Journal on Satisfiability, Boolean Modeling and Computation 7 (2010) 71-76

DepQBF: A Dependency-Aware QBF Solver
SYSTEM DESCRIPTION

Florian Lonsing florian.lonsing@jku.at
Armin Biere biere@jku.at
Institute for Formal Models and Verification

Johannes Kepler University, Linz

Austria

Abstract

We present DepQBF 0.1, a new search-based solver for quantified boolean formulae
(QBF). Tt integrates compact dependency graphs to overcome the restrictions imposed by
linear quantifier prefixes of QBF's in prenex conjunctive normal form (PCNF). DepQBF 0.1
was placed first in the main track of QBFEVAL’10 in a score-based ranking. We provide
a general system overview and describe selected orthogonal features such as restarts and
removal of learnt constraints.

KEYWORDS: @QBF solving, DPLL, dependency schemes, restarts

Submitted March 2010; revised May 2010; published August 2010

1. Introduction

Many QBF solvers process input formulae in PCNF. When converting an arbitrary QBF into
PCNPF, structural properties such as quantifier nestings can be lost. The quantifier prefix of
PCNFs imposes a total ordering on the variables, resulting in variable dependencies which
have to be respected by QBF solvers.

Dependency schemes [18] are a general formalism for expressing dependencies in QBFs
in terms of binary relations over the set of variables. In [18], the standard dependency
scheme D** was introduced which is (potentially) less restrictive than the total variable
ordering in PCNF's: variables are not totally but partially ordered. This can grant QBF
solvers more freedom in the solution process.

DepQBF, a search-based QBF solver, features a compact representation of D4 as a
directed-acyclic graph (DAG) over equivalence classes of variables [14], called dependency
DAG. In the following, we provide a system overview of DepQBF 0.1 [13] which participated
in QBFEVAL’10. Additionally, we describe selected features such as strategies for restarts
and removal of learnt constraints. Implementing these techniques was inspired by ideas
from the SAT domain. To our knowledge, restarts have not been applied in QBF solving
so far. Further details and references to related work on the application of dependency
information in search-based QBF solving may be found in [15].

2. Overview

DepQBF consists of a loosely coupled solver and dependency manager. The solver imple-
ments the DPLL algorithm for QBF (QDPLL) with conflict-driven clause and solution-

(©2010 Delft University of Technology and the authors.

F. LoNSING AND A. BIERE

|

BCP —top-level? j‘ result? ~~ analyze — done? - _Schedule

removal/restart backirack

] v

init-DAG get-DC — deci‘de return SAT/UNSAT

Figure 1. DepQBF workflow.

driven cube learning [7, 12, 20], called constraint learning (analyze in Fig. 1). It operates
on formulae in PCNF. The CNF part ¢ := ¢ocr AdrerV érov is represented as augmented
CNF [20], where ¢ocr, ¢rcr and ¢roy are the sets of original clauses, learnt clauses
and learnt cubes, respectively. During the search, learnt constraints are added to ¢rcy
and ¢rcov, which are initially empty. Different from the approach in [20], DepQBF does not
learn constraints containing complementary literals. Instead, the learning procedure follows
[9]. A brief description of QDPLL may be found in [15]. For a comprehensive treatment of
learning in QBF solving, we refer to [7, 9, 12, 20].

The dependency manager (DM) maintains the dependency DAG representing D*d,
which is extracted from the formula given in PCNF (init-DAG in Fig. 1). DM keeps track of
the set of decision candidates (DC) with respect to the solver’s current (partial) assignment.
A variable x is in set DC if it is sound to assign x as decision under the current assignment.
In DepQBF, DC is updated incrementally and lazily based on equivalence classes in the
dependency DAG before decision making and during backtracking [15].

For variables x and y, the solver queries DM to check whether y depends on x, written as
x < y. Such checks are needed during learning and boolean constraint propagation (BCP),
as pointed out in [15] in more detail. Generally, compact dependency DAGs in DepQBF
allow efficient dependency checking.

Whenever the solver learns a unit clause or unit cube, it backtracks to the top-most
decision level, called top-level (top-level? in Fig. 1). DM then re-initializes the dependency
DAG, where clauses satisfied by top-level assignments are ignored. This can result in smaller
DAGs and hence in smaller dependency sets, thus possibly influencing the solver positively.
DAGs are initialized incrementally in DepQBF by inspecting clauses one after each other
and updating classes using an efficient union-find data structure [19].

In the following sections, we describe selected features of DepQBF such as efficient
detection of unit and pure literals, removal of learnt constraints, and restarts. Terminology
and definitions used may be found in [15].

3. Boolean Constraint Propagation (BCP)

The core of QDPLL is propagation of unit and pure literals [3]. For the benchmark set used
in QBFEVAL’08 (3326 formulae), we observed that 88% of total assignments in DepQBF
were due to BCP, 59% were unit, and 29% were pure literals. DepQBF implements watched
data structures [5, 16] for BCP as follows.

72

DeEpPQBF: SySTEM DESCRIPTION

3.1 Unit Literals

Two unassigned literals 1 and [y are watched in each constraint C. For a literal I, q(I) €
{V,3} denotes the quantifier of the variable of [. If C is a clause, then either (1) ¢(l;)
q(la) = Jor (2) q(l1) =V, q(l) = 3 and I3 < ls. Otherwise, C is a cube and either (1)
q(lh) = q(l2) =Y or (2) q(lh) = 3, q(l2) =V and |1 < la.

If variable x is assigned in QDPLL, then the watchers of all constraints C' where a
literal of = is watched will be updated. Whenever a current watcher already disables C| i.e.
satisfies clause C' or falsifies cube C, then no update is made. Similarly, if a disabling literal
l is found in C' while updating watchers of C, then [is watched under the restrictions stated
above. Note that dependency checking for watcher updates is needed in case (2) only.

3.2 Pure Literals

For a variable x, let C(z),C (%) C ¢ocr, denote the set of original (i.e. non-learnt) clauses
in ¢ containing positive and negative literals of x, respectively. Two unsatisfied clauses
Cy € C(z) and Cz € C(T) are watched for each variable x [5, 8]. Let A be a variable
assignment where, for an unassigned variable z, either C, or C% is satisfied under A. If
there is no C), € C(z) (respectively CL € C(T)) currently unsatisfied under A, then z is
considered to be pure.

Assigning a variable x will satisfy all clauses in C(x) (or C(), respectively). Further,
variables y watching clauses in C(x) (or C(Z)) will have to update their watcher C, (or
Cy). Each variable maintains two notification lists, one for x and one for , which exactly
contain references to all variables y watching clauses in C(x) (or C(7)). After some y has
found a new watcher CZ/J (respectively C%), notification lists of variables occurring in the old
and new watcher C, and Cy, (or Cy and Cy) have to be updated.

Clause watching for pure literal detection as implemented in DepQBF was introduced
in [5], yet without providing details of how to update watchers. The implementation of
notification lists is optimal in the sense that no search is required to find all variables which
need an update of their watcher list.

Similarly to the common technique of two-literal watching in SAT solvers [16], watched
data structures for unit and pure literal detection as in DepQBF do not require additional
maintenance work during backtracking.

The idea to ignore learnt constraints and only consider ¢pcy, in pure literal detection
was introduced in [8]. This approach can yield spurious pure literals, i.e. literals which are
detected as pure according to ¢ocr, but not pure when also taking learnt constraints in
¢ror and ¢pop into account. Such literals are handled lazily as suggested in [8] by ignoring
any learnt empty clause in ¢ ¢, or satisfied cube in ¢y containing a variable assigned as
spurious pure literal. Further, unit literals triggered by spurious pure literals are ignored
as well.

4. Variable Activities

After the solver has applied BCP until saturation, a variable is selected heuristically and
assigned as decision. Variables are kept on a priority queue in descending order of their
activities, which are implemented as described in [4].

73

F. LoNSING AND A. BIERE

Before a decision is made (decide in Fig. 1), the solver retrieves all decision candidates
from the dependency manager and puts them on the priority queue (get-DC' in Fig. 1).
The variable with highest activity is then taken from the queue for the next decision. The
content of the queue is not continuously kept up to date. Particularly, there might be
variables which are already assigned as unit or pure literal or which are actually no decision
candidates under the current assignment. When being removed, such variables are simply
discarded.

5. Learnt Constraint Removal

Each time the solver encounters a conflict, i.e. an empty clause in ¢ppcrUd o1, Or a solution,
i.e. a satisfied cube in ¢ 1oy or an assignment satisfying all clauses in ¢ o, one newly learnt
constraint C' is added to ¢ [9]. For conflicts, C is a clause and is produced by a sequence of
clause resolutions. For solutions, C' is a cube either produced by cube resolutions or a cube
comprising a subset of the current assignment’s literals sufficient to satisfy all clauses in
docr- In DepQBF, C is always asserting [9, 15, 20], i.e. after backtracking to the asserting
level, C' will trigger a unit literal (backtrack, BCP in Fig. 1).

Learnt constraints in ¢ 1oy, and ¢ 1oy are periodically removed according to the following
strategy (schedule removal in Fig. 1). Set ¢1cr, is empty before solving starts, i.e. |¢rcr| =
0, having an initial capacity cap(¢rcr) = |¢ocr| based on the size of the original formula,
but not less than 2500 and not more than 10000. Clauses are added to ¢ ¢y, during learning,.
If |¢ror| = cap(prcor), then half of the clauses in ¢r,cr, are removed. However, clauses which
triggered a unit literal in the current assignment are never removed. Then, the capacity
is increased by a constant inc(¢rcr) = 500 to cap(¢pror) + inc(ércr). Removing cubes is
handled analogously by ércvu, |¢rcul, cap(Prcv), inc(ércy) = 500. All constant values
were chosen heuristically based on experimental data.

Sets ¢rcr and ¢ oy are implemented as doubly-linked lists. New constraints are always
added to the head of the list. If a learnt clause (cube) C' becomes empty (satisfied), triggers
a unit literal during the search or is used in the deduction of learnt constraints, then C'
is moved to the head of the list. The idea is to make frequently used constraints appear
at the head. When removing constraints, the lists are processed starting from the tail,
thus removing least-recently used and possibly less important constraints. In contrast to
the clause-move-to-front decision heuristics in HaifaSAT [6] this policy is only used for
constraint removal, and in effect very similar to techniques based on clause activities as
implemented in SAT solvers like e.g. [4, 11].

6. Restarts and Assignment Caching

DepQBF implements an inner-outer restart schedule inspired by PicoSAT [2] which is based
on ideas from [1]. Separate inner and outer restart distances ¢ and o, respectively, are
maintained. Before solving starts, distances are initialized with ¢ = 100 and o = 10, where
values were determined experimentally. Assume that the solver performed 7 — 1 backtracks
(i.e. conflict or solutions, see also Sec. 5). Before actually backtracking the ith time to
the backtracking level b computed from the current learnt constraint (schedule restart in
Fig. 1), the solver “restarts” (called inner restart) by backtracking to the largest decision

74

DeEpPQBF: SySTEM DESCRIPTION

level d of a universally quantified decision variable x, provided that d < b. Otherwise, it
backtracks to b as usual. If there is no such x, then d is the top-level by definition. After
each inner restart, the inner distance ¢ is incremented by 10. Then, the next inner restart
happens after i backtracks. After o inner restarts have been carried out, 7 is reset to its
initial value 100 and o is incremented by 5 (called an outer restart). Thus, the next outer
restart happens after o inner restarts. From 568 benchmarks used in the main track of
QBFEVAL’10, DepQBF 0.1 solves 360 (370) instances in 352.33 (337.10) seconds average
run time including time-outs when disabling (enabling) restarts. '

As many SAT solvers, DepQBF combines assignment caching [17] with restarts. Ini-
tially, the assignment cache cached(z) is empty for all variables x. Each time a variable
x is assigned, the assigned value is stored in cached(x), replacing the old entry. Decision
variables are always assigned the value in cached(x), if not empty, otherwise the assigned
value is chosen heuristically.

7. Conclusion

We presented DepQBF, a search-based QBF solver which integrates dependency schemes
[18] as compact dependency graphs. We described selected features such as watched data
structures for BCP, removal of learnt constraints and restarts. These techniques are largely
independent from the specific system architecture of DepQBF and therefore may be relevant
for arbitrary QBF solvers. Strategies for restarts and constraint removal are our main
contributions.

DepQBF version 0.1 [13] participated in QBFEVAL’10 > among 11 other, search- and
elimination-based solvers. In the main track of the competition, it was placed first according
to a score-based ranking. As the only solver, DepQBF solved all 136 formulae from the newly
submitted benchmark suite mgm™.

We believe that many implementation-related techniques applied in SAT solvers could
also be successfully integrated in search-based QBF solvers. As future work, we want to
improve DepQBF in this respect.

References

[1] A.Bhalla, I. Lynce, J. T. de Sousa, and J. Marques-Silva. Heuristic-Based Backtracking
Relaxation for Propositional Satisfiability. Journal of Automated Reasoning (JAR),
35(1-3):3-24, 2005.

[2] A. Biere. PicoSAT Essentials. JSAT, 4(2-4):75-97, 2008.

[3] M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified
Boolean Formulae. In AAAI/IAAI pages 262-267, 1998.

[4] N. Eén and N. Sérensson. An Extensible SAT-Solver. In Giunchiglia and Tacchella
[10], pages 502-518.

1. Setup: Ubuntu 9.04, Intel® Q9550@2.83 GHz, 7 GB/900 seconds memory and time limit.
2. http://www.qbflib.org/index_eval.php
3. http://www.qbflib.org/family_solvers.php?idFamily=723&year=2010

75

http://www.qbflib.org/index_eval.php
http://www.qbflib.org/family_solvers.php?idFamily=723&year=2010

[5]

[11]

[12]

[13]
[14]

76

F. LoNSING AND A. BIERE

I. P. Gent, E. Giunchiglia, M. Narizzano, A. G. D. Rowley, and A. Tacchella. Watched
Data Structures for QBF Solvers. In Giunchiglia and Tacchella [10], pages 25-36.

R. Gershman and O. Strichman. HaifaSat: A SAT Solver Based on an Abstrac-
tion/Refinement Model. JSAT, 6:33-51, 2008.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean Logic
Satisfiability. In AAAI/IAAI pages 649-654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Monotone Literals and Learning in
QBF Reasoning. In M. Wallace, editor, CP, 3258 of LNCS, pages 260-273. Springer,
2004.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and Learning
in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. (JAIR), 26:371-
416, 2006.

E. Giunchiglia and A. Tacchella, editors. Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. 2919 of LNCS. Springer, 2004.

E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In Proc. DATE,
pages 142-149. IEEE Computer Society, 2002.

R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In U. Egly and C. G. Fermiiller, editors, TABLEFAUX, 2381 of LNCS,
pages 160-175. Springer, 2002.

F. Lonsing. DepQBF 0.1 Source Code, 2010. http://fmv. jku.at/depgbf/.

F. Lonsing and A. Biere. A Compact Representation for Syntactic Dependencies in
QBFs. In O. Kullmann, editor, SAT, 5584 of LNCS, pages 398-411. Springer, 2009.

F. Lonsing and A. Biere. Integrating Dependency Schemes in Search-Based QBF
Solvers. In O. Strichman and S. Szeider, editors, SAT' (accepted for publication), LNCS.
Springer, 2010.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In DAC, pages 5630-535. ACM, 2001.

K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching Scheme for
Satisfiability Solvers. In J. Marques-Silva and K. A. Sakallah, editors, SAT, 4501 of
LNCS, pages 294-299. Springer, 2007.

M. Samer and S. Szeider. Backdoor Sets of Quantified Boolean Formulas. Journal of
Automated Reasoning (JAR), 42(1):77-97, 20009.

R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM,
22(2):215-225, 1975.

L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In P. Van Hentenryck, editor, CP, 2470
of LNCS, pages 200-215. Springer, 2002.

http://fmv.jku.at/depqbf/

	Introduction
	Overview
	Boolean Constraint Propagation (BCP)
	Unit Literals
	Pure Literals

	Variable Activities
	Learnt Constraint Removal
	Restarts and Assignment Caching
	Conclusion

