
Journal on Satisfiability, Boolean Modeling and Computation 7 (2010) 65–70

AQME’10

system description

Luca Pulina Luca.Pulina@unige.it

Armando Tacchella Armando.Tacchella@unige.it

DIST, Università di Genova
Viale Causa, 13 – 16145 Genova
Italy

Abstract

In this paper we describe aqme’10, the version of the Adaptive QBF Multi-Engine
submitted to QBFEVAL’10.

Keywords: self-adaptive multi-engine solver, quantified Boolean formulas, AQME

Submitted March 2010; revised May 2010; published July 2010

1. Introduction

The problem of evaluating quantified Boolean formulas (QBFs) is one of the cornerstones
of Complexity Theory. In its most general form, it is the prototypical PSPACE-complete
problem, also known as QSAT [13]. It has been shown in literature that QBFs can provide
compact propositional encodings in many automated reasoning tasks (see, e.g., [1]). To cope
with such tasks successfully, QBF solvers ought to be robust, i.e., able to perform well across
different problem classes. The results of the QBF solvers competitions (QBFEVAL) show,
on the contrary, that QBF solvers are rather brittle. This is to be expected, since every
heuristic algorithm will occasionally find problem instances that are exceptionally hard to
solve, while the same instances can easily be tackled by resorting to another algorithm, or
by using a different heuristic (see, e.g., [7]).

In [9] we studied the problem of engineering a robust QBF solver, i.e., a tool that can
efficiently solve formulas across different problem domains without the need for domain-
specific tuning. The solver resulting from the above is a multi-engine solver, i.e., a tool
that can choose among its engines the one which is more likely to yield optimal results with
respect to the current state of the art. It was called aqme, for Adaptive QBF Multi-Engine.
In [10] we studied a way to enhance the performances of aqme. We designed an adaptation
schema that we called retraining, and we applied it to the engine selection-policies whenever
they fail to give good predictions. The rewarding results obtained during the last QBF
solvers competitions, and the results in [8], in which aqme was used for minimal module
extraction from DL-Lite ontologies, witness the effectiveness of such mechanisms.

In this paper we present aqme’10, the version of our self-adaptive multi-engine solver
submitted to QBFEVAL’10. In Section 2 we show both its architecture and its core algo-
rithm. The peculiarity of aqme’10 is that its pool of engines is composed only by versions
of solvers that participated to QBFEVAL’06. One of the motivations of this choice is that,
as organizers of QBFEVAL’10, we wanted a baseline to compare the current progress in the

c©2010 Delft University of Technology and the authors.

L. Pulina and A. Tacchella

aqme(ϕ, µ, τ , Σ)
1 i ← 0, r ← fail
2 while τ > 0 and r = fail do
3 σ ← apply(µ, ϕ)
4 Σ′ ← remove(Σ, σ)
5 τ ′ ← gaugePredicted(τ , Σ, i)
6 r ← exec(σ, ϕ, τ ′), τ ← τ - τ ′

7 while r = fail and Σ′ is not empty do
8 〈σ, Σ′〉 ← removeFirst(Σ′)
9 τ ′ ← gaugeAlternative(τ , Σ, i)

10 r := exec(σ, ϕ, τ ′), τ ← τ - τ ′

11 if r 6= fail then
12 µ ← update(µ, ϕ, σ)
13 i ← i + 1
14 return 〈r, µ〉

Figure 1. The architecture of aqme’10 (left), and its main loop featuring the retraining algo-
rithm (right). The dotted box represents the whole system and, inside it, each solid box represent
its modules. Arrows denote functional connections between modules.

development of QBF solvers. Despite the usage of engines dating back to 2006, in Section 3
we show in our experiments that aqme’10 is competitive with the current state of the art.

2. The structure of AQME

Figure 1 (left) presents aqme’101. architecture. aqme’10 is written in java, which also
makes for an easier interfacing with the weka library [6]. Looking at Figure 1, we can see
that aqme’10 is composed by six modules:

INTERFACE: This module manages both the input received by the user and the output of
the whole system. It also dispatches the input data to the remaining modules, as
denoted by the outgoing arrows. In particular, INTERFACE collects (i) the QBF in
QDIMACS format; (ii) the classifier type and its base inductive model; and (iii) the
policies related to the time granted to each engine, and the order in which engines are
invoked.

FEE: Feature Extraction Engine. This module extracts the syntactic features from the input
QBF, e.g., number of variables and quantifier alternations, as detailed in [10]. The
cost to extract such features is negligible.

WEKA: This module is built on top of the weka library. WEKA is devoted to the prediction
of the engine to run. It implements four different inductive models, namely 1-nearest-
neighbor, Decision Trees, Decision Rules, and Logistic Regression. WEKA receives as
input both the classifier type and its base inductive model (from INTERFACE) and a
vector of features (from MANAGER). It returns to MANAGER the name of the predicted
solver.

POLICY MANAGER: This module is devoted to compute all the parameters required by the
retraining procedure. It implements the policies related to the time to grant to each

1. aqme’10 is available for download at http://www.mind-lab.it/aqme.

66

http://www.mind-lab.it/aqme

aqme’10 System Description

engine, and the order in which solvers are invoked. Further details about these policies
can be found in [10]. POLICY MANAGER receives from INTERFACE the policy parameters
passed by the user. It is also called by MANAGER whenever retraining occurs.

ENGINE MANAGER: This module manages the interaction with the engines. It receives from
MANAGER informations about the engine to fire, and the time granted to it. At the
end of the engine computation, ENGINE MANAGER returns to MANAGER the satisfiability
result.

MANAGER: This module works as a coordinator of aqme modules, and it also provides the
final result to INTERFACE.

The engines of aqme’10, as depicted in Figure 1 (the rightmost boxes) are five state of the
art QBF solvers in QBFEVAL’06, namely 2clsQ [12], quantor2.11 [3], QuBE3.1 [5],
sKizzo [2], and ssolve [4]. They are used as “black-boxes”, in the sense that aqme
interacts with them by means of system calls only.

In Figure 1 (right) we present the main loop of aqme in pseudo-code format. The
function aqme in Figure 1 takes as input four parameters:

• ϕ is the QBF to be solved;

• µ is an extended inductive model comprised of (i) a classifier that predicts the solver
to be run on unseen QBFs, and (ii) a training set, i.e. a set of feature vectors
corresponding to QBFs, where each vector is labeled by the best engine on that QBF;

• τ is the maximum amount of CPU time granted to solve a single QBF; and

• Σ is a list that contains the basic engines of aqme arranged in a specific order.

The return value of the function is comprised of the result r, and a – possibly updated –
model µ. The result can be one of fail, sat or unsat according to whether ϕ could not
be solved, was determined to be satisfiable or unsatisfiable, respectively. The algorithm in
Figure 1 works as follows:

• An iteration counter i and the result r are initially set to 0 and fail, respectively
(line 1);

• The outermost while loop (lines 2 to 13) ends only when either the resources are
exhausted, i.e. τ = 0, or when some engine is successful, i.e., r 6= fail.

• Inside the main loop, aqme leverages the model µ to predict the best engine σ to be
run on the input QBF ϕ; this is the task of the function apply (line 3).

• The solver σ is removed from the list Σ by the order-preserving function remove
(line 4) to obtain the list of alternative solvers Σ′; the function gaugePredicted
computes a specific time limit τ ′, possibly considering the amount of resources left τ ,
the list of engines Σ, and the current iteration i (line 5);

• The solver σ is fired on ϕ with time limit τ ′ (function exec), and the amount of
available resources is updated (line 6).

67

L. Pulina and A. Tacchella

• After the call to exec, if the result r is either sat or unsat, then the outermost
while loop (line 2) ends; otherwise an innermost while loop (lines 7 to 12) starts,
and it goes on until either the result r is not fail, or there are no more alternative
solvers to try, i.e., Σ′ becomes empty; the innermost loop works as follows:

– The first solver to try is picked from Σ′ (line 8), and a time limit for such solver is
computed by the function gaugeAlternative (line 9), which works analogously
to gaugePredicted.

– The alternative solver σ is fired on the input QBF ϕ with time limit τ ′ (function
exec), and the amount of available resources is updated (line 10);

– If the result of the above call is not fail, then a call to update returns an
updated model µ (line 11-12); notice that update must (i) add the feature vector
corresponding to ϕ labeled by the currently selected engine σ to the training set
stored in µ, and then (ii) swap the classifier stored in µ with a new one obtained
considering the updated training set.

• aqme returns a pair consisting of the result r and a model µ (line 14); the model µ
is unchanged with respect to the input one either when the first predicted engine is
successful, or when all the alternatives are unsuccessful.

Concerning aqme’10, the classifier in µ is 1-nearest-neighbor, while the implementations
of gaugePredicted and gaugeAlternative is based on the policy “Trust the Predicted
Engine” (TPE). Briefly, it works by allowing a fixed short amount of time to all the engines
during the first iteration. Afterwards, should the predicted engine and all the alternative
ones be unsuccessful, the whole amount of resources left is granted to the engine predicted
in the first place. To see how this works, consider the algorithm in Figure 1 and let L be the
initial value of the parameter τ : the function gaugePredicted and gaugeAlternative
should return a value T such that 0 < T < L when i = 0; this can be done because
gaugePredicted “knows” the full amount of resources available when i = 0; during
iteration i = 1, if necessary, gaugePredicted simply returns τ ′ = τ , i.e., the full amount of
resources left. In aqme’10, we set T = 120s, where the limit L was 1200 seconds2.. Finally,
concerning the order in which alternative engines are probed, in aqme’10 the content of Σ
is sorted according according to the QBFEVAL’06 ranking (RAW policy in [10]).

3. Experimental analysis

Table 1 presents the results of aqme’103. in QBFEVAL’10, considering all tracks wherein
aqme’10 participated. Looking at the table, we can see that aqme’10 was the best solver
in both main and rnd tracks, while it ranked second best in the remaining ones.

In Figure 2 we report the pie charts related to the total amount of calls to each engine,
considering the pool of aqme’10 solved formulas for each QBFEVAL’10 track. Looking
at the leftmost plot, related to the main track, we can see that the three most called
solver give about the same contribution: QuBE3.1 is used to solve 33% of formulas, while

2. Except for the sh track, for which the CPU time limit was 12 hours.
3. Our empirical analysis is obtained on a family of identical Linux workstations comprised of 10 Intel Core

2 Duo 2.13 GHz PCs with 4GB of RAM running Linux Debian 2.6.18.5.

68

aqme’10 System Description

Table 1. Results of QBFEVAL’10 for all prenex CNF solvers. For each track, we report the
number of formulas solved within the time limit (“#”) and the total CPU time (“Time”) spent on
the solved instances. Results in boldface are those of the best solver in each track – according to
number of problems solved and total time only. na means that the solver did not participate in a
track.

Solver main 2qbf sh rnd
Time # Time # Time # Time

AIGSolve 329 22786.60 na na 37 1140.01 na na
aqme 434 33346.60 128 2323.11 11 30132.40 407 20078.90
depqbf 370 21515.30 24 690.42 4 41448.00 342 12895.10
depqbf-pre 356 18995.90 51 877.02 4 33371.90 343 9438.62
nenofex 225 13786.90 50 3545.65 3 30194.20 149 34502.80
qmaiga 361 43058.10 na na na na na na
quantor3.1 205 6711.37 48 3689.30 5 57960.90 134 2830.97
StruQS’10 240 32839.70 132 1399.30 5 26257.30 117 15480.40

main 2qbf sh rnd

Figure 2. Pie charts representing the total amount of formulas solved by each engine. The figure
is organized in four columns, the labels of which denote the related track of QBFEVAL’10.

sKizzo and quantor3.1 are called 27% and 24%, respectively. Both ssolve and 2clsQ
are used for less than 10% of times, respectively. However, their contribution is very impor-
tant: for instance, the formula C6288.blif 0.10 1.00 0 1 inp exact (Family C6288, Suite
Scholl-Becker) was uniquely solved by aqme’10 by using ssolve. Finally, we report that
aqme’10 executed 22 retraining procedures.

Considering the plot related to the 2qbf track, we can see that sKizzo is clearly the
engine called most of the times (63%). On the other hand, 2clsQ is never called by
aqme’10. We also notice that the retraining procedure was called 3 times only. Looking
now at the next plot (sh track), we can see that also in this case sKizzo is the most
called engine (55%). Finally, looking at the rightmost plot, only three engines were used
by aqme’10, namely ssolve (49%), QuBE3.1 (36%), and sKizzo (15%). We also report
that aqme’10 called the retraining procedure 15 times.

In conclusion, our experiments show the effectiveness of the multi-engine approach w.r.t.
state-of-the-art QBF solvers, considering that the engines of aqme’10 date back 2006. We
also report that the performance of aqme is “limited” to the one obtained by the state-of-
the-art solver, i.e., the oracle that always fares the best time among a pool of engines. In
order to overwhelm such limitation, our current work focuses on the integration between dif-
ferent algorithms, not black-box engines, and some preliminary results are available in [11].

69

L. Pulina and A. Tacchella

References

[1] C. Ansotegui, C.P. Gomes, and B. Selman. Achille’s heel of QBF. In Proc. of AAAI,
pages 275–281, 2005.

[2] M. Benedetti. sKizzo: a suite to evaluate and certify QBFs. In 20th International Con-
ference on Automated Deduction (CADE), 3632 of LNCS, pages 369–376. Springer,
2005.

[3] A. Biere. Resolve and Expand. In Seventh Intl. Conference on Theory and Applications
of Satisfiability Testing (SAT’04), 3542 of LNCS, pages 59–70. Springer, 2005.

[4] R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to evaluate
quantified boolean formulae. In Proceedings of the Seventeenth National Conference in
Artificial Intelligence (AAAI’00), pages 285–290. AAAI Press / The MIT Press, 2000.

[5] E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE++: an Efficient QBF Solver.
In 5th Formal Methods in Computer Aided Design conference (FMCAD 2004), LNCS.
Springer Verlag, 2004.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

[7] B.A. Huberman, R.M. Lukose, and T. Hogg. An economics approach to hard compu-
tational problems. Science, 3, 1997.

[8] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and M. Za-
kharyaschev. Minimal Module Extraction from DL-Lite Ontologies using QBF Solvers.
In Proc. of IJCAI 2009, pages 836–841, 2009.

[9] L. Pulina and A. Tacchella. A multi-engine solver for quantified boolean formulas. In
13th Conference on Principles and Practice of Constraint Programming (CP 2007),
4741 of LNCS, pages 574–589. Springer Verlag, 2007.

[10] L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints, 14(1):80–116, 2009.

[11] L. Pulina and A. Tacchella. Learning to integrate deduction and search in QBF reason-
ing. In Seventh International Symposium on Frontiers of Combining Systems (FRO-
COS’09), 5749 of LNAI, pages 350–365. Springer, 2009.

[12] H. Samulowitz and F. Bacchus. Binary clause reasoning in QBF. In Nineth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT 2006),
4121 of LNCS, pages 353–367. Springer, 2006.

[13] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In
Proceedings of the Fith Annual ACM Symposium on Theory of Computing, pages 1–9,
1973.

70

	Introduction
	The structure of AQME
	Experimental analysis

