate that TG-Pro outperforms other well-established ATPG systems.

Acknowledgement This work is partially supported by European project COCONUT
(FP7-ICT-217069), and SFI PI grant BEACON (09/IN.1/I2618).

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

2. The second release is available from http://www.cad.polito.it/tools/itc99.html . Observe that the
number of collapsed faults is larger than in the first release.

3. Unfortunately, PASSAT [5, 14] was unavailable from the authors. The experimental results shown are
quoted from the corresponding papers, where ISCAS’85 & ISCAS’89 results are quoted from [14] and
ITC’99 results are quoted from [5].

87

http://www.cad.polito.it/tools/itc99.html

H. Chen and J. Marques-Silva

[2] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4:75–97, 2008.

[3] Huan Chen and Joao Marques-Silva. TG-Pro: A new model for SAT-based ATPG.
In IEEE International High Level Design Validation and Test Workshop, pages 76–81,
2009.

[4] A. Czutro, I. Polian, M. Lewis, P. Engelke, S.M. Reddy, and B. Becker. TIGUAN:
Thread-parallel integrated test pattern generator utilizing satisfiability analysis. In
International conference on VLSI Design, pages 227–232, 2009.

[5] R. Drechsler, S. Eggersglu, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and D. Tille.
On acceleration of SAT-based ATPG for industrial designs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7):1329–1333, 2008.

[6] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, pages 502–518, 2003.

[7] H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms. IEEE
Transactions on Computers, 32(12):1137–1144, 1983.

[8] E. Gizdarski and H. Fujiwara. SPIRIT: a highly robust combinational test generation
algorithm. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 21(12):1446–1458, 2002.

[9] T. Larrabee. Efficient generation of test patterns using Boolean difference. In Inter-
national Test Conference, pages 795–801, 1989.

[10] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 11(1):4–15, 1992.

[11] H. K. Lee and D. S. Ha. Atalanta: An efficient ATPG for combinational circuits.
Technical report, 93-12, DEE, Virginia Polytechnic Insitute and State Univ., 1993.

[12] J. Marques-Silva and K.A. Sakallah. Robust search algorithms for test pattern gen-
eration. In International Symposium on Fault-Tolerant Computing, pages 152–161,
1997.

[13] J. P. Roth. Diagnosis of automata failures: a calculus and a method. IBM Journal of
Research and Development, 10:278–291, 1966.

[14] Junhao Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schloffel. PASSAT:
efficient SAT-based test pattern generation for industrial circuits. In IEEE annual
symposium on VLSI, pages 212–217, 2005.

[15] Carsten Sinz and Markus Iser. Problem-sensitive restart heuristics for the DPLL pro-
cedure. In Theory and Applications of Satisfiability Testing, pages 356–362, 2009.

[16] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Combinational test gen-
eration using satisfiability. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(9):1167–1176, 1996.

88

	Introduction
	ATPG
	TG-Pro ATPG System 2.0
	System Overview
	SAT-based ATPG Models
	System History and Availability

	Experimental Results
	Conclusion

