
Journal on Satisfiability, Boolean Modeling and Computation 7 (2010) 77–82

Experiment design and administration
for computer clusters for SAT-solvers (EDACC)

system description

Adrian Balint adrian.balint@uni-ulm.de

Daniel Gall daniel.gall@uni-ulm.de

Gregor Kapler gregor.kapler@uni-ulm.de

Robert Retz robert.retz@uni-ulm.de

Institute of Theoretical Computer Science
Faculty of Engineering and Computer Science
Ulm University, Germany

Abstract

The design of a SAT-solver or the modification of an existing one is always followed
by a phase of intensive testing of the solver on a benchmark of instances. This task can
be very time consuming even when using multi-core computers or computer clusters. To
speed up this process we designed EDACC. A system capable of managing solvers with their
parameters, instances, creating experiment jobs and running them on arbitrary multi-core
systems. After loading solvers and instances into the system the user is able to configure
the parameters of the solvers and choose the instances for the experiment and the settings
of the runs. Then EDACC generates the jobs for the experiment and stores them in a
database. The user only has to start the EDACC-clients on the target computing system.
Each client will load jobs from the database and try to use the full computing capacity
of the system to accomplish its tasks. The client will also monitor the resources of the
solvers such as time and memory. When a job is finished the client will write the results
back to the database and choose another job until all jobs are finished. The clients can be
distributed on a grid to increase the throughput. System crashes will not affect the results
because the results are saved to a remote database. The user only has to restart the client.
With the help of this system, testing and comparing solvers can be done much faster and
much more efficiently.

Keywords: SAT-solver testing, design of tests, computer clusters, jobs scheduling

Submitted March 2010; revised May 2010; published August 2010

1. Introduction

The progress made by SAT-solvers in the last years is quite remarkable as we can see from
the results of the SAT Competitions [4]. The size of the problems that are in reach of
modern SAT-solvers increases every year. This progress can be seen as the result of the
development of better heuristics. The new heuristics are rather complex and have more
parameters when compared to the ones a couple of years ago. The advantage of being
better tunable is also their disadvantage because the testing and tuning phase gets longer.
If the running time of a solver is a random variable then the test-set increases further.

c©2010 Delft University of Technology and the authors.



A. Balint et al.

For example testing the solver Sparrow [1] on a set of 104 instances, each instance being
solved 100 times resulted in 10400 jobs with run-times between a couple of seconds and
1200 seconds (time-out). Running this test on a quad-core computer would have taken half
a year. On a computer cluster it took about a week to finish all jobs. The problem that now
arises is to equally distribute the jobs on the computer cluster to get maximal throughput.
A popular method is to write shell scripts which start only a part of the jobs and then to
submit these scripts as jobs on the computer cluster. We cannot submit each of our jobs to
a computer cluster because no queuing system is able to handle so many jobs for one user.
Without knowing the runtime of the solver on a given instance a priori (which is always the
case for probabilistic solvers) we can not provide an optimal splitting of the jobs in shell
scripts. Another problem that arises when dealing with such a high number of jobs is the
management of the results that have to be analyzed.

To overcome these problems we have designed and implemented a system called EDACC
(Experiment Design and Administration for Computer Clusters). The system can be split
into three main parts: the database (DB), the graphical user interface (GUI) and the
client. The DB is able to store solvers with their parameters, instances and experiments.
Experiments represent a selection of solvers with a given parameter setting, a selection of
instances and a configuration such as maximum time, maximum memory and number of
runs. The DB also contains information about the computer cluster queues and resources.
Section 3 describes the DB in detail.

All information from the DB can be managed with a GUI, which also facilitates the
design of experiments and the analysis of the results. The user can select solvers, configure
their parameters, then choose the instances and generate the jobs. Details about the GUI
can be found in Section 4.

The last part of the system is the client. The client, when started on a computer or
computer cluster, first analyzes the hardware configuration of the system, then loads jobs
from the DB, starts them and monitors them on the target system. The client is designed
to maximize the use of all resources. It will try to assign jobs to all free CPU’s. When
jobs are finished the results are written back to the DB. Crashes of the computing system
will not affect the experiment because the client can be restarted and broken jobs will be
recomputed. Details about the client are presented in section 5.

2. EDACC

From an abstract point of view EDACC can be seen as a management system for solvers,
instances and results and as a queuing system that can be run on top of other arbitrary
queuing systems, being almost independent of them. The user only has to provide some
generic scripts for the queuing system that runs on the target computer system. EDACC
is released under the MIT license and is available at the project site [5]. Before describing
the components of EDACC we will give a typical work-flow, which starts with the GUI and
contains the following steps:

1. Load solvers into the DB and configure their parameters.

2. Load instances into the DB and optionally categorize them into classes.

3. Create a configuration for the computing system.

78



EDACC

4. Create an experiment by:

(a) Choosing the solvers.

(b) Configuring their parameters.

(c) Selecting instances.

(d) Configuring properties of the runs.

5. Choose target computing systems.

6. Generate jobs for the experiment.

7. Generate a package with all needed files (solver binaries, instances, etc.).

8. Copy the package on the computing system and start/submit the clients.

9. Monitor or analyze the results of the jobs with the help of the GUI.

10. Export results for further analysis.

Through the rest of the paper, by a computing system we mean a computer, a computer
cluster or a grid (with homogeneous architecture). An experiment is a set of jobs consisting
of solvers, parameters, instances and run properties.

3. EDACC - Database

The DB can be hosted on an arbitrary MySQL server where the user has read and write
access. To avoid file-system inconsistencies all files like solver binaries and the instances are
saved within the DB. Files loaded or downloaded to the DB are always checked with the
help of the MD5-sums. Next we will give a brief overview of the information that is saved
in the DB.

The main entities saved in the DB are the solvers with their parameters, the instances
that can be categorized into source or user-defined classes, the experiments and their results.
An experiment is the cross product of a selection of solvers, parameters, with certain values
and instances together with some further run-time information. An element of this cross
product is called a job. The database also includes information about queues of different
computer clusters. The complete DB-model can be downloaded from the project page [5].

4. EDACC - GUI

The GUI client is a Java Swing application and is therefore independent of the operating
system. It requires the Java Runtime Environment in version 6. The GUI can be divided
into two modes, the manage DB mode and the experiment mode.

The manage DB mode provides the functionality for loading, updating and deleting
solvers and instances from the DB. It also manages the configuration of the solvers’ param-
eters and the classification of instances in source and user-defined classes. Furthermore all
solvers and instances can be exported to the file system with the help of the GUI .

For creating experiments the user has to switch to the experiment mode. This mode
enables the user to choose the solvers and to configure their parameters. It is also possible to

79



A. Balint et al.

choose a solver multiple times but with different parameter configurations. This facilitates
the test for different parameter settings. Afterwards the instances for the experiment are
selected. The selection of the instances is alleviated by the classification of the instances
into classes and by an instance filter.

To complete the creation of an experiment, the user has to configure the experiment
details like the number of runs per solver and instance or the automated generation of
random seeds. From the given data, the GUI generates a list of all jobs for this experiment
and a package which contains all chosen solvers, instances, the cluster client and some
scripts. This package has to be copied on the computer cluster and has to be unpacked to
start the experiment. On a grid the client has to be submitted to the queuing-system of
the grid.

It is possible to edit running experiments by adding new instances or new solvers and
then generating the additional jobs. In this case it is not necessary to generate a new
package for the computer cluster, the client will download all missing files from the DB. An
experiment browser enables the monitoring of the jobs and their results.

With the help of the GUI complex experiments are created within minutes enabling
the user to start experiments much faster. Another great benefit of the GUI together with
the DB is the distributed administration of solvers and instances. The management can
be performed by many users at the same time using the same DB. Thereby every user can
access a large collection of different solvers and instances from his colleagues. With the user
privilege management of MySQL, complex requirements on user rights are still satisfied.

5. EDACC - Client

The client is written in C and makes heavy use of Linux built-in commands, therefore the
operating system of the computer system has to be related to Linux. A client is able to
handle one computer, hence when running an experiment on a computer cluster the client
should be started on each node (this is done automatically by the queuing system of the
cluster in most cases). The client will first read an experiment ID and the connection
information for the MySQL-server from a configuration file. After connecting to the DB
it will check if all needed binaries and instances are available on the computing system.
If not it will download them from the DB. After that it will check how many cores the
computer has and will try to start a free job on each core. The status of the job is changed
to ’computing’. If a job is finished the client writes the output and the exit code of the
solver in the DB together with the run time of the job and changes the status to finished.
During the run of a job the client monitors its time- and memory-usage (at the moment
this is done by the Linux build-in command ulimit, but will be replaced in the future by
the runsolver program from the SAT Competition). If some specified limits for time and
memory are exceeded, the job will be stopped and the status will be set to ‘failed’. As long
as there are ‘free’ jobs in the DB and not all cores are busy the client will start a new free
job. At the moment the client does not use any scheduling policies. This is because the
client is limited to compute all jobs of an experiment and in most cases the analysis of the
results is only possible if all jobs are finished.

The client will assure a maximal throughput of jobs on the computing system indepen-
dent of the queue policies using all available resources to a maximum. If this is not desired

80



EDACC

(avoiding memory bottlenecks), the user has the possibility to reconfigure the client. The
architecture of the client also facilitates distributed computing of an experiment. The user
only has to start the client on the different components of the grid (Performance compari-
son on the basis of time is only possible if the grid is homogeneous). The clients will then
connect to the same DB and process together jobs from the same experiment. To avoid
connectivity problems between the DB-server and the computing nodes on grid-systems a
MySQL-proxy can be started on the login node of the grid.

The system is in some sense fail-proof. Suppose that one of the computing nodes crashes,
then the status of the jobs controlled by that client will remain with the status ’computing’.
This problem is solved with the help of DB-scheduler. A scheduled trigger scans the DB
searching for jobs that meet the following condition: startT ime + maxRunningT ime <
actualT ime. The status of this kind of jobs is then set to ’free’ so that other clients can
compute them.

6. Related Work

The GUI together with the DB can be seen as a management tool for SAT-solvers and
instances, that can be used by different users. The SAT Competition Homepage [4] was
one of the first efforts in this direction, enabling the download of a wide range of solvers
and instances. The organizers of the SAT Competition have a system that has the same,
or maybe even more capabilities than EDACC, also based on a DB. The disadvantage of
their system is that it is not freely available, a deficit that we would like to overcome with
EDACC.

The client together with the DB can be seen as a scheduling system that can be run
on top of another scheduling system. A similar scheduling system is Condor [3]. Condor
is able to manage jobs spread around different computers or grids. For each job the user
has to write a script which is then submitted to the Condor system. This task of writing
job-scripts is simplified in EDACC by the experiment mode, where the user can generate all
of its jobs (independent of their complexity) for an experiment within a couple of minutes.
EDACC also provides a GUI for the administration of the jobs - a feature that is not present
in Condor.

7. Outlook

To facilitate a better analysis of the results of an experiment a graphical result analyzer is
developed, which is able to represent the results in graphical form. Comparing the results
of two solvers or the results of one solver with different parameters would then be very easy.

Another feature we plan to integrate is an on-line result browser like the one used in the
SAT Competition which can be extended by the former mentioned graphical representation
of results. This would enable the user to monitor ongoing experiments.

Comparing solvers on heterogeneous grid system based on the run-time is not possible.
The ability to configure the parameters of a solver and the fact that jobs can be added
during the run of an experiment enables the design of an automated parameter tuning
feature. The user could specify the parameters of interest, the range and the granularity

81



A. Balint et al.

and then the system would create the jobs needed for testing. Depending on the results of
the jobs, new jobs will be created to explore the search space of the parameters.

To benefit from the capabilities of the Condor system, particularly Condor-G, it would
be of great interest to design a plugin for the experiment mode that will be able to generate
Condor-G jobs that can then be managed by the Condor-G system.

8. Acknowledgments

We would like to thank the bwGrid [2] project for providing the test environment. We
would also like to thank the students Borislav Junk and Raffael Bild for implementing the
code of the client and Daniel Diepold and Simon Gerber for implementing the experiment
mode.

References

[1] A. Balint and A. Fröhlich. Improving stochastic local search for SAT with a new prob-
ability distribution. In SAT ’10: Proceedings of the 13th International Conference on
Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science
6175, pages 10–15, 2010.

[2] bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative, funded
by the Ministry for Education and Research (Bundesministerium für Bildung und
Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Min-
isterium für Wissenschaft, Forschung und Kunst Baden-Württemberg)

[3] D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice: The
Condor Experience. Concurrency and Computation: Practice and Experience 17(2-
4):323–356, 2005.

[4] The SAT Competition Homepage: http://www.satcompetition.org

[5] Homepage of the project : http://sourceforge.net/projects/edacc/

82

http://www.satcompetition.org
http://sourceforge.net/projects/edacc/

	Introduction
	EDACC
	EDACC - Database
	EDACC - GUI
	EDACC - Client
	Related Work
	Outlook
	Acknowledgments

