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Abstract

In this paper we analyze three well-known preprocessors for Max-SAT. The first pre-
processor is based on the so-called variable saturation. The second preprocessor is based
on the resolution mechanism incorporated in modern branch and bound solvers. The third
preprocessor is specific for the Maximum Clique problem and other problems with similar
encoding in WCNF such as minimum vertex covering and combinatorial auctions. Our
experimental investigation is divided in two parts. In the first part, we study the effect of
the preprocessors on several problem instances using different metrics. In the second part,
the effect of each preprocessor is analyzed in some of the most relevant Max-SAT local
search algorithms of the literature including Gsat, Walksat, Adaptnovelty+, Irots

and Saps. Results indicate that some of these algorithms find much better solutions after
the preprocessor. Furthermore, some preprocessed instances can be solved to optimality
with local search under very specific conditions.
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1. Introduction

The Satisfiability problem in propositional logic (SAT) is the task to decide whether a given
propositional formula has a model. Max-SAT is the optimization variant of SAT and it
can be seen as a generalisation of the SAT problem. Given a propositional formula in
conjunctive normal form (CNF), the objective of the unweighted Max-SAT problem is to
find a variable assignment that maximizes the number of satisfied clauses. In weighted Max-
SAT, each clause has an associated weight and the goal turns into maximizing the sum of
the weights of the satisfied clauses.

In this paper we focus on weighted Max-SAT which is a well-known NP Hard problem
[32]. It is considered one of the fundamental combinatorial optimization problems and
many important problems can be naturally expressed as Max-SAT. They include academic
problems such as Max-Cut or Max-Clique, and real problems in domains like routing [46],
bioinformatics [40], scheduling [45], probabilistic reasoning [33] and electronic markets [36].
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Search methods for Max-SAT solving are usually classified in two categories: systematic
and local search. Systematic search algorithms are exact methods that traverse the whole
search space of a problem instance in a systematic way. Note that finding the optimal
solution or proving that no solution exists is guaranteed. This property of systematic search
is called completeness. On the other hand, local search is a heuristic method that initially
selects a point of the search space, and moves from the current solution to a neighbour
candidate. Local search solvers stop the exploration when a solution is found or as soon
as some resource has been exhausted (i.e. a time limit or a maximum number of steps).
Typically, local search solvers are incomplete and they do not guarantee to find a solution
neither to prove its optimality.

An alternative way to solve problems is inference. The aim of inference is to make
explicit some implicit information from the problem instance. Algorithms purely based on
inference are complete as systematic search. However, they are usually prohibitive because
of their high memory requirements [35]. In practice, limited forms of inference are applied
inside search algorithms in order to reduce the search space.

Recently, a general inference mechanism for Max-SAT, denoted as resolution rule for
Max-SAT, has been introduced [7, 22]. This rule which extends classical resolution [11]
is sound and complete. The novel resolution rule for Max-SAT is widely used to boost
systematic search algorithms [22, 18, 26].

The use of inference in local search has been restricted to the classical resolution rule
and the SAT problem [9, 13, 2]. However, the benefits of the new inference mechanisms for
Max-SAT are unexplored in the field of local search. In this paper, we propose to study
three different resolution-based preprocessors and to analyze their effect on several local
search algorithms.

The first preprocessor is based on variable saturation (i.e. variable elimination) [3].
Basically, it eliminates one-by-one a subset of variables that satisfy a certain condition.
The second preprocessor is similar to the limited inference applied at each search step of a
systematic search algorithm in [18, 26]. The third one is a slightly modified version of the
preprocessor presented in [16] which exploits the particular structure of specific problems.

We performed an exhaustive experimental investigation. Unlike most previous works in
the area, we have considered a large set of different benchmarks and local search algorithms.
Our experimental investigation is divided in two parts. In the first part, we study the effect
of each preprocessor on the problem instances using different metrics. In the second part, the
effect of each preprocessor is analyzed in some of the most relevant local search algorithms in
the literature. As a result, we have determined which preprocessors are effective in practice
and which local search algorithms are more sensitive to inference.

Finally, we observed that some difficult instances in the literature such as [47] can
solved to optimality with a local search algorithm after being preprocessed with a slightly
modified version of the preprocessor presented in [16]. As far as we know, it is the first time
that the optimal solution is found and certified for all these instances.

The structure of this paper is the following. Section 2 introduces preliminary notation
and concepts about Max-SAT. Sections 3, 4 and 5 present the different preprocessors.
Section 6 includes the experimental investigation. Section 7 shows how some problem
instances can be solved to optimality within a SLS algorithm. The related work is discussed
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in Section 8. Finally, Section 9 presents some concluding remarks and points out our future
work.

2. Preliminaries

In this Section we present the basic concepts needed for this paper. First, we formally in-
troduce the Max-SAT problem and its related notation. Then, we present current complete
and incomplete approaches to solve the Max-SAT problem.

2.1 Notation and Definitions

We define X = {x1, x2, . . . , xn} as the set of Boolean variables. A literal is either a variable
xi or its negation x̄i. The variable to which a literal l refers is denoted by var(l). Given a
literal l, its negation l̄ is x̄i if l is xi and it is xi if l is x̄i.

A clause C is a disjunction of literals. Hereafter, capital letters will represent clauses.
The size of a clause, noted |C|, is the number of literals that it has. The set of variables
that appear in C is noted var(C). A positive (negative) clause has all the literals in the
positive (negative) polarity.

An assignment is a set of literals A = {l1, l2, . . . , lk} such that for all li ∈ A, its variable
var(li) = xi is assigned to value true or false. If variable xi is assigned to true , literal xi

is satisfied and literal x̄i is falsified. Similarly, if variable xi is assigned to false , literal x̄i is
satisfied and literal xi is falsified. If all variables in X are assigned, the assignment is called
complete, otherwise it is called partial. An assignment satisfies a literal iff it belongs to the
assignment, it satisfies a clause iff it satisfies one or more of its literals and it falsifies a
clause iff it contains the negation of all its literals. The empty clause noted � has no literals
(size 0) and cannot be satisfied by definition. If a clause is falsified by an assignment, the
clause is conflicting and it can be represented using the empty clause.

A weighted clause is a pair (C, w), where C is a clause and w is the cost of its falsification,
also called its weight. Many real problems contain clauses that must be satisfied. We call
these clauses mandatory or hard and we associate to them a special weight ⊤. Note that
any weight w ≥ ⊤ indicates that the associated clause must be necessarily satisfied. Thus,
we can replace w by ⊤ without changing the problem. Consequently, we can assume all
weights in the interval [0..⊤]. Non-mandatory clauses are also called soft clauses. A weighted
formula in conjunctive normal form (WCNF) F is a set of weighted clauses.

A model is a complete assignment that satisfies all mandatory clauses. The cost of an
assignment is the sum of weights of the clauses that it falsifies. Given a WCNF formula,
Weighted Max-SAT is the problem of finding a model of minimum cost. Note that if a
formula contains only mandatory clauses, weighted Max-SAT is equivalent to classical SAT.
If all the clauses have weight 1, we have the (unweighted) Max-SAT problem. Hereafter,
we will assume weighted Max-SAT.

A weighted formula F ′ is a relaxation of F (noted F ′ ⊑ F ) if the optimal cost of F ′ is
less than or equal to the optimal cost in F (non-models are considered to have cost infinity).
Two weighted formulas F ′ and F are equivalent (denoted as F ′ ≡ F) if F ′ ⊑ F and F ⊑ F ′.

Let u and w be two weights. Their sum is defined as,

u ⊕ w = min{u + w,⊤}
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in order to keep the result within the interval [0..⊤].
If u ≥ w, their subtraction is defined as,

u ⊖ w =

{

u − w : u 6= ⊤
⊤ : u = ⊤

Essentially, ⊖ is similar to the usual subtraction with the exception that ⊤ is an ab-
sorbing element.

The De Morgan rule [22] cannot be used in Max-SAT. Instead, the following rule should
be repeatedly used until the conjunctive normal form is achieved:

(A ∨ l ∨ C, w) ≡ {(A ∨ C̄, w), (A ∨ l̄ ∨ C, w)}

If a formula contains clauses (C, u) and (C, v), they can be replaced by
(C, u ⊕ v) (Aggregation). If a formula contains the clause (C, 0), such clause can be re-
moved. The empty clause may appear in a formula. If its weight is ⊤, i.e. (�,⊤), it is clear
that the formula does not have any model. If its weight is w, i.e. (�, w), the cost of any
assignment will include that weight, therefore w is an obvious lower bound of the formula
optimal cost.

Following [22], the resolution rule can be extended from SAT to Max-SAT as,

{(x ∨ A, u), (x̄ ∨ B, w)} ≡























(A ∨ B, m),
(x ∨ A, u ⊖ m),
(x̄ ∨ B, w ⊖ m),
(x ∨ A ∨ B̄, m),
(x̄ ∨ Ā ∨ B, m)























where m = min{u, w}. (x ∨ A, u) and (x̄ ∨ B, w) are called clashing clauses. (A ∨ B, m) is
called the resolvent. (x ∨ A, u ⊖ m) and (x̄ ∨ B, w ⊖ m) are defined as posterior clashing
clauses. Finally, (x ∨ A ∨ B̄, m) and (x̄ ∨ Ā ∨ B, m) are called compensation clauses.

The identification of mandatory clauses with ⊤ allows to extend some well-known simpli-
fication rules from SAT to Max-SAT such as the subsumption
{(A,⊤), (A ∨ B, w)} ≡ {(A,⊤)} or unit propagation. Unit propagation for Max-SAT [22]
can be applied as in SAT [11] only when unit hard clauses exist on the formula. Given a
unit hard clause (l,⊤), literal l is propagated which means that it is assigned accordingly to
satisfy the clause. This assignment can falsify literals in other clauses that may become also
hard unit clauses. The procedure is repeated until no more hard unit clauses are generated
or until a conflict is detected (i.e. a hard clause is falsified).

2.2 Background

In this Section we describe the existing approaches based on search and inference for Max-
SAT solving.

Max-SAT solvers based on systematic search apply a natural extension of the backtrack-
ing algorithm [6] to handle optimization problems called Branch and Bound (BB). Two
values are computed during the exploration:

• The upper bound (ub) is the sum of weights of the falsified clauses by the best complete
assignment found so far.
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• The lower bound (lb) is the sum of all the falsified clauses by the current partial
assignment plus an underestimation of the weight of the clauses that will become
unsatisfied by extending the current partial assignment.

The lb and ub significantly reduce the search space by pruning useless regions when lb ≥ ub.
Modern Max-SAT solvers [26, 22, 18, 28] improve the lower bound by applying a limited
number of Max-SAT resolution steps during the search.

Regarding incomplete methods, many Stochastic Local Search (SLS) methods have been
proposed for SAT. The main drawback of SLS algorithms is that they usually fall in local
minima, that is, areas of the search space where no improvements can be reached.

Gsat [38] was one of the first local search methods for SAT. The algorithm starts by
assigning a random Boolean value to each variable. If the assignment satisfies all clauses,
the algorithm terminates, returning the assignment. Otherwise, GSAT flips the variable
(i.e. the value of such variable is changed from true to false or vice versa) that minimizes
the total number of unsatisfied clauses. Later, major improvements were obtained with the
development of the Walksat architecture [37] and its variants. Basically, the difference
appears on the selection of the variable to flip. At each search step, the Walksat algorithm
chooses a currently unsatisfied clause and then flips a variable occurring in this clause.
Further research on the Walksat architecture resulted in the introduction of sophisticated
schemes for selecting the variable to be flipped.

Other methods based on Stochastic Local Search (SLS) have been also proposed for
SAT. They have been extended to unweighted Max-SAT by keeping track of the best solu-
tion found so far in the search process. Similar methods have been developed directly for
unweighted and, in particular, weighted Max-SAT. Current SLS algorithms include other
techniques based on Dynamic Local Search (DLS), tabu search and iterated local search.
Dynamic Local Search is based on the idea of modifying an evaluation function in order to
prevent the search from getting stuck in local minima [43]. Tabu search stores in a (tabu)
list the most recent assignments in order to avoid revisiting them. Good performance was
reported for Reactive Tabu Search (H-RTS), a tabu search that dynamically adjusts the
tabu list size on unweighted Max-SAT instances [5]. Iterated Local Search (ILS) consists
in alternating between local search and perturbation phases which are designed to take the
search away from the local minima reached by the subsidiary local search procedure. For
instance, ILS [50] uses a local search algorithm based on 2 and 3-flip neighbourhoods.

The use of inference in local search is restricted to the classical resolution rule and the
SAT problem. In [9] a restricted form of resolution procedure is presented, which adds new
clauses based on unsatisfied clashing clauses at the local minima. More recently in [13],
authors implemented the same idea along with other techniques in a complete local search
solver. Finally, authors in [2] improved the performance of modern SLS solvers for SAT
with a resolution-based preprocessor.

In this paper, we will study the effect of existing preprocessors on different SLS algo-
rithms that include all the described techniques. In particular, we considered the following
algorithms: Gsat [38] , Walksat [37], Adaptnovelty+ [19] (a Walksat variant), Irots

[39] (it applies tabu search and iterated local search) and Saps [43] (a dynamic local search
algorithm).
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Algorithm 1: Max-DP Algorithm

Function VarElim(F ,⊤, xi) : WCNF formula
1 B := {(C, u) ∈ F| xi ∈ var(C)};
2 F := F − B;
3 while ∃(xi ∨ A, u) ∈ B do
4 (xi ∨ A, u) :=GetClause(B);
5 while u > 0 ∧ ∃(x̄i ∨ B, w) ∈ B s.t. Clash(xi ∨ A, x̄i ∨ B) do
6 m := min{u, w};
7 u := u ⊖ m;
8 B := B − {(x̄i ∨ B, w)} ∪ {(x̄i ∨ B, w ⊖ m)};
9 B := B ∪ {(xi ∨ A ∨ B̄, m), (x̄i ∨ Ā ∨ B, m)};

10 F := F ∪ {(A ∨ B, m)};

11 return F ;

Function Max-DP(F ,⊤) : N

12 F := Simplify(F ,⊤);
13 if F = ∅ then return 0;
14 if F = {(�, u)} then return u;
15 xi :=SelectVar(F);
16 return Max-DP(VarElim(F ,⊤, xi),⊤);

Algorithm 2: Variable Saturation Preprocessor

Function Preprocessor(F ,⊤, K) : N or F
1 F := Simplify(F ,⊤);
2 if F = ∅ then return 0 ;
3 if F = {(�, u)} then return u ;
4 xi :=SelectVar(F , K) ;
5 di :=Degree(F ,xi) ;
6 if di <= K then return Preprocessor(VarElim(F ,⊤, xi),⊤,K);
7 return F ;

3. Variable Saturation Preprocessor

The preprocessor introduced in this Section is similar to the one in [3]. It is based on Max-

DP [7, 22] which is a complete inference algorithm for Max-SAT. Max-DP is an extension of
the Davis and Putnam algorithm [11] for Max-SAT. It is illustrated in
Algorithm 1. The main difference between them is that Max-DP performs the resolu-
tion rule for Max-SAT instead of the classical resolution. At each recursive call Max-DP

applies simplification rules such as subsumption, aggregation and unit propagation (line 12).

Then, variables are selected according to some heuristic and eliminated one-by-one
(lines 15 - 16) until the empty formula or an empty clause is obtained (lines 13 - 14).

Function VarElim performs the elimination (or saturation) of a variable xi from the
formula F . First, function VarElim computes the bucket of xi, noted B, which contains
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the set of clauses containing variable xi. Then, each clause (xi ∨ A, u) ∈ B is selected (line
4) and it is resolved iteratively with all its clashing clauses (line 5). Resolvents are added
to the weighted formula F while compensation clauses are added to the current bucket B
(lines 6 - 10). This process stops when the weight u of the clause (xi ∨A, u) decreases to 0
or no clashing clauses exist.

Solving a Max-SAT instance by successively eliminating all the variables is not com-
petitive as we will see in the experimental results. In [3] the number of variables to be
eliminated is restricted given a parameter K and considering the constraint graph of the
problem instance and the degree of each a variable.

Let us define constraint graph and degree of a variable to further explain the variable
saturation preprocessor. In a constraint graph, the nodes represent the Boolean variables
occurring in the problem instance, and an edge is added between two vertices if the variables
of the vertices occur in the same clause. The degree of a variable xi is the number of adjacent
nodes of the variable xi in its constraint graph.

The Variable Saturation Preprocessor [3] is shown in Algorithm 2. The algorithm is
similar to Max-DP. The main differences are:

• The preprocessor returns two possible results: a natural number N if all variables have
been successfully eliminated or a formula F if only a subset of variables have been
eliminated.

• The preprocessor selects a variable xi with degree smaller or equal to K (lines 4-5).

• The degree of the selected variable xi limit the number of steps of the preprocessor.
The idea is to saturate variables in which the application of variable saturation is not
very costly in terms of time and space. Therefore, if the degree of variable xi is smaller
or equal to K, the variable xi is eliminated (line 6), otherwise the current formula is
returned (line 7) and the algorithm stops.

4. Unit Propagation Preprocessor

The objective of the Unit Propagation (UP) Preprocessor is to derive new empty clauses
(�, w) through a resolution process similar to the one proposed in [18] (See Algorithm 3).

Initially, UP-Preprocessor replaces each occurrence of (l, u) and (l̄, w) by (l, u ⊖ m),
(l̄, w ⊖ m), (�, m) with m = min{u, w} (line 9).

Then, UP-Preprocessor executes a simulation of unit propagation (labelled as SUP in
lines 10 and 15) to find a conflicting clause. The simulation considers the soft clauses as
hard and, consequently, their weights are omitted during the resolution (line 1). The SUP

procedure uses a modified FIFO (First In First Out) queue Q to store all unit clauses
(line 2). Q is a non-standard queue to handle literals pending of propagation. Unlike
classical queues where after fetching an element, it is removed, here the element is only
marked as explored. Hence, Q contains the already propagated literals and the pending
ones. Moreover, each literal l in Q is associated with the original clause that caused its
propagation and it is called the reason of l.

While non-propagated literals exist in Q (line 3), the oldest non-propagated literal l is
extracted from Q and it is marked as propagated (line 4). Then, all clauses containing l̄ are
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Algorithm 3: Unit Propagation Preprocessor

Function SUP(F) : Queue
1 Assume all clauses in F are hard ;
2 InitQueue(Q) ;
3 while (Q contains non-propagated literals) do
4 l := GetFirstNonPropagatedLiteral(Q) ;
5 foreach clause C ∨ l̄ that becomes unit or falsified do
6 if C ∨ l̄ becomes a unit q then Enqueue(Q, q) ;
7 else if C ∨ l̄ becomes falsified then return Q ;

8 return ∅ ;

Procedure UP-Preprocessor()
9 Replace {(l, v), (l̄, w)} ∈ F by {(l, v ⊖ m), (l̄, w ⊖ m), (�, m)} and

m := min (v, w) ;
10 Q :=SUP (F) ;
11 while Q 6= ∅ do
12 Υ := BuildTree(Q) ;
13 m := minimum weight among clauses in Υ;
14 ApplyResolution( Υ, m ) ;
15 Q :=SUP (F) ;

traversed checking if they become falsified or unit (line 5) . If one of the clauses becomes
a unit clause q, it is enqueued in Q to be propagated later (line 6). The procedure iterates
until:

• A conflicting clause is found (line 7) and the current state of the Q queue is returned.

• There are no more literals to propagate and an empty queue is returned (line 8) which
means no conflict was found.

If SUP yields a conflict (line 7), it means that there is a subset F ′ of clauses that cannot
be simultaneously satisfied. F ′ can be determined using the information provided by Q.
Since F ′ is unsatisfiable, the empty clause � can be derived from F ′ via resolution. Such
resolution process is called a refutation. A refutation for an unsatisfiable clause set F ′ is a
resolution refutation tree (or simply a refutation tree) if every clause is used exactly once
during the resolution process.

The BuildTree process builds the refutation tree from the propagation queue Q (line
12) as follows: let C0 be the conflicting clause. Reasons associated to literals in Q are
traversed in a LIFO (Last In First Out) fashion until a clashing clause D0 is found. Then
resolution is applied between C0 and D0, obtaining resolvent C1. Next, the traversal of
Q continues until a clause D1 that clashes with C1 is found, giving resolvent C2 and the
process iterates until the obtained resolvent is the empty clause �.

If we take into account again the weights of the clauses and actually apply Max-SAT
resolution as dictated by Υ, it will produce a new clause (�, m), where m is the minimum
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weight among all the clauses in the tree Υ (line 13). It is important to remark that at each
step in the Max-SAT resolution process we do not consider the minimum weight of each
pair of clashing clauses but rather the minimum of all the clauses in the resolution tree.
This is why m is passed as a parameter in line 14.

Before the UP-Preprocessor, Probing [25, 18] is also applied in order to generate unit
clauses. The idea is to temporarily assume that l is a unit clause and then simulate unit
propagation (i.e., execute SUP()). If unit propagation does not derive a conflict, no action
is carried out. Otherwise, we build the resolution tree Υ from the propagation queue Q. If
all the clauses in Υ are hard, we know that l̄ must be added to the assignment. Otherwise,
we can reproduce Υ applying Max-SAT resolution with the weighted clauses and derive a
unit clause (l̄, m) where m is the minimum weight among the clauses in Υ. Having unit
soft clauses upfront makes the future executions of UP-Preprocessor much more effective
in the subsequent search. Besides, if we derive both (l, u) and (l̄, w) we can generate via
resolution a new empty clause (�, min{u, w}).

Example 1 Consider the formula F = {(x̄1, 2)α, (x1 ∨ x4, 2)β , (x1 ∨ x2,⊤)γ ,
(x1 ∨ x3 ∨ x̄4, 2)δ, (x1 ∨ x̄2 ∨ x̄3, 3)ǫ, (x1 ∨ x̄5, 1)ϕ}

Observe that subscripts α, β, γ, δ, ǫ and ϕ are used to identify clauses. We note l(α)
as the reason α associated to literal l. Initially, queue Q is empty Q = [‖]. Hereafter,
symbol ‖ inside Q separates propagated literals from non-propagated literals. The steps of
the UP-Preprocessor onto the formula F are described next:

• Apply SUP. Initially, the unit clause α is enqueued producing Q = [‖x̄1(α)]. Then x̄1

is propagated and Q becomes [x̄1(α)‖x4(β), x2(γ), x̄5(ϕ)]. Literal x4 is propagated and
clause δ becomes unit, producing Q = [x̄1(α), x4(β)‖x2(γ), x̄5(ϕ), x3(δ)]. After that,
literal x2 is propagated and clause ǫ is found to be conflicting.

• Build the refutation tree. Starting from the tail of Q the first clause clashing with the
conflicting clause ǫ is δ. Resolution between ǫ and δ generates the resolvent x1∨x̄2∨x̄4.
The first clause clashing with x2 is γ, producing resolvent x1 ∨ x̄4. The next clause
clashing with x4 is β and resolution generates x1. Finally, we resolve with clause α
and we obtain the empty clause �.

• Apply Max-SAT resolution. We apply Max-SAT resolution as indicated by the refu-
tation tree computed in the previous step. The resulting formula F ′ = {(x1 ∨ x2,⊤),
(x1 ∨ x̄5, 1), (�, 2), (x1 ∨ x̄2 ∨ x̄3, 1), (x1 ∨ x̄2 ∨ x̄3 ∨ x4, 2), (x1 ∨ x2 ∨ x3 ∨ x̄4, 2)}.

5. Clique Preprocessor

In this Section we present a preprocessor which can be applied on problems with a very
specific structure. We refer to these problems as binary unate covering problems (BUCP).
First, we introduce the BCUP which is mainly composed by a set of hard binary clauses and
a set of soft unit clauses. Next, two resolution-based rules, the Star and the Unit Rule, are
presented. Finally, the preprocessor particularly suitable for binary unate covering problems
is described. We will refer to it as Clique Preprocessor (Cl) because the initial application
was intended for the Maximum Clique problem [16].
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5.1 Binate, Unate and Binary Unate Covering Problem

Following [34, 10], consider a problem instance P of the form

minimize
∑n

j=1 cj · xj

subject to A · x ≥ b, x ∈ {0, 1}n

where cj is a non-negative integer cost associated with variable xj , 1 ≤ j ≤ n and
A·x ≥ b, x ∈ {0, 1}n denote the set of m linear constraints. If every entry aij with 1 ≤ i ≤ m
and 1 ≤ j ≤ n in the (m x n) matrix A is in the set {−1, 0, 1} and bi = 1, 1 ≤ i ≤ m,
then P is an instance of the binate covering problem (BCP). Differently, if every entry aij

in the matrix A is in the set {0, 1}, then P is an instance of the unate covering problem
(UCP). Finally, if P is a unate covering problem and ∀m

i=1

∑n
j=1 aij = 2, that is, each linear

constraint involves exactly two different variables, the problem P is an instance of the binary
unate covering problem (BUCP).

The binary unate covering problem can be reformulated as a weighted Max-SAT prob-
lem.

• For each linear constraint i, 1 ≤ i ≤ m that involves variables xi and yi, a new binary
hard clause (xi ∨ yi,⊤) is added.

• The objective function is transformed into a set of weighted soft clauses. Each term
cj · xj becomes a new soft unit clause (x̄j , cj).

In other words, the Max-SAT reformulation of the binary unate covering problem con-
sists in a set of binary hard clauses and a set of soft unit clauses. Observe that prominent
optimization problems can be modelled as instances of the binary unate covering problem
such as the Maximum Clique, Maximum Independent set, Minimum Vertex Covering and
Combinatorial Auctions, among others.

5.2 Star Rule

The Star Rule [1, 22, 16] can be used to create new empty clauses from a long clause and
a set of appropriate unit clauses.

{(x̄i1 ∨ x̄i2 ∨ ... ∨ x̄ik, w0), (xi1, w1), (xi2, w2), ..., (xik, wk)} ≡







































(�, m), (x̄i1 ∨ x̄i2 ∨ ... ∨ x̄ik, w0 ⊖ m),
(xi1, w1 ⊖ m), (xi2, w2 ⊖ m), . . . , (xik, wk ⊖ m),
(xi1 ∨ x̄i2 ∨ x̄i3 ∨ · · · ∨ x̄ik, m),
(xi2 ∨ x̄i3 ∨ x̄i4 ∨ · · · ∨ x̄ik, m),
(xi3 ∨ x̄i4 ∨ x̄i5 ∨ · · · ∨ x̄ik, m),
. . . ,
(xik−1 ∨ xik, m)
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where m = min{w0, w1, ..., wk}.

Note that the Star Rule generates a new empty clause and it is extremely effective when
a large number of unit clauses are available.
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Example 2 Consider the initial formula {(x̄1∨ x̄2, 1), (x1, 1), (x2, 1)}. This example shows
each step of resolution needed to obtain the same result provided by the Star Rule. First, the
resolution rule is applied between the first and the third clauses and the formula
{(x1 ∨ x2, 1), (x1, 1), (x̄1, 1)} is obtained. Finally, the resolution rule between the second
and the third clauses produces {(x1 ∨ x2, 1), (�, 1)}.

5.3 Unit Rule

The Unit Rule [16] can be used to create new unit clauses from a long clause and a set of ap-
propriate binary hard clauses. Given a subset of variables
{xi1, xi2, . . . , xik, xj} ⊆ X, consider the following subset of binary hard clauses:

Bin(xi1, xi2, ..., xik, xj) ≡ {(xi1 ∨ xj ,⊤), (xi2 ∨ xj ,⊤), ..., (xik ∨ xj ,⊤)}

The Unit Rule has the form:

{(x̄i1 ∨ x̄i2 ∨ ... ∨ x̄ik, w), Bin(xi1, xi2, ..., xik, xj)} ≡
{(x̄i1 ∨ x̄i2 ∨ ... ∨ x̄ik ∨ x̄j , w), Bin(xi1, xi2, ..., xik, xj), (xj , w)}

Example 3 Consider the initial formula {(x̄1 ∨ x̄2, 1), (x1 ∨ x3,⊤), (x2 ∨ x3,⊤)}. This
example shows each step of the resolution needed to obtain the same result provided by the
Unit Rule. First, the resolution rule between the first and the second clauses is applied
and the formula {(x̄2 ∨ x3, 1), (x̄1 ∨ x̄2 ∨ x̄3, 1), (x1 ∨ x3,⊤), (x2 ∨ x3,⊤)} is obtained. The
application of the resolution rule between the first and the last clauses produces {(x3, 1), (x̄1∨
x̄2 ∨ x̄3, 1), (x1 ∨ x3,⊤), (x2 ∨ x3,⊤)}.

5.4 The Preprocessor

In this Section, we present the Clique Preprocessor that exploits the synergy between the
Unit and the Star Rule. The Unit Rule generates unit positive clauses from negative clauses
and binary positive hard clauses. These unit clauses are used by the Star Rule which
transforms them into empty clauses. The preprocessor works in an on-demand fashion: it
triggers the Unit Rule only if it is guaranteed the subsequent execution of the Star Rule.
Before introducing the details of the preprocessor, we present a useful definition.

Definition 1 A negative clause (C, w) = (x̄i1 ∨ x̄i2 ∨ ...∨ x̄ik, w) is unit-related with respect
to literal x′, denoted as (C, w)x′, if and only if Bin(xi1, xi2, . . . , xik, x

′) ∈ F .

Observe that we can always apply the Unit Rule to a clause C unit-related with respect
to a literal x in order to generate a new positive unit soft clause (x, w). The basic idea of
the preprocessor is to generate the appropriate unit clauses with the Unit Rule so that we
can apply the Star Rule later in order to produce an empty clause. Note that, the final
objective is to increase as much as possible the weight of the empty clause.

The preprocessor is shown in Algorithm 4. It iterates over all the negative clauses (line
2). For each negative clause (C, w0) the algorithm searches for one unit clause for each
literal in C. To do so, for each literal li in C the algorithm seeks a clause (C ′, wi) unit-
related with respect to li (i.e. (C ′, wi)li) and stores it in the structure S. Note that
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Algorithm 4: Clique Preprocessor

Function Clique-Preprocessor(F)
1 while ¬ Quiescence do
2 foreach negative clause (C, w0) = (l̄1 ∨ l̄2 ∨ ... ∨ l̄k, w0) ∈ F do
3 S := ∅ ;
4 foreach li ∈ C do
5 if ∃(C ′, wi) ∈ F s.t. (C ′, wi) 6= (C, w0)∧ (C ′, wi) /∈ S ∧ (C ′, wi)li then
6 S := S ∪ ((C ′, wi), li) ;

7 if |S| = k then
8 foreach ((C ′, wi), li) ∈ S s.t. (C ′, wi) = (l̄′1 ∨ l̄′2 ∨ ... ∨ l̄′p, wi) do
9 Apply Unit Rule to (C ′, wi), Bin(l̄′1, l̄′2, ..., l̄′p, li) ;

10 Apply Star Rule to {(l1, w1), (l2, w2), ..., (lk, wk), (C, w0)} ;
11 Insert new resolvents on F ;

all the negative clauses inserted in S must be different, and they must be also differ-
ent from the initial (C, w0) (lines 3-6). If a unit-related clause is found for each literal
in C (line 7), the algorithm applies the two simplification rules. First, for each pair
in structure S, it applies the Unit Rule in order to create the necessary unit clauses
(lines 8-9). Once all unit clauses have been generated, the algorithm proceeds to apply
the Star Rule (line 10).

The presented preprocessor is similar to the algorithm presented in [16] with two slight
differences. The first one is that the algorithm is applied until quiescence (line 1). In other
words, the algorithm is repeated until there is no more increments on the empty clause.
The second one is that the algorithm shows explicitly that new resolvents are added to the
formula (line 11). This point will become relevant in the experimental investigation (See
Section 6.4).

Recall that this preprocessor is focused to problems that contain basically negative soft
units and positive hard binary clauses in the original formula (the other clauses are ignored
by the algorithm). Therefore, one can easily see that, at any point of the execution of
Algorithm 4, each negative clause (C, w) is in F because either (i) (C, w) is an initial unit
soft clause in F or (ii) (C, w) was generated by some application of the Unit Rule. This
observation leads to the following lemma.

Lemma 1 Within the Clique preprocessor, all the compensation clauses in F generated by
the Star Rule are subsumed by binary hard clauses in F .

Proof 1 Suppose that the Star Rule is applied to an arbitrary subset of clauses in F :

{(x̄i1 ∨ x̄i2 ∨ . . . x̄ik, m), (xi1, m), (xi2, m), . . . (xik, m)}

The resulting empty clause and resolvent clauses are {(�, m), (x̄i1 ∨ x̄i2 ∨ ... ∨ x̄ik, m)}
while the compensation clauses are
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(xi1 ∨ x̄i2 ∨ x̄i3 ∨ · · · ∨ x̄ik, m),
(xi2 ∨ x̄i3 ∨ x̄i4 ∨ · · · ∨ x̄ik, m),
(xi3 ∨ x̄i4 ∨ x̄i5 ∨ · · · ∨ x̄ik, m),
. . . ,
(xik−1 ∨ xik, m)
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Observe that (x̄i1 ∨ x̄i2 ∨ . . . x̄ik, m) ∈ F because the following set of Unit Rules were
applied (in reverse order):

{(x̄i1 ∨ x̄i2 ∨ . . . ∨ x̄ik−1, m) , Bin(xi1, xi2, . . . , xik−1, xik)}

{(x̄i1 ∨ x̄i2 ∨ ... ∨ x̄ik−2, m) , Bin(xi1, xi2, . . . , xik−2, xik−1)}

. . .

{(x̄i1 ∨ x̄i2, m) , Bin(xi1, xi2, xi3)}

{(x̄i1, m) , Bin(xi1, xi2)}

Moreover, note that:

• The set Bin(xi1, xi2) subsumes all compensation clauses (xi1∨x̄i2 ∨ x̄i3 ∨ · · · ∨ x̄ik, m).

• The set Bin(xi1, xi2, xi3) subsumes all compensation clauses (xi2 ∨ x̄i3 ∨ · · · ∨ x̄ik, m).

• . . .

• The set Bin(xi1, xi2, . . . , xik−1, xik) subsumes the compensation clause (xik−1∨xik, m).

Hence, we can conclude that the sets of binary clauses used at each application of the Unit
Rule are enough to subsume all the compensation clauses produced by the initial Star Rule.

Next, a small example of both rules working together is presented.

Example 4 Consider the formula F = {(x̄1, 1), (x̄2, 1), (x̄3, 1), (x̄4, 1), (x̄5, 1), (x̄6, 1),
(x1 ∨ x2,⊤), (x1 ∨ x3,⊤), (x1 ∨ x4,⊤), (x2 ∨ x5,⊤), (x2 ∨ x6,⊤), (x3 ∨ x4,⊤), (x5 ∨ x6,⊤)}.

A possible execution of the algorithm applies the following transformations:

• The Unit Rule is applied to {(x̄1, 1), (x1 ∨ x2,⊤)} which are replaced by
{(x1, 1), (x̄1 ∨ x̄2, 1), (x1 ∨ x2,⊤)}. Then, the Star Rule is applied to {(x1, 1), (x̄1, 1)}
and they are replaced by (�, 1).

• The Unit and Star Rules are applied to {(x̄3, 1), (x̄4, 1), (x3 ∨ x4,⊤)} and they are
replaced by {(x̄3 ∨ x̄4, 1), (x3 ∨ x4,⊤), (�, 2)}.

• The Unit and Star Rules are applied to {(x̄5, 1), (x̄6, 1), (x5 ∨ x6,⊤)} and they are
replaced by {(x̄5 ∨ x̄6, 1), (x5 ∨ x6,⊤), (�, 3)}.

The current formula is F = {(x̄1∨x̄2, 1), (x̄3∨x̄4, 1), (x̄5∨x̄6, 1), (x1∨x2,⊤), (x1∨x3,⊤),
(x1 ∨ x4,⊤), (x2 ∨ x5,⊤), (x2 ∨ x6,⊤), (x3 ∨ x4,⊤), (x5 ∨ x6,⊤), (�, 3)}. Observe that the
unit propagation preprocessor is able to obtain a similar empty clause and formula until this
point but it cannot derive more empty clauses because no unit clauses are available.

The Clique preprocessor continues:
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• The Unit Rule is applied to {(x̄3∨x̄4, 1), (x1∨x3,⊤), (x1∨x4,⊤)} and they are replaced
by {(x̄1 ∨ x̄3 ∨ x̄4, 1), (x1 ∨ x3,⊤), (x1 ∨ x4,⊤), (x1, 1)}.

• The Unit Rule is applied to (x̄5 ∨ x̄6, 1), (x2 ∨x5,⊤), (x2 ∨x6,⊤) and they are replaced
by {(x̄2 ∨ x̄5 ∨ x̄6, 1), (x2 ∨ x5,⊤), (x2 ∨ x6,⊤), (x2, 1)}.

• The Star Rule is applied to {(x̄1 ∨ x̄2, 1), (x1 ∨ x2,⊤), (x1, 1), (x2, 1)} and they are
replaced by {(x1 ∨ x2,⊤), (�, 4)}.

The resulting formula is F = {(x̄1 ∨ x̄3 ∨ x̄4, 1), (x̄2 ∨ x̄5 ∨ x̄6, 1), (x1 ∨ x2,⊤), (x1 ∨ x3,⊤),
(x1 ∨ x4,⊤), (x2 ∨ x5,⊤), (x2 ∨ x6,⊤), (x3 ∨ x4,⊤), (x5 ∨ x6,⊤), (�, 4)}.

The above paragraphs and examples are focused on the description of the algorithm
associated to the UP and Clique preprocessors. Hereafter, we highlight their effect on the
resulting formula for the binary unate covering problem. In particular, we compare the
original and the resulting formula after executing Unit Propagation and Clique preproces-
sors.

Remark 1 The original encoding of the binary unate covering problem contains a large set
of binary hard clauses (xi ∨ yi,⊤) and a set of soft unit clauses (x̄j , wj).

When the UP preprocessor is applied to the binary unate covering problem, it is able
to detect several small inconsistent subsets involving two unit soft clauses (i.e. (x̄i, w) and
(ȳi, v)) and a hard clause (xi ∨ yi,⊤). As a result, a new empty clause is produced and new
binary soft clauses are added.

Remark 2 The resulting formula after the UP preprocessor contains a large set of binary
hard clauses (i.e. (xi ∨ yi,⊤)), a set of binary soft clauses (i.e. (x̄i ∨ ȳi, w)) and an
empty clause. If the weight of the original unit soft clauses are not consumed during the
preprocessor, it may also contain original soft unit clauses with a smaller weight. UP
preprocessor may generate larger soft clauses but it is unusual.

The main difference of the UP preprocessor and the Clique preprocessor is that the
later is able to detect inconsistencies involving larger soft clauses rather than only unit soft
clauses. This is the main reason why the Clique preprocessor obtains empty clauses with
higher weights as we will see in the experimental investigation.

Remark 3 The resulting formula after the Clique preprocessor contains a large set of
binary hard clauses (i.e. (xi ∨ yi,⊤)), a set of large soft clauses (i.e. (x̄i1 ∨ x̄i2 ∨ x̄i3 ∨ · · · ∨
x̄in, w)) and an empty clause. If the weight of the original soft unit clauses are not consumed
during the preprocessor, it may also contain original soft unit clauses with a smaller weight.

The interested reader can find more examples of the resulting formula after the Clique
Preprocessor is applied in the instances contained in folder PROTEIN INS of the Partial
Max-SAT Industrial Track benchmarks used in the 2009 and 2010 Max-SAT Evaluations1..

1. http://www.maxsat.udl.cat/
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6. Empirical results

In this Section, we present the empirical evaluation of the different preprocessors. First, we
describe the problem instances that were considered in our experiments. Next, we show the
effect of each preprocessor in those instances. Finally, we study the performance of local
search solvers with the new preprocessed instances. Preprocessors were coded in C++. All
experiments were conducted on a 3Ghz Intel Pentium computer with 1GB of memory and
Linux (unless differently indicated).

6.1 Benchmarks

We have considered a large set of instances of different benchmarks. These benchmarks have
been used in several previous works and they have been also included on previous Max-SAT
Evaluations [4, 17]. This selection will provide a large evidence of the performance of the
preprocessors on problems with very different structure.

The considered problem instances can be classified as unweighted Max-SAT including
Max-2-SAT and Max-Cut, binary unate covering problem reformulated as weighted Max-
SAT including the Maximum Clique Problem and the Combinatorial Auction Problem and
Binate Covering Problem including the Max-One Problem.

6.1.1 The Random Max-K-SAT Problem

Given a CNF formula, Max-K-SAT is the problem of finding a complete assignment with
a maximum number of satisfied clauses. K indicates the length of all the clauses. In our
experiments, we used Max-2-SAT instances with a fixed number of variables (100) and
varying the number of clauses (from 300 to 1000, step 100). Note that, if we formulate
the problem as weighted Max-SAT, all clauses have weight equal to 1. We generated 10
instances for each parameter combination. We used the free generator Cnfgen [44]. Note
that this generator prevents duplication or insertion of complementary literals in clauses
but not duplication of clauses.

6.1.2 The Max-Cut problem

Let be G = (V, E) a graph where V is the set of vertices and E is the set of edges defined
between pairs of vertices. Given a graph G = (V, E), a cut is defined by a subset of vertices
U ⊆ V . The size of a cut is the number of edges (vi, vj) such that vi ∈ U and vj ∈ V − U .
Max-Cut, which is a NP-Hard problem, consists in finding a cut of maximum size. The
problem can be easily modelled as unweighted Max-SAT or weighted Max-SAT with all
clauses with weight equal to 1. One variable xi is associated to each graph vertex vi. Value
true (false) indicates that vertex vi belongs to U (to V − U). For each edge (vi, vj), there
are two clauses (xi ∨ xj , 1) and (x̄i ∨ x̄j , 1). Given a complete assignment, the number
of violated clauses is |E| − S where S is the size of the cut associated to the assignment.
As a consequence, the optimal Max-SAT assignment represents the optimal Max-Cut. In
our experiments, we have generated Max-Cut instances from random graphs with a fixed
number of nodes (60) and varying the number of edges (from 200 to 500 step 100). 10
instances were created for each parameter combination.
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6.1.3 The Minimum Vertex Covering Problem

Given a graph G = (V, E), a vertex covering is a set U ⊆ V such that for every edge (vi, vj)
either vi ∈ U or vj ∈ U . The size of a vertex covering is |U |. The minimum vertex covering
(Min-Vertex-Covering) problem consists in finding a covering of minimal size.

The minimum vertex covering problem is a well-known NP-Hard problem that can be
naturally formulated as weighted Max-SAT. One variable xi is associated to each graph
vertex. Value true (false) indicates that vertex xi belongs to U (to V − U). There is a
binary weighted clause (xi ∨ xj ,⊤) for each edge (vi, vj) ∈ E. It specifies that at least one
of these vertices must be in the covering because there is an edge connecting them. There
is a unary clause (x̄i, 1) for each variable xi, in order to specify that it is preferred not to
add vertices to U .

6.1.4 The Maximum Clique Problem

Given a graph G = (V, E), a clique is a set U ⊆ V such that for every vertex v ∈ U , v is
connected to all the vertices in U . The size of a clique is |U |. The maximum clique problem
(Max-Clique) consists in finding a clique of maximal size.

The maximum clique problem is a well-known NP-Hard problem. As noted in [12],
finding the maximum clique of a graph G = (V, E) is equivalent to find a minimum vertex
covering of the complementary graph Ḡ. Given a graph G = (V, E), its complementary
graph is denoted by Ḡ = (V, Ē). It is constructed with the same set of vertices V and
(vi, vj) ∈ Ē iff (vi, vj) /∈ E. Hence, we can model Max-Clique problems as Minimum Vertex
Covering problems over the complementary graph. Observe that the maximum size of the
maximum clique is equivalent to |V |−S, where S is the size of the minimum vertex covering.

In our experiments, we considered random generated Max-Clique instances with 150
variables and varying the number of edges from a complete constrained graph to an empty
graph. We generated 10 instances for each parameter configuration. See Table 6.1.4 for
details.

Table 1. Random Max-Clique instances with 150 variables and varying the number of edges

(%Connectivity).

Problem Num. instances %Connectivity

Max-Clique-150-0 10 0
Max-Clique-150-4 10 17
Max-Clique-150-8 10 35
Max-Clique-150-12 10 52
Max-Clique-150-16 10 70
Max-Clique-150-20 10 87
Max-Clique-150-23 10 100

6.1.5 Hidden Optimal Solution Problems

We also considered the instances with hidden optimal solutions presented in [48, 49] and
made publicly available by professor Ke Xu [47]. Hereafter, we will refer to the instances of
this problem as HOS instances. Observe that these instances are be very difficult to solve
by current techniques in spite of their relative small size. The instances are available for
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different formats such as Pseudo-Boolean, Max-Clique or Minimum Vertex Covering Dimacs
Graph and Weighted Max-2-SAT formats. However, all of them model the same problem
instances. See a more detailed description of the different sets of problem instances in Table
6.1.5. Observe that they are divided in sets from frb25 to frb59 and each set contains 5
instances. We discarded frb10 to frb20 because they are too small. HOS instances were
submitted to different International Evaluations such as the Pseudo-Boolean Evaluations
and Max-SAT Evaluations. Results indicated that (complete and incomplete) solvers were
able to find all optimal solutions up to set frb35 and some solvers reached the optimal
solution for some instances of the frb40 and frb45 sets but optimality was not certified. A
recent algorithm based on iterated tabu search [31] reached better solutions in all sets, even
the optimal one for some instances. But most of the instances remain unsolved.

Table 2. Weighted Max-2-SAT instances with hidden optimal solutions.

Problem Num. instances Num. variables
frb25 5 325
frb30 5 450
frb35 5 595
frb40 5 760
frb45 5 945
frb50 5 1150
frb53 5 1272
frb56 5 1400
frb59 5 1534

6.1.6 The Combinatorial Auction Problem

Given a set of n goods presented in an auction, the bidders generate m bids and each
one is constituted by a price for a subset of goods. The Combinatorial Auction Problem
consists in accepting a subset of bids such that the benefits are maximized. It is also a
NP-Hard problem. Note that the same good can appear in different bids. Hence, only a
bid containing each good can be accepted. We propose the following schema in order to
represent this problem as a Max-SAT instance:

• We create a Boolean variable for each bid. Hence, we need m Boolean variables. If we
assign to true a Boolean variable xi, it means that bid i has been accepted. Otherwise,
the bid i is not selected.

• For each variable xi related to the bid i, we create a clause (x̄i, wi) where wi is the
price proposed by the bidder. This clause indicates that if this clause is not selected,
then the benefit of its price is lost.

• We add a clause (xi ∨ xj ,⊤) for each pair of bids sharing some good. This clause
avoids selecting the two bids at the same time.

Let M be the sum of the prices of all the bids. The benefit of the combinatorial auction is
equivalent to M −S, where S is the cost of the optimal solution. We created combinatorial
auction instances using the CATS (Combinatorial Auction Test Suite) free generator [21].
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It is able to generate problems with three different distributions: Paths, Scheduling and
Regions. Each one represents the particular distribution of a real life problem. More
information about the combinatorial auction problem can be found in [14]. We generated
instances with a fixed number of goods and varying the number of bids. In particular,
the number of goods is fixed to 60 and the number of bids varies from 100 to 120 (step
10) for each one of the three distributions. We generated 10 instances for each parameter
combination.

6.1.7 The Max-One Problem

Given a satisfiable CNF formula, Max-One is the problem of finding a model with a max-
imum number of variables set to true. This problem can be encoded as Max-SAT by
considering the clauses in the original formula as mandatory and adding a weighted unary
clause (xi, 1) for each variable in the formula. Note that solving this problem is much harder
than solving the usual SAT problem, because the search cannot stop as soon as a model is
found. The optimal model must be found and its optimality must be proved. We consider
random 3-SAT instances with 150 variables and the number of clauses ranging from 250 to
550. There are 10 instances for each parameter combination.

6.2 The effect of the Variable Saturation Preprocessor

In this Section the effect of the Variable Saturation Preprocessor is analyzed. In [3], a
similar preprocessor was used for systematic search for K = 6, 10 and 14. However, no
detailed information was given about the selection of the value for the parameter K and
the variable selection heuristic. Therefore, preliminary experiments have been performed
to determine such parameters. We considered random Max-2-SAT and Max-3-SAT with a
fixed number of variables and varying the number of clauses. 10 instances were considered
for each parameter configuration and results are presented in plots that show average cpu
time in seconds.

The original Max-DP [7, 22], an algorithm completely based on inference, has been
used to determine the best heuristic to select the variable to eliminate. Figure 1 compares
three different versions of Max-DP depending on the variable selection. The first version
selects variables following a lexicographical ordering while the second and third version
select variables with maximum and minimum degree, respectively. The experiment considers
Max-2-SAT and Max-3-SAT instances with 14 variables and varying the number of clauses.
Clearly, the minimum degree ordering is the best for Max-2-SAT and slightly better for
Max-3-SAT. Hence, the minimum degree ordering is selected for future experiments.

The best value for K has been determined by exploring the range of possible values
from 0 to 20 using the original Max-DP in random Max-2-SAT and Max-3-SAT instances.
We observed that for K = [0 . . . 8] very few variables can be eliminated. For K = [9 . . . 12]
much more variables can be removed in zero time. For K > 12 the time and space required
begin to be high. Observe Figure 1 and Figure 2. Clearly, for instances with 14 variables
the time begins to be high (Figure 1) while for instances with 16 variables the required time
is excessive (Figure 2). Hence, we only considered K = 12 and K = 14 because they offer
a good trade-off between time and space.
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Figure 1. Results on (a) Max-2-SAT and (b) Max-3-SAT instances with 14 variables and varying

the number of clauses. Observe the effect of the heuristic used to choose the next variable to be

eliminated. The minimum degree heuristic is the best one in both cases.
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Figure 2. Results on (a) Max-2-SAT and (b) Max-3-SAT instances with 16 variables and varying

the number of clauses. Observe that the required cpu time is excessive.

Table 6.2 reports the effect of the Variable Saturation Preprocessor. The table summa-
rizes the number of clauses of the original instance (Clauses) and the number of clauses after
the preprocessor with K = 12 and K = 14 (ClausesK=12 and ClausesK=14, respectively).
The number of variables of the original instance (IniV ars), the number of eliminated vari-
ables for each preprocessor (V EK=12 and V EK=14) and the runtime in seconds (TimeK=12

and TimeK=14) are also summarized. The last row shows the normalized sum2. of the
results. The conclusions are detailed next:

• Random Max-Clique, HOS, Scheduling and Regions instances results are omitted.
The preprocessor on these instances produces meaningless results where practically
no variable is eliminated.

• In general, the total number of eliminated variables is near to the 25% for K = 12
and 30% for K = 14.

2. The normalized sum is the average of each individual improvement
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Table 3. Effect of the Variable Saturation Preprocessor with K = 12, 14 on several benchmarks.

Problem Clauses ClausesK=12 ClausesK=14 IniV ars V EK=12 V EK=14 TimeK=12 TimeK=14

Max-2-SAT-100-300 300 866 2230 100 55 57 0,00 0,00
Max-2-SAT-100-400 400 1474 3340 100 41 43 0,00 0,00
Max-2-SAT-100-500 500 1477 3378 100 31 33 0,00 0,00
Max-2-SAT-100-600 600 2004 4104 100 24 26 0,00 0,10
Max-2-SAT-100-700 700 1876 3636 100 18 22 0,00 0,10
Max-2-SAT-100-800 800 1837 6846 100 11 17 0,00 0,90
Max-2-SAT-100-900 900 1831 5439 100 7 12 0,00 0,50
Max-2-SAT-100-1000 1000 1519 4473 100 4 8 0,00 0,30
Max-Cut-60-200 400 2703 9011 60 28 30 0,00 2,80
Max-Cut-60-300 600 2058 10164 60 16 18 0,00 4,40
Max-Cut-60-400 800 3744 8910 60 10 12 0,00 3,20
Max-Cut-60-500 1000 2223 9236 60 3 6 0,00 3,50
Max-One-150-250 400 534 779 150 63 69 0,00 0,00
Max-One-150-300 450 585 828 150 51 57 0,00 0,00
Max-One-150-350 500 614 742 150 35 42 0,00 0,00
Max-One-150-400 550 638 775 150 26 34 0,00 0,00
Max-One-150-450 600 683 860 150 19 27 0,00 0,00
Max-One-150-500 650 717 832 150 13 19 0,00 0,00
Max-One-150-550 700 737 827 150 6 13 0,00 0,00
Paths-60-100 1046 1600 3208 102 25 29 0,00 0,50
Paths-60-110 1202 2152 3046 102 31 35 0,00 0,00
Paths-60-120 1376 1514 1782 122 28 34 0,00 0,00
Normalized Sums 1,00 2,33 5,95 1,00 0,25 0,30 - -

• The number of clauses increases excessively in some problems (see Max-Cut instances).
In general, we can observe an increment of 133% for K = 12 and 495% for K = 14.

• The runtime for all problems is practically zero, except for Max-Cut and K = 14. The
explanation is simple. Some of the eliminated variables for the Max-Cut instances have
degree 14 while in the other problem instances most of the eliminated variables have
degree smaller than 14.

• In general, K = 14 removes more variables but more cpu time is required. Moreover,
the resulting problems have significantly more clauses. Differently, K = 12 removes
slightly less variables than K = 14 in zero time and the resulting problems have a
smaller number of clauses.

6.3 The effect of the Unit Propagation Preprocessor

This Section presents the effect of the Unit Propagation preprocessor. We considered three
values to analyze its effect. The first one is the weight of the empty clause (�, w) obtained
by the preprocessor. Note that this weight represents a lower bound of the optimal solution.
The greater its value is, the better we will consider it. The second one is the number of
clauses of the resulting problem. The third one is the required time by the preprocessor.

The results of the Unit Propagation preprocessor are reported in Table 6.2. Hereafter,
we will refer to Unit Propagation preprocessor as UP . First, the table summarizes the best
solution obtained by the Irots algorithm (IROTS) [39] and the empty clause obtained
after the preprocessor ((�, w)UP ). This comparison helps to identify the proximity of the
obtained lower bound from quasi optimal solutions. The table also summarizes the number
of clauses of the original and the preprocessed problem (Clauses and ClausesUP , respec-
tively), and the runtime in seconds of the preprocessor (TimeUP ). The last row shows the
normalized sum of the results. Observe that:
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Table 4. The effect of Unit Propagation preprocessor in several benchmarks.

Problem IROTS (�, w)UP Clauses ClausesUP TimeUP

Max-2-SAT-100-300 14,50 9,80 300,00 326,20 0,00
Max-2-SAT-100-400 28,50 19,50 400,00 423,90 0,00
Max-2-SAT-100-500 43,30 30,50 500,00 532,00 0,00
Max-2-SAT-100-600 60,90 42,70 600,00 612,00 0,00
Max-2-SAT-100-700 77,80 53,10 700,00 715,40 0,00
Max-2-SAT-100-800 96,60 65,50 800,00 805,20 0,00
Max-2-SAT-100-900 112,90 76,70 900,00 890,40 0,00
Max-2-SAT-100-1000 132,30 89,60 1000,00 985,80 0,00
Max-Cut-60-200 47,70 25,40 400,00 349,20 0,00
Max-Cut-60-300 86,30 58,00 600,00 485,80 0,00
Max-Cut-60-400 128,90 90,10 800,00 622,40 0,00
Max-Cut-60-500 172,50 126,90 1000,00 749,60 0,00
Max-One-150-250 20,70 15,40 400,00 400,20 0,00
Max-One-150-300 23,76 16,80 450,00 450,20 0,00
Max-One-150-350 29,05 17,00 500,00 500,00 0,00
Max-One-150-400 32,99 19,20 550,00 550,00 0,00
Max-One-150-450 35,66 18,20 600,00 600,60 0,00
Max-One-150-500 46,15 21,00 650,00 650,00 0,00
Max-One-150-550 48,35 18,90 700,00 700,00 0,00
Max-Clique-150-0 146,80 75,00 10878,00 10803,00 0,02
Max-Clique-150-4 144,40 75,20 9090,00 9014,80 0,01
Max-Clique-150-8 142,21 75,40 7302,00 7226,60 0,01
Max-Clique-150-12 139,44 75,80 5514,10 5438,30 0,01
Max-Clique-150-16 134,60 76,20 3726,00 3649,80 0,00
Max-Clique-150-20 124,21 77,60 1938,00 1862,00 0,00
Max-Clique-150-23 91,34 76,90 597,00 550,30 0,00
Frb25 302,86 163,00 10893,40 10730,40 0,02
Frb30 424,35 225,60 18352,60 18127,00 0,04
Frb35 566,01 298,00 28614,20 28316,20 0,06
Frb40 727,86 381,00 42242,20 41861,20 0,10
Frb45 909,75 473,20 59740,00 59266,80 0,14
Frb50 1111,23 575,60 81795,20 81219,60 0,21
Frb53 1231,30 636,00 95719,40 95083,40 0,25
Frb56 1357,21 701,20 111267,60 110566,40 0,29
Frb59 1489,07 767,00 128147,40 127380,40 0,34
Paths-60-100 65719,27 42038,20 1046,20 1052,20 0,00
Paths-60-110 68000,36 43485,00 1201,50 1206,10 0,00
Paths-60-120 75687,10 48022,20 1375,60 1375,90 0,00
Regions-60-100 69953,29 36769,00 3337,10 3339,60 0,00
Regions-60-110 79149,61 41329,50 3948,00 3949,90 0,00
Regions-60-120 87063,68 45279,70 4933,70 4936,00 0,01
Sched-60-100 88128,90 45537,60 3895,50 3890,10 0,00
Sched-60-110 72748,70 37728,00 4514,50 4509,50 0,00
Sched-60-120 116794,20 60580,20 5451,60 5447,30 0,01
Normalized Sums 1,00 0,59 1,00 0,98 -

• The UP preprocessor can be applied to all problem instances. In the previous Section,
we observed that several problem instances remained unmodified within the Variable
Saturation preprocessor.

• The empty clause is remarkably high for all problem instances. The UP preprocessor
reaches a good lower bound for all instances and they are fairly close to quasi optimal
solutions (near to 59%). Recall that the weight of the empty clause in all the original
instances is zero.

• The number of clauses after the preprocessor is slightly smaller compared to the
original ones (2% smaller). The number of clauses only increases for some instances
of the Max-2-SAT problem.

• The required time by the preprocessor is zero in all instances except for the HOS
instances.
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Table 5. The effect of Clique preprocessor in several benchmarks.

Problem Clauses ClausesCl+ ClausesCl− IROTS (�, w)Cl+ (�, w)Cl− TimeCl+ TimeCl−

Max-Clique-150-0 10878,00 10736,70 10742,00 146,80 143,30 138,00 0,07 0,07
Max-Clique-150-4 9090,00 8957,70 8957,90 144,40 134,30 134,10 0,05 0,05
Max-Clique-150-8 7302,00 7177,40 7177,50 142,21 126,60 126,50 0,04 0,04
Max-Clique-150-12 5514,10 5396,70 5397,90 139,44 119,40 118,20 0,03 0,03
Max-Clique-150-16 3726,00 3617,90 3618,80 134,60 110,10 109,20 0,02 0,02
Max-Clique-150-20 1938,00 1843,40 1845,40 124,21 96,60 94,60 0,00 0,00
Max-Clique-150-23 597,00 524,90 525,40 91,34 74,10 73,60 0,00 0,00
Frb25 10893,40 10595,40 10633,40 302,86 300,00 262,00 0,06 0,07
Frb30 18352,60 17934,60 17989,60 424,35 420,00 365,00 0,11 0,13
Frb35 28614,20 28056,20 28131,00 566,01 560,00 485,20 0,19 0,20
Frb40 42242,20 41524,20 41616,60 727,86 720,00 627,60 0,28 0,31
Frb45 59740,00 58842,00 58953,60 909,75 900,00 788,40 0,41 0,44
Frb50 81795,20 80697,20 80836,80 1111,23 1100,00 960,40 0,57 0,62
Frb53 95719,40 94502,40 94655,60 1231,30 1219,00 1065,80 0,67 0,72
Frb56 111267,60 109925,60 110093,80 1357,21 1344,00 1175,80 0,78 0,85
Frb59 128147,40 126674,40 126853,40 1489,07 1475,00 1296,00 0,90 0,98
Paths-60-100 1046,20 1712,60 4993,60 65719,27 63381,20 64047,20 0,59 9,52
Paths-60-110 1201,50 2248,60 5341,50 68000,36 65331,60 65715,40 0,64 6,17
Paths-60-120 1375,60 2186,20 6466,80 75687,10 71878,00 72953,50 0,67 8,86
Regions-60-100 3337,10 5375,70 6620,70 69953,29 69178,80 69598,90 6,69 115,45
Regions-60-110 3948,00 5737,80 7162,90 79149,61 78244,50 78702,10 8,30 150,94
Regions-60-120 4933,70 6932,50 8061,90 87063,68 86237,30 86666,40 12,98 182,09
Sched-60-100 3895,50 3782,50 5837,70 88128,90 88128,90 88127,80 0,02 90,76
Sched-60-110 4514,50 4389,10 6417,80 72748,70 72680,50 72665,90 0,02 60,16
Sched-60-120 5451,60 5307,70 8796,20 116794,20 116752,90 116560,20 0,03 178,94
Normalized Sums 1,00 1,12 1,58 1,00 0,95 0,91 - -

6.4 The effect of the Clique Preprocessor

The performance of the Clique preprocessor in several sets of instances is presented in this
Section. Hereafter, we will refer to the Clique preprocessor as Cl. Observe that the Cl
preprocessor stores all clauses of the weighted formula in a clause list. We considered two
variants of Cl based on the position where the resolvents are added in the clause list (line
11 of Algorithm 4 in Section 4). Note that the ordering in which inference is applied can
produce very different results [15, 51]. The first one is called Cl+ where the resolvents
are added at the beginning of the clause list. The second one is called Cl− where the
resolvents are added at the end of the clause list. Note that the Cl− strategy was used in
[16]. Surprisingly, we have realized empirically that the Cl+ is also a good strategy. Other
strategies can be explored. However, we only considered these two antagonistic strategies
for simplicity.

Table 6.3 reports the results. The table summarizes the number of clauses of the original
instance (Clause), the number of clauses of each problem set after the Cl+ and Cl−
preprocessors (ClausesCl+ and ClausesCl−), the weight of the empty clause ((�, w)Cl+ and
(�, w)Cl−) compared with the best solution of the Irots local search algorithm (IROTS),
and the runtime in seconds (TimeCl+ and TimeCl−). The last row shows the normalized
sums. Observe that:

• Clique preprocessors only obtain empty clauses in binary unate covering problems.
Depending on the structure of the problem instance, the condition to apply the Unit
and Star Rule never occurs. Hence, it has no effect on Max-2-SAT, Max-Cut and
Max-One instances.

• Observe that the required time for Regions and Scheduling Cl− preprocessed instances
explodes. Similarly, the number of clauses generated by Cl− is larger than Cl+.
Note that soft clauses contained in such original instances have very high weights.
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Therefore, we have a situation where the ordering in which inference is applied in
Cl+ and Cl− produces very different results.

• The weight of the empty clause obtained by Cl preprocessors is much better than
those obtained by the UP preprocessor (See Table 6.2). In particular, they are near
to 95% for Cl+ and 91% for Cl−. instances.

• There is a significant increment in the number of clauses (from 12% up to 58%).

• The main drawback is the runtime, specially for Cl−. Cl+ offers a better trade-off
than Cl− between the quality of the empty clause and the runtime.

• In general, the UP preprocessor obtains a good empty clause in negligible time while
Clique preprocessors obtain much better empty clause in binary unate covering prob-
lems but they require significantly more time and clauses in some problem instances.

• The weight of the empty clauses obtained by Cl+ for all HOS and some Scheduling
instances is equal to their optimal solution. This observation will become relevant in
Section 7.

6.5 Local Search Performance

In this Section we study how preprocessors affect the efficiency of stochastic local search
solvers. We considered the following algorithms which apply most of the state-of-the-art
techniques in the literature:

• Gsat (GSAT): It is a best improvement algorithm introduced in [38]. Variable se-
lection in Gsat and most of its variants are based on the score of the variable under
the current assignment. The score is defined as the difference between the number of
unsatisfied clauses by the assignment obtained by flipping a variable and the number
of unsatisfied clauses by the current assignment.

• Irots (IROTS): Iterated Robust Tabu Search [39]. Irots uses the Rots tabu search
presented in [41]. Rots is a best improvement algorithm powered with tabu lists.
Irots applies the Rots algorithm in the search and perturbation phases of an iterated
local search.

• Walksat (WSAT): It was introduced in [37]. In order to choose a variable to flip, it
selects a literal of a randomly chosen unsatisfied clause by the current assignment. It
also applies random flips from time to time in order to avoid local minimas.

• Adaptnovelty+ (AN+): Adaptive Novelty+ [19]. It is based on the Walksat

architecture and it uses a sophisticated mechanism to avoid local minima. Basically,
it consists in applying a larger number of random assignments when a local minima
is reached.

• Saps (SAPS): Scaling and Probabilistic Smoothing [43]. It is based on Dynamic Local
Search. It alternates a search phase in which variables appearing on unsatisfied clauses
are flipped and a phase in which evaluation functions are updated. The key idea is to
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Table 6. Results for the Variable Saturation Preprocessor with K = 12, 14.

Problem GSAT GSATK=12 GSATK=14 IROTS IROTSK=12 IROTSK=14

Max-2-SAT-100-300 14,85 14,84 14,78 14,50 14,50 14,50
Max-2-SAT-100-400 28,75 28,70 28,72 28,50 28,50 28,50
Max-2-SAT-100-500 43,75 43,73 43,64 43,30 43,30 43,30
Max-2-SAT-100-600 61,44 61,34 61,37 60,90 60,90 60,90
Max-2-SAT-100-700 79,10 79,13 79,20 77,80 77,80 77,80
Max-2-SAT-100-800 97,95 97,83 97,92 96,60 96,60 96,60
Max-2-SAT-100-900 114,02 113,96 114,01 112,90 112,90 112,90
Max-2-SAT-100-1000 134,08 134,00 133,91 132,30 132,30 132,30
Max-Cut-60-200 51,02 49,33 49,39 47,70 47,70 47,70
Max-Cut-60-300 90,40 89,33 89,20 86,30 86,30 86,30
Max-Cut-60-400 133,28 132,54 132,38 128,90 128,90 128,90
Max-Cut-60-500 177,18 177,03 176,99 172,50 172,50 172,50
Max-One-150-250 22,75 29,53 24,93 20,70 20,70 20,70
Max-One-150-300 33,13 70,01 55,88 23,76 23,60 23,60
Max-One-150-350 80,26 280,00 230,25 29,05 28,90 28,90
Max-One-150-400 210,86 777,21 613,84 32,99 32,90 32,90
Max-One-150-450 400,79 1118,73 1067,82 35,66 35,54 35,51
Max-One-150-500 1368,93 2474,59 2529,45 46,15 46,02 45,96
Max-One-150-550 2006,91 2746,18 3105,31 48,35 48,26 48,22
Paths-60-100 68022,19 66747,07 66590,17 65719,27 65700,70 65700,70
Paths-60-110 70375,10 69045,35 68851,04 68000,36 67906,90 67906,90
Paths-60-120 78134,82 77065,73 76778,35 75687,10 75555,31 75555,30
Normalized Sums 1,0 1,43 1,34 1,00 1,00 1,00

modify evaluation functions in order to prevent the search from getting stuck in local
minima.

We compared the efficiency of the above algorithms using the original problem instances
and the instances resulting from the three different preprocessors. The five algorithms are
implemented in Ubcsat [42] following their original form. Hence, we used the algorithms of
Ubcsat in all experiments with default parameters (the default Ubcsat’s cut-off is 100000
iterations). Local search algorithms are executed 100 times for each problem instance and
results are average values. The performance of each local search algorithm is compared with
its own performance when the algorithm is fed with the original and preprocessed instances.

Comparisons are presented in two tables with a similar structure to the results in [3, 2]:

• The first table reports results of the best solution found. The first column shows the
name of the set of problem instances. The table summarizes the solution obtained
by each local search algorithm with the original and the preprocessed instances. The
best result for each local search solver is emphasized in bold text. The last row shows
the normalized sum of the results. We emphasize best results for each local search
solver in bold text, while similar (but different) performances are not emphasized.

• The second table shows the runtime in seconds required by each algorithm to solve the
original and the preprocessed instances. Here, each column summarizes the average
time in seconds of each set of problem instances and the last one contains the average
time needed for all problems. Each row reports the average time for each local search
algorithm with the original and preprocessed instances.

6.5.1 Variable Saturation Preprocessor.

Tables 6.5 and 6.5 present the solutions obtained by each local search algorithm within
original and K = 12 and K = 14 preprocessed instances using the Variable Saturation
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Table 7. Results for the Variable Saturation Preprocessor with K = 12, 14.

Problem WSAT WSATK=12 WSATK=14 SAPS SAPSK=12 SAPSK=14 AN+ AN+K=12 AN+K=14

Max-2-SAT-100-300 14,86 14,56 14,56 15,02 14,90 14,87 14,56 14,50 14,50
Max-2-SAT-100-400 30,88 29,89 29,84 29,41 29,16 29,14 29,24 28,59 28,55
Max-2-SAT-100-500 48,48 46,91 46,78 44,38 44,13 44,07 44,87 43,84 43,65
Max-2-SAT-100-600 69,07 67,13 66,91 62,24 61,95 61,89 64,16 62,48 62,18
Max-2-SAT-100-700 89,37 87,46 87,20 79,76 79,67 79,67 82,53 80,87 80,41
Max-2-SAT-100-800 110,69 109,52 108,50 98,66 98,64 98,41 102,89 101,64 100,63
Max-2-SAT-100-900 128,82 127,58 126,69 114,49 114,60 114,55 119,52 118,53 117,61
Max-2-SAT-100-1000 151,13 150,46 149,72 134,79 134,76 134,83 140,82 140,25 139,17
Max-Cut-60-200 51,79 48,39 48,19 47,70 47,80 47,78 48,92 47,70 47,70
Max-Cut-60-300 94,84 91,16 90,59 86,33 86,73 86,74 89,40 87,12 86,77
Max-Cut-60-400 140,72 137,50 136,88 128,97 129,56 129,51 133,70 131,46 130,88
Max-Cut-60-500 186,84 185,74 184,81 172,65 173,50 173,57 179,05 178,12 176,85
Max-One-150-250 21,35 21,03 21,07 23,67 23,31 22,79 20,72 20,70 20,70
Max-One-150-300 24,48 24,34 24,35 29,38 27,29 26,81 23,77 23,66 23,66
Max-One-150-350 30,46 30,32 30,38 38,56 35,38 34,84 29,11 29,05 29,02
Max-One-150-400 34,69 34,44 34,52 52,57 43,02 41,07 33,08 32,98 32,92
Max-One-150-450 37,27 37,40 37,40 93,91 67,65 59,98 35,77 35,76 35,72
Max-One-150-500 47,29 47,20 47,23 422,65 353,07 280,92 46,17 46,12 46,07
Max-One-150-550 49,31 49,30 49,27 731,48 710,73 664,50 48,55 48,54 48,45
Paths-60-100 68604 66448 66207 66884 66399 66277 66391 65817 65762

Paths-60-110 71289 68687 68493 69130 68792 68674 68778 68025 67982

Paths-60-120 79241 76658 76303 76883 76512 76342 76405 75740 75664

Normalized Sums 1,00 0,98 0,98 1,00 0,96 0,94 1,00 0,99 0,99

preprocessor. Table 6.5 presents results for Gsat and Irots and Table 6.5 shows results
for Walksat, Saps and Adaptnovelty+. Table 6.5.1 shows the runtime. We can observe
the next conclusions:

• All algorithms except Irots, report a noticeable improvement in Paths instances.
Irots does not report significant improvement nor worsening.

• In general, slight improvements are detected for Walksat, Adaptnovelty+ and
Saps.

• Gsat shows a global worsening of approximately 40%. The reason is because of the
worse results obtained for Max-One instances, while for the other instances a slight
improvement is noticed.

• The original instances can be solved in less time than the preprocessed ones. Moreover,
the runtime highly depends on the value of K. In particular, a larger K implies more
clauses which imply more runtime.

6.5.2 Unit Propagation Preprocessor.

Table 6.5.2 compares the solutions obtained by each local search algorithm within the
original and UP -preprocessed instances. Table 6.5.2 shows the cpu time in seconds. We
observe that:

• All algorithms except Irots improve their performance. The global improvement for
Gsat, Walksat, Saps and Adaptnovelty+ are 6%, 3%, 5% and 1%, respectively.
No algorithm reports improvement on Scheduling instances.

• In general, the UP preprocessor helps the Walksat and Adaptovelty+ algorithms
to obtain a significant improvement in all problem instances. Improvements are ob-
served for Gsat and Saps in Max-One instances.
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Table 8. Runtime averages for the Variable Saturation Preprocessor with K = 12, 14.

SLS / Problem Max-2-SAT Max-Cut Max-One Paths Average
GSAT 0,08 0,11 0,15 0,08 0,11

GSATK=12 0,23 0,52 0,12 0,34 0,30
GSATK=14 0,54 1,91 0,14 0,64 0,80
IROTS 0,12 0,12 0,21 0,15 0,15

IROTSK=12 0,30 0,60 0,19 0,36 0,36
IROTSK=14 0,60 2,02 0,20 0,71 0,88
WSAT 0,05 0,07 0,06 0,07 0,06

WSATK=12 0,19 0,43 0,07 0,15 0,21
WSATK=14 0,45 1,62 0,09 0,28 0,61
SAPS 0,15 0,19 0,13 0,23 0,17

SAPSK=12 0,29 0,67 0,15 0,32 0,36
SAPSK=14 0,66 2,23 0,18 0,44 0,88
AN+ 0,06 0,08 0,07 0,08 0,07

AN+K=12 0,25 0,59 0,09 0,21 0,29
AN+K=14 0,62 2,30 0,10 0,40 0,86

Table 9. Results for the Unit Propagation Preprocessor.

Problem GSAT GSATUP IROTS IROTSUP WSAT WSATUP SAPS SAPSUP AN+ AN+UP

Max-2-SAT-100-300 14.85 14.84 14.50 14.50 14.86 14.50 15.02 14.71 14.56 14.50
Max-2-SAT-100-400 28.75 28.75 28.50 28.50 30.88 28.50 29.41 29.15 29.24 28.50

Max-2-SAT-100-500 43.75 43.71 43.30 43.30 48.48 43.44 44.38 43.85 44.87 43.31

Max-2-SAT-100-600 61.44 61.48 60.90 60.90 69.07 61.66 62.24 61.84 64.16 60.97

Max-2-SAT-100-700 79.10 79.17 77.80 77.80 89.37 79.97 79.76 79.16 82.53 78.00

Max-2-SAT-100-800 97.95 97.99 96.60 96.60 110.69 100.23 98.66 98.01 102.89 97.16

Max-2-SAT-100-900 114.02 114.09 112.90 112.90 128.82 116.72 114.49 114.05 119.52 113.49

Max-2-SAT-100-1000 134.08 133.95 132.30 132.30 151.13 137.65 134.79 133.95 140.82 133.71

Max-Cut-60-200 51.02 51.16 47.70 47.70 51.79 48.24 47.70 47.79 48.92 47.71
Max-Cut-60-300 90.40 90.41 86.30 86.30 94.84 87.51 86.33 86.60 89.40 86.33

Max-Cut-60-400 133.28 133.22 128.90 128.90 140.72 131.45 128.97 129.41 133.70 129.23

Max-Cut-60-500 177.18 177.46 172.50 172.50 186.84 176.08 172.65 173.17 179.05 172.74

Max-One-150-250 22.75 22.88 20.70 20.70 21.35 20.70 23.67 21.19 20.72 20.75
Max-One-150-300 33.13 35.44 23.76 23.75 24.48 23.64 29.38 25.70 23.77 23.62
Max-One-150-350 80.26 59.87 29.05 29.04 30.46 28.96 38.56 34.45 29.11 28.90
Max-One-150-400 210.86 125.33 32.99 32.98 34.69 33.05 52.57 43.40 33.08 32.91
Max-One-150-450 400.79 199.76 35.66 35.65 37.27 35.77 93.91 62.33 35.77 35.57
Max-One-150-500 1368.93 446.96 46.15 46.11 47.29 46.39 422.65 160.20 46.17 45.96
Max-One-150-550 2006.91 590.32 48.35 48.34 49.31 48.81 731.48 240.10 48.55 48.36
Max-Clique-150-0 146,94 146,954 146,80 146,8 147,00 146,987 147,04 147,014 146,96 146,92
Max-Clique-150-4 144,94 144,945 144,40 144,4 145,95 145,63 145,25 145,225 145,50 145,07
Max-Clique-150-8 142,98 142,976 142,21 142,214 144,81 144,032 143,35 143,419 143,79 143,39
Max-Clique-150-14 140,22 140,187 139,44 139,447 143,05 142,098 140,76 140,783 141,41 140,79

Max-Clique-150-16 135,41 135,435 134,60 134,639 140,49 138,737 136,30 136,414 137,39 136,34

Max-Clique-150-20 124,39 124,40 124,21 124,25 133,80 129,654 126,19 126,43 127,87 125,40

Max-Clique-150-23 90,00 90,65 91,34 91,31 104,65 90,694 92,90 93,61 94,04 89,87

Frb25 302.08 302.03 302.86 302.84 311.74 309.70 305.00 304.98 305.55 304.24
Frb30 422.63 422.61 424.35 424.34 435.38 433.00 426.60 426.20 426.65 425.03
Frb35 563.05 563.13 566.01 565.99 578.84 576.09 568.09 567.83 567.48 566.00
Frb40 723.54 723.59 727.86 727.90 742.63 739.57 729.30 729.20 728.39 726.75

Frb45 904.14 904.19 909.75 909.70 926.41 923.09 911.12 910.73 909.26 907.55

Frb50 1104.63 1104.63 1111.23 1111.24 1130.19 1126.60 1112.21 1112.18 1110.19 1108.33

Frb56 1349.41 1349.35 1357.21 1357.19 1378.77 1374.81 1358.65 1358.51 1355.17 1353.54

Frb59 1480.59 1480.65 1489.07 1489.14 1511.97 1507.88 1490.43 1490.44 1486.90 1485.04
Paths-60-100 68022 68004 65719 65718 68604 66637 66884 66928 66391 65799

Paths-60-110 70375 70385 68000 68001 71289 69235 69130 69297 68778 68074

Paths-60-120 78134 78199 75687 75689 79241 77088 76883 76957 76405 75778

Regions-60-100 70779 70800 69953 69948 70169 70080 70604 70608 70031 69975

Regions-60-110 79861 79858 79149 79150 79496 79408 79676 79673 79316 79212

Regions-60-120 87871 87876 87063 87062 87354 87281 87678 87683 87219 87139

Sched-60-100 88171 88171 88128 88128 88128 88128 88218 88220 88128 88128
Sched-60-110 72860 72855 72748 72748 72748 72748 72932 72918 72748 72748
Sched-60-120 116933 116944 116794 116794 116794 116794 116884 116873 116794 116794
Normalized Sums 1.00 0.94 1.00 1.00 1.00 0.97 1.00 0.95 1.00 0.99

• The original and preprocessed instances require similar times to be solved.

Compared to the Variable Saturation Preprocessor, the UP Preprocessor globally ob-
tains better results for all local search algorithms. Only for the Paths instances, the Variable
Saturation Preprocessor reports better results.
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Table 10. Runtime averages for the Unit Propagation Preprocessor.

SLS / Problem Max-2-SAT Max-Cut-60 Max-One-150 Paths-60 Regions-60 Sched-60 Max-Clique-150 Frb Average
GSAT 0,08 0,11 0,15 0,08 0,09 0,25 0,31 1,21 0,28
GSATUP 0,12 0,11 0,15 0,08 0,09 0,26 0,31 1,23 0,29
IROTS 0,12 0,12 0,21 0,15 0,25 0,33 0,39 1,70 0,41
IROTSUP 0,19 0,17 0,12 0,16 0,25 0,34 0,39 1,72 0,43
WSAT 0,05 0,07 0,06 0,07 0,10 0,10 0,11 0,36 0,11
WSATUP 0,09 0,10 0,06 0,08 0,12 0,11 0,12 0,28 0,12
SAPS 0,15 0,19 0,13 0,23 0,64 0,61 0,69 2,90 0,69
SAPSUP 0,14 0,16 0,11 0,18 0,52 0,51 0,57 2,38 0,57
AN+ 0,06 0,08 0,07 0,08 0,13 0,11 0,12 0,48 0,14
AN+UP 0,11 0,12 0,07 0,10 0,16 0,14 0,15 0,36 0,15

Table 11. Results for Clique Preprocessors.

Problem GSAT GSATCl+ GSATCl− IROTS IROTSCl+ IROTSCl−

Max-Clique-150-0 146,94 146,97 146,94 146,80 146,80 146,80
Max-Clique-150-4 144,94 144,95 144,95 144,40 144,40 144,40
Max-Clique-150-8 142,98 142,99 142,98 142,21 142,21 142,22
Max-Clique-150-12 140,22 140,19 140,18 139,44 139,44 139,45
Max-Clique-150-16 135,41 135,40 135,43 134,60 134,61 134,63
Max-Clique-150-20 124,39 124,39 124,37 124,21 124,20 124,21
Max-Clique-150-23 90,00 90,03 89,99 91,34 91,39 91,38
Frb25 302,08 302,15 302,10 302,86 302,80 302,84
Frb30 422,63 422,61 422,64 424,35 424,32 424,36
Frb35 563,05 563,02 563,10 566,01 565,96 565,97
Frb40 723,54 723,55 723,54 727,86 727,76 727,82
Frb45 904,14 904,06 904,19 909,75 909,56 909,57
Frb50 1104,63 1104,54 1104,55 1111,23 1111,09 1111,19
Frb53 1224,01 1224,11 1224,02 1231,30 1231,27 1231,37
Frb56 1349,41 1349,29 1349,36 1357,21 1357,13 1357,12
Frb59 1480,59 1480,62 1480,64 1489,07 1488,95 1489,11
Paths-60-100 68022,19 68086,51 68030,27 65719,27 65716,88 65718,77
Paths-60-110 70375,10 70358,06 70437,80 68000,36 67992,62 67991,29
Paths-60-120 78134,82 78138,46 78238,26 75687,10 75682,97 75690,01
Regions-60-100 70779,73 70810,74 70791,79 69953,29 69950,76 69949,46
Regions-60-110 79861,86 79868,43 79833,42 79149,61 79148,47 79144,63
Regions-60-120 87871,64 87896,96 87866,13 87063,68 87062,49 87062,58
Sched-60-100 88171,99 88173,34 88179,33 88128,90 88128,90 88128,90
Sched-60-110 72860,04 72846,34 72881,83 72748,70 72748,70 72748,70
Sched-60-120 116933,73 116956,10 116956,00 116794,20 116794,20 116794,20
Normalized Sums 1,00 1,00 1,00 1,00 1,00 1,00

6.5.3 Clique Preprocessor.

Tables 6.5.2 and 6.5.2 present the obtained solutions by each local search algorithm within
original and Cl+ and Cl− preprocessed instances. Table 6.5.2 shows results for Gsat

and Irots and Table 6.5.2 reports the results for Walksat, Saps and Adaptnovelty+.
Table 6.5.3 shows the runtime. We can conclude that:

• No significant improvement is obtained with Gsat and Irots. On the contrary, both
Cl+ and Cl− preprocessed instances improve the performance of the other algorithms.

• Considering Walksat and Adaptnovelty+ algorithms, Cl+ produces the best re-
sults for HOS and Max-Clique instances, while Cl− reports slightly better results on
Paths and Regions instances. The same behaviour is observed for Saps with the only
difference that no improvement is found for Max-Clique instances.

• All algorithms require similar or even less runtime for Max-Clique, HOS and Schedul-
ing instances using the Cl+ variant.
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Table 12. Results for Clique Preprocessors.

Problem WSAT WSATCl+ WSATCl− SAPS SAPSCl+ SAPSCl− AN+ AN+Cl+ AN+Cl−

Max-Clique-150-0 147,00 146,80 146,80 147,04 146,83 147,06 146,96 146,80 146,80
Max-Clique-150-4 145,95 144,49 144,52 145,25 145,35 145,34 145,50 144,42 144,43
Max-Clique-150-8 144,81 142,89 142,91 143,35 143,49 143,50 143,79 142,64 142,65
Max-Clique-150-12 143,05 140,68 140,76 140,76 140,87 140,90 141,41 139,89 139,94
Max-Clique-150-16 140,49 136,84 136,92 136,30 136,58 136,49 137,39 135,40 135,48
Max-Clique-150-20 133,80 127,37 127,61 126,19 126,58 126,59 127,87 124,31 124,51
Max-Clique-150-23 104,65 91,07 91,13 92,90 93,80 93,92 94,04 89,99 89,98

Frb25 311,74 300,31 306,33 305,00 300,06 304,71 305,55 300,06 302,77
Frb30 435,38 420,90 428,96 426,60 420,31 426,00 426,65 420,22 423,32
Frb35 578,84 561,84 571,59 568,09 561,20 567,51 567,48 560,91 563,87
Frb40 742,63 722,62 734,22 729,30 721,71 728,77 728,39 721,29 724,27
Frb45 926,41 903,66 916,92 911,12 902,52 910,42 909,26 901,89 904,80
Frb50 1130,19 1104,70 1119,92 1112,21 1103,29 1111,51 1110,19 1102,28 1105,21
Frb53 1251,50 1224,61 1240,77 1232,76 1223,23 1232,15 1229,90 1221,79 1224,69
Frb56 1378,77 1350,34 1367,36 1358,65 1348,80 1357,88 1355,17 1347,03 1350,05
Frb59 1511,97 1482,02 1499,95 1490,43 1480,69 1489,90 1486,90 1478,21 1481,18
Paths-60-100 68604 65700 65700 66884 66328 66183 66391 65700 65700
Paths-60-110 71289 67913 67907 69130 68748 68616 68778 67919 67907

Paths-60-120 79241 75578 75558 76883 76763 76509 76405 75584 75556

Regions-60-100 70169 69938 69938 70604 70163 70013 70031 69940 69946
Regions-60-110 79496 79127 79126 79676 79303 79206 79316 79137 79132

Regions-60-120 87354 87040 87041 87678 87240 87090 87219 87063 87061

Sched-60-100 88128,90 88128,90 88128,90 88218,19 88128,90 88128,90 88128,90 88128,90 88128,90
Sched-60-110 72748,70 72748,70 72748,70 72932,03 72748,70 72748,70 72748,70 72748,70 72748,70
Sched-60-120 116794,20 116794,20 116794,20 116884,32 116794,20 116794,20 116794,20 116794,20 116794,20
Normalized Sums 1,00 0,97 0,98 1,00 1,00 1,00 1,00 0,99 0,99

Table 13. Runtime averages for Clique Preprocessors.

SLS / Problem Max-Clique-150 Frb Paths-60 Regions-60 Sched-60 Average
GSAT 0,31 1,21 0,08 0,09 0,25 0,39
GSATCl+ 0,31 1,09 0,17 0,22 0,08 0,38

GSATCl− 0,31 1,07 0,44 0,37 8,54 2,15

IROTS 0,39 1,70 0,15 0,25 0,33 0,56

IROTSCl+ 0,39 1,62 0,38 3,26 0,03 1,13
IROTSCl− 0,39 1,59 1,31 5,44 2,73 2,29

WSAT 0,11 0,36 0,07 0,10 0,10 0,15

WSATCl+ 0,18 0,51 0,18 1,24 0,02 0,43
WSATCl− 0,16 0,29 0,77 2,34 0,81 0,87

SAPS 0,69 2,90 0,23 0,64 0,61 1,01
SAPSCl+ 0,39 1,11 0,71 2,80 0,02 1,01

SAPSCl− 0,40 1,39 1,26 4,89 2,52 2,09

AN+ 0,12 0,48 0,08 0,13 0,11 0,18

AN+Cl+ 0,21 0,58 0,24 5,59 0,02 1,33
AN+Cl− 0,19 0,35 1,22 12,74 3,78 3,66

• In general, all algorithms require much more runtime for Cl− preprocessed instances
for Paths, Regions and Scheduling. Besides, all algorithms require more runtime for
Paths and Regions using Cl+ preprocessed instances. Again, a larger number of
clauses on the preprocessed instance imply more cpu time.

• Cl+ offers in general better trade-off between the quality of the solutions and runtime
than Cl−.

• Global results seems to report a small improvement. However, if the best solution of
individual problems is compared, Clique preprocessor produces much better results
than UP preprocessor for the binary unate covering problem.
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Table 14. Best preprocessor for each benchmark and local search algorithm.

Problem / SLS GSAT IROTS WSAT SAPS AN+
Max-2-SAT - - UP - UP
Max-Cut-60 VS K=14 - UP - UP
Max-One-150 UP - UP UP -
Max-Clique-150 - - Cl+ - Cl+
HOS - - Cl+ Cl+ Cl+
Paths-60 VS K=14 VS K=14 Cl- Cl- Cl-
Regions-60 - - Cl- Cl- Cl-
Sched-60 - - - - -

6.6 Conclusions about the experiments

In this Section, we point out some concluding remarks about the set of experiments. Ta-
ble 6.6 reports the best preprocessor for each problem and local search algorithm based on
the previous experiments. We can conclude that:

• Variable Saturation preprocessor (labelled as V S in the table) reports improvements
only for Gsat and Irots and for the Max-Cut and Paths instances. The best variant
is with K = 14.

• Unit Propagation preprocessor (labelled as UP ) reports significant improvement in
Max-2-SAT, Max-Cut and Max-One instances for Walksat, Adaptnovelty+ and
Saps. In general, better solutions are obtained using the UP preprocessor. Besides,
there are no significant differences in the runtime of the SLS algorithms with the
original and preprocessed instances.

• Clique Preprocessor (variants labelled with Cl+ and Cl−) is suitable for the remaining
problem instances (except Scheduling). Noticeable improvements for Walksat, Saps

and Adaptnovelty+ have been observed.

• No preprocessor could improve the original results of the local search algorithms for
Scheduling instances. The reason is simple: Local search algorithms are able to find
the optimal solution quite easily within original and preprocessed instances.

• In general, we observe that Gsat and Irots are less sensitive to inference. Differently,
Walksat, Saps and Adaptnovelty+ are quite sensitive.

• In general, preprocessors that generate a large number of clauses affect negatively to
the performance of SLS algorithms (specially Variable Saturation and Cl−).

• After the experiments, we observed that Cl+ preprocessor returns optimal solutions
for all HOS and several Scheduling instances. In the following Section, we prove
empirically that such instances can be solved to optimality with a SLS algorithm.

We can conclude that Variable Saturation Preprocessor does not produce noticeable
improvements while Unit Propagation and Clique Preprocessors report significant improve-
ments for some SLS algorithms. While Variable Saturation Preprocessor is not effective in
general, it should be very useful for instances in which all variables have very small degree.

Let us define two groups of SLS Algorithm:
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Table 15. The average size of the unsatisfied clause list managed byWalksat is clearly different

for original and preprocessed instances. This may be the explanation why focused algorithms

improve their performance with UP and Clique preprocessors.

Problem WSAT WSATUP WSATCl+

Max-2-SAT-100-1000 189,30 74,10 -
Max-Cut-60-500 225,10 82,40 -
Max-One-150-400 148,00 71,20 -
Max-Clique-150-12 47,00 23,20 26,10
Frb59 111,50 90,80 169,00
Paths-60-120 120,80 116,60 802,40
Regions-60-120 152,70 142,90 403,60
Sched-60-120 1597,20 826,20 97,80

• Focused Algorithms: They select the next variable to flip occurring in an unsatisfied
clause. In particular, they manage a list of the unsatisfied clauses by the current
assignment. At each iteration, they randomly select a clause occurring in such list
(Walksat and Adaptnovelty+) or a variable occurring in an unsatisfied clause
(Saps). Hence, Walksat, Adaptnovelty+ and Saps are focused algorithms.

• Best Improvement Algorithms: They select the next variable to flip with maximal
score. Gsat and Irots are best improvement algorithms.

Unit Propagation and Clique Preprocessors are specially useful for focused algorithms
while they are not so good for best improvement algorithms. The application of both
preprocessors produces a powerful empty clause and a different (but equivalent) problem
instance. Observe that the contribution of many unsatisfied clauses is contained in the
empty clause generated by the preprocessors. Hence, we conjecture that the list of unsat-
isfied clauses used by focused algorithms is very different when they are fed with original
and preprocessed instances.

We have run a new experiment to investigate it. We modified the Ubcsat implementa-
tion to compute the average size of the unsatisfied clause list at each search step. Results
are presented in Table 6.6. It considers the Walksat algorithm, the UP and Cl+ pre-
processors and a representative subset of each benchmark considered in this paper. The
first column shows the name of the benchmark. The second column shows the average size
of the unsatisfied clause list (i.e. the average number of clauses contained in such list) at
each search step for the original instances. Similarly, the third and fourth columns report
the average size of the unsatisfied clause list at each search step for the UP and Cl+ pre-
processed instances, respectively. Clearly, the Walksat algorithm manages different sized
unsatisfied clause lists with the preprocessed instances and this may lead to more focused
and accurate selections. We obtained similar results for Saps and Adaptnovelty+.

7. Proving optimality

As we stated before, Cl+ preprocessor obtained an empty clause with a weight equal
to the optimal solution for all HOS instances and for some Scheduling instances (sets
Sched-60*). For those instances, we carried out a new experiment to prove their optimal-
ity. We also considered the combinatorial auction instances with Scheduling distribution
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included in [24, 21]: There are a total of 500 instances with 144 goods and 1000 bids on
each instance. We will refer to them as 1k-144.

In order to prove optimality, the local search algorithm is executed with a target value
equal to the weight of the empty clause (i.e. a lower bound of the optimal solution) generated
by the preprocessor. The optimality is proved when the local search algorithm obtains a
solution equal to the specified target value within a limit (time or number of search steps)
because the lower bound is reached as the optimal solution.

Initially, a set of experiments was performed to determine the most effective local search
algorithm in HOS and Scheduling original and Cl+ preprocessed instances. For Schedul-
ing instances, all algorithms performed fairly well. For HOS instances, Gsat, Irots and
Walksat were the worst options. Saps obtained good results but it was clearly improved by
Adaptnovelty+ in the most difficult instances. Furthermore, Adaptnovelty+ satisfies
the PAC (Probabilistically approximately complete) property [20]. An incomplete algorithm
is PAC if it finds a solution of soluble instances with a probability approaching one as the
run-time approaches to infinity. Hence, we have chosen Adaptnovelty+ for the entire
experiment.

We also tested the MiniMaxSat [18] systematic search solver in such instances to
analyze which instances can be solved by a systematic search in reasonable time (1200
seconds). MiniMaxSat was able to solve all the Sched-60* sets in less than 5 seconds,
while it got stuck in most of the HOS from frb40 to frb59 and in 1k-144 instances.

Table 7 summarizes the results of solving HOS instances with the original and prepro-
cessed instances. Adaptnovelty+ was executed with a time limit of 1200 seconds and
10 runs per instance. Column Problem indicates the name of each individual instance and
column Optimal shows the value of its optimal solution. Then, the solutions reached by
Adaptnovelty+ with the original instances are presented in column AN+. The following
two columns represent its success ratio to reach the optimal solution (%Success) and the
average time (Time). Then, the solutions found by Adaptnovelty+ with the prepro-
cessed instances are presented in column AN+Cl+. Similarly, its success ratio and average
time are shown in columns %SuccessCl+ and TimeCl+, respectively. The last row shows
average results. Note that the preliminary experiments of this Section and the results in
Table 7 were conducted on a 3Ghz Intel Xeon computer with 4GB of memory and Linux.

Observe the results for AN+: All instances remain unsolved within the time limit.
Differently, for AN+Cl+ all instances are solved in less than 1200 seconds for at least one of
the ten runs except instance frb59-26-2. Adaptnovelty+ was run again for this instance
to check if the optimal solution could be found without a time limit. The instance was
solved to optimality in 12 hours approximately.

Within our approach, all HOS instances have been solved and their optimality is guar-
anteed. Hence, we can say that all HOS instances have been solved to optimality using a
stochastic local search. Note that these difficult instances were submitted to several Interna-
tional Competitions including the Pseudo-Boolean Evaluation and Max-Sat Evaluation (See
results in [47]). Complete and incomplete solvers were able to reach the optimal solution
up to some instances of the frb45 set. The other instances remained unsolved. In the recent
work [31], a novel Iterated Tabu Search (ITS) is able to reach the optimal solution for more
instances or better sub-optimal solutions than previous works, but 22 instances remained
unsolved. Such ITS reaches its best solutions mainly in the first second of execution time
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Table 16. Comparison of Adaptnovelty+ for HOSinstances considering original instances

and Cl+ preprocessed ones. The optimal solution is found and certified for at least one run for all

preprocessed instances except one.

Problem Optimal AN+ %Success Time AN+Cl+ %SuccessCl+ TimeCl+

frb25-13-1 300 305,00 0 1200,01 300,00 100 0,04
frb25-13-2 300 304,80 0 1200,00 300,00 100 0,13
frb25-13-3 300 304,80 0 1200,01 300,00 100 0,05
frb25-13-4 300 304,70 0 1200,00 300,00 100 0,03
frb25-13-5 300 305,00 0 1200,01 300,00 100 0,02
frb30-15-1 420 426,90 0 1200,00 420,00 100 0,06
frb30-15-2 420 426,00 0 1200,00 420,00 100 0,08
frb30-15-3 420 426,50 0 1200,00 420,00 100 0,41
frb30-15-4 420 426,60 0 1200,00 420,00 100 0,03
frb30-15-5 420 426,20 0 1200,00 420,00 100 0,23
frb35-17-1 560 567,50 0 1200,00 560,00 100 2,00
frb35-17-2 560 568,00 0 1200,00 560,00 100 0,92
frb35-17-3 560 567,50 0 1200,00 560,00 100 0,29
frb35-17-4 560 567,90 0 1200,00 560,00 100 2,39
frb35-17-5 560 567,80 0 1200,00 560,00 100 0,19
frb40-19-1 720 728,60 0 1200,00 720,00 100 0,94
frb40-19-2 720 728,60 0 1200,00 720,00 100 6,98
frb40-19-3 720 727,90 0 1200,00 720,00 100 2,27
frb40-19-4 720 728,40 0 1200,00 720,00 100 10,78
frb40-19-5 720 728,30 0 1200,00 720,00 100 41,94
frb45-21-1 900 909,20 0 1200,00 900,00 100 21,39
frb45-21-2 900 909,10 0 1200,00 900,00 100 23,12
frb45-21-3 900 909,10 0 1200,00 900,00 100 79,07
frb45-21-4 900 909,80 0 1200,00 900,00 100 14,17
frb45-21-5 900 909,20 0 1200,00 900,00 100 110,36
frb50-23-1 1100 1109,70 0 1200,00 1100,00 100 168,79
frb50-23-2 1100 1110,60 0 1200,00 1100,00 100 445,74
frb50-23-3 1100 1110,40 0 1200,00 1100,50 50 1016,30
frb50-23-4 1100 1109,80 0 1200,00 1100,00 100 44,49
frb50-23-5 1100 1111,70 0 1200,00 1100,00 100 39,04
frb53-24-1 1219 1231,00 0 1200,01 1219,80 20 1117,07
frb53-24-2 1219 1227,90 0 1200,00 1219,50 50 833,91
frb53-24-3 1219 1229,20 0 1200,00 1219,00 100 284,16
frb53-24-4 1219 1229,30 0 1200,01 1219,60 40 889,53
frb53-24-5 1219 1229,30 0 1200,01 1219,00 100 253,53
frb56-25-1 1344 1356,30 0 1200,01 1344,90 10 1083,46
frb56-25-2 1344 1354,40 0 1200,01 1344,60 40 847,68
frb56-25-3 1344 1354,70 0 1200,01 1344,50 50 936,87
frb56-25-4 1344 1354,80 0 1200,00 1344,00 100 309,71
frb56-25-5 1344 1355,20 0 1200,01 1344,00 100 133,07
frb59-26-1 1475 1485,20 0 1200,00 1475,90 10 1085,56
frb59-26-2 1475 1487,20 0 1200,00 1476,00 0 1200,00
frb59-26-3 1475 1487,60 0 1200,00 1475,90 10 1148,36
frb59-26-4 1475 1487,40 0 1200,00 1475,90 10 1178,94
frb59-26-5 1475 1486,70 0 1200,00 1475,00 100 135,47
Averages 893,11 902,04 0,00 1200,00 893,29 82,00 299,32

while no improvements are obtained later. Finally, the recent work [8], done in parallel
to ours, presents a specific SLS algorithm for the Maximum Clique (and Vertex Covering)
Problem which is very effective in the HOS instances. In particular, it is able to reach the
optimal solution for all instances. However, both [31, 8] are unable to certify the optimality.

Table 7 shows the results for the Scheduling instances. Adaptnovelty+ was launched
with a time limit of 10 seconds and 10 runs per instance since these instances are quite easy
to solve for SLS algorithms. In particular, we focus our study on how many instances can
be solved to optimality and such optimality is in addition certified.

Column Problem refers to the name of the problem set. Column #Instances refers to
the number of instances for each problem set. Column TimeCl+ refers to the average time
in seconds required by the Cl+ preprocessor for all instances of each set. Finally, column
#Optimality refers to the number of instances that are solved and its optimality is certified.
The value inside brackets is the average time in seconds to prove their optimality.
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Table 17. Proving optimality for Scheduling instances.

Problem #Instances TimeCl+ #Optimality

Sched-60-100 10 0,02 10 (0,00)
Sched-60-110 10 0,02 9 (0,00)
Sched-60-120 10 0,03 9 (0,00)
1k-144 500 1,41 118 (0,15)

The optimality is certified for 28 of the 30 instances of the Sched-60* sets and for 118 of
the 500 instances of the 1k-144 set. In fact, the optimality is certified for the 10 runs of each
instance. Required time by the Cl+ preprocessor and to prove optimality are negligible for
Sched-60* sets. Required times for the 1k − 144 set are also small: An average of 1,41
seconds is needed to run the Cl+ preprocessor an average of 0,15 seconds is needed to
certify optimality.

8. Related Work

The three preprocessors presented in this paper are based on well-known limited inference
methods used in systematic search algorithms [18, 16, 3]. Our current work is the first step
towards the integration of inference and local search for Max-SAT.

Some relevant works exist about the integration of local search and classical resolution
in SAT. Such works preserve the satisfiability of the problem instance. That is, if the
input instance is satisfiable (unsatisfiable) the resulting instance of a resolution process
is satisfiable (unsatisfiable). However, they do not preserve the equivalence (See Section
2) from an optimization point of view and cannot be applied directly to the Max-SAT
problem. In [9], new clauses are added during the search process. In particular, resolution
is applied between a pair of unsatisfied clashing clauses at the local minima. In [13], a
local search algorithm is powered with resolution and the resulting algorithm is advocated
to be complete. Finally, in [2] a preprocessor restricted to clauses of size 3 is presented.
The preprocessor is shown to be very effective on quasigroup existence problems and some
random and real-world SAT problems.

The Variable Saturation preprocessor was introduced in [3] and it is a restricted version of
a complete inference algorithm for Max-SAT [7, 22]. The work in [3] showed that systematic
search solvers boosted their performance in some problem instances after applying the
preprocessor. However, limited information is detailed about the setting of some parameters
of the preprocessor such as the variable selection heuristic and the limit of the number of
steps. We performed several experiments in order to set the parameters properly.

The Unit Propagation preprocessor is similar to the lower bound computed by current
systematic search solvers for Max-SAT. The first unit propagation-based lower bound was
introduced in [27] for unweighted Max-SAT: Unit propagation is used to detect disjoint
mutually inconsistent subsets of clauses. The number of inconsistent subsets is an under-
estimation of the cost of the solution. In [26, 22, 28] a set of resolution-based rules were
introduced to transform a Max-SAT problem instance into an equivalent but simpler one.
Finally, the work in [18] showed how to transform inconsistent subsets of clauses detected
by unit propagation to equivalent subsets using a limited number of Max-SAT resolution
steps. Our Unit Propagation Preprocessor is further enhanced with Probing [18]. In [25]
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probing is used to detect mutually inconsistent subsets of clauses in order to compute an
underestimation of the solution. Differently, probing in [18] is used to detect mutually
inconsistent subsets of clauses in order to create new unit soft clauses after a resolution
process.

The Clique preprocessor was introduced in [16] for the Maximum Clique problem and
we have extended its use to the binary unate covering problem. It is based on the recent
Unit Rule [16] and the Star Rule. The Star Rule was introduced in [30] in a general form.
It was applied as an underestimation in [1], restricted to clauses of size 2 in [22, 26] and
in general in [18]. A variant of the original Clique preprocessor returns a powerful lower
bound equal to optimal solution for all HOS [49] and several Scheduling [24] instances.
The resulting problem instances have been solved and their optimality has been certified
by the first time with a SLS algorithm. Recall that the HOS [49] instances were used in
different International Evaluations [4] and previous works [31] but most of them remained
unresolved.

9. Conclusions and future work

In this paper, three preprocessors have been presented based on the Max-SAT resolution
rule. The first one is based on the well-known variable saturation algorithm [3]. The second
one is based on unit propagation and it is widely used in current systematic search algo-
rithms to boost the search [18, 26]. The third one is an extended version of the preprocessor
presented in [16] to handle binary unate covering problems. We analyzed the performance
of stochastic local search algorithms when they are fed with the preprocessed instances.

We observed that the variable saturation preprocessor does not report significant im-
provements. Besides, best improvement algorithms like Gsat and Irots are less sensitive
to inference. Differently, algorithms based on the Walksat architecture like Walksat,
Adaptnovely+ and Saps report significant improvements for the Unit Propagation and
Clique preprocessors. Furthermore, we observed that some preprocessed instances by the
Clique preprocessor can be solved with a local search algorithm to optimality when the
weight of the empty clause is equal to the value of the optimal solution.

New research venues are open. First, we plan to investigate how effective could be
powering local search solvers with inference not only as a preprocessor but also at each
search step. Second, it would be interesting to find a heuristic method for applying the
Clique preprocessor so that it returns an empty clause with a weight equal to the optimal
solution more frequently as it happens for some problem instances with Cl+. The heuristic
may be based on the underlying graph defined by the binary hard clauses. It may allow
local search solvers to prove the optimality as we have pointed out in this paper. Finally,
we would like to extend this research to problems with non-Boolean variables. For example,
we can consider the WCSP framework [23] where variables have finite domains. In this
context, we can study the effect of soft local consistency on existing local search solvers [29].
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