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Abstract

Groote and Zantema proved that a particular OBDD computation of the pigeonhole
formula has exponential size, and that limited OBDD derivations cannot simulate reso-
lution polynomially. Here we show that an arbitrary OBDD refutation of the pigeonhole
formula has exponential size: we prove that for any order of computation at least one in-
termediate OBDD in the proof has size Ω(1.14n). We also present a family of CNFs that
show an exponential blow-up for all OBDD refutations compared to unrestricted resolution
refutations.
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1. Introduction

The reason for this study comes from the interest in giving theoretical explanations of the
efficiency of algorithms for satisfiability testing. Many of these algorithms are based either
on resolution or on ordered binary decision diagrams (OBDDs).

The resolution rule in propositional logic is a single valid inference rule that produces a
new clause implied by two clauses containing complementary literals [11]. This technique
uses proof by contradiction and is based on the fact that any sentence in propositional logic
can be transformed into an equivalent sentence in Conjunctive Normal Form (CNF).

Presently, many of the state-of-the-art satisfiability solvers are based on the DPLL
procedure, which is a variant of resolution in combination with search. At the same time,
resolution based solvers can be highly inefficient for solving some structured problems and
require time exponential in the size of an input instance. The most famous example of such
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CNF is the pigeonhole formula that formalizes a very simple principle that n + 1 objects
cannot be placed into n holes.

An OBDD, also referred to as a Reduced OBDD (ROBDD) or just a BDD, is a data
structure that is used to represent Boolean functions [2, 19]. OBDDs have some interesting
properties: they provide compact and canonic representations of Boolean functions, and
there are efficient algorithms for performing logical operations on OBDDs. As a result,
OBDDs have been successfully applied to a wide variety of tasks, particularly in VLSI
design and CAD verification.

The OBDD approaches for SAT solving can be divided into two groups:

(1) The first group is based on using the Apply operator (join rule) to build an OBDD
for a conjunction of clauses. Thus, for a given order on variables, an OBDD for the
CNF is built, which is then checked for equality to the terminal node 0.

(2) The second group utilizes symbolic quantifier elimination and allows, besides using
the Apply operation, to eliminate variables via existential quantification. Allowing ex-
istential quantification can lead to significant speed-ups for certain kinds of structured
instances. E.g., it is known that there are proofs of polynomial size for the pigeonhole
principle using this proof system [3].

A proof system based on OBDDs was proposed by Atserias et al. [1]. The authors
introduce a very general proof system based on constraint propagation. OBDDs are a
special case of this proof system. Their proof system has four rules: Axiom, Join, Projection,
and Weakening. The first two rules, Axiom and Join, correspond to an application of the
Apply operator. Projection and Weakening are introduced to reduce the size of intermediate
OBDDs. The Projection rule corresponds to an application of existential quantification.
Hence, this proof system contains lines that are OBDDs derived by any of the above rules.
It was shown that the OBDD proof system containing all four rules is strictly stronger than
resolution [1] but it is still exponential [8].

It was proven for the first time in [16] that OBDD proof systems with the two rules
Axiom and Join, corresponding to the Apply method, have an exponential lower bound on
refutations of the pigeonhole formula. However, the lower bound Ω(1.14n) presented in this
paper is stricter in comparison with Ω(1.025n) in [16]. We also demonstrate a family of
CNFs that requires exponential increase for all OBDD refutations based on Apply method,
i.e. OBDD refutations without existential quantification, to simulate unrestricted resolution
refutation. The formulas are the pigeonhole formulas extended with additional clauses as
in [4]. These formulas are CNFs parameterized by n and have size O(n3). Cook has shown
that there is a resolution refutation for these formulas of size O(n4) [4]. We show that an
arbitrary OBDD Apply refutation has size 2Ω(n).

Related work. There has been a lot of research on the relation of different propositional
proof systems [5, 18] and, in particular, on the relation of different forms of resolution and
OBDDs [9, 15, 17].

In [6] Groote and Zantema proved that limited OBDD derivations cannot simulate
resolution refutations polynomially. The considered OBDD system joins the clauses of a
CNF in the order as they are listed, following the shape of the formula, i.e. to build
the OBDD for C1 ∧ (C2 ∧ C3), first the OBDD for C2 ∧ C3 is built and then the one
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for C1 ∧ (C2 ∧ C3). They present a lower bound for refutations of a formula of the form
¬x ∧ (x ∧ ϕ), where ϕ is a formula that is hard for both OBDDs and resolution. But this
formula is refuted trivially if we proceed as (¬x ∧ x) ∧ ϕ.

In [3] a direct construction of polynomial size OBDD refutation of pigeonhole formulas
in presence of existential quantification is presented. Another interesting result by Segerlind
in [13] is that the OBDD derivations with the Axiom rule, a tree-like application of the
Join rule and the Projection rule cannot efficiently simulate DAG-like resolution derivations.

Contribution. Our result differs from previous work in various ways. We strengthen the
result of [6]. In [6] the only OBDD computation of the pigeonhole formulas considered that
first computes the conjunction of all positive clauses, then the conjunction of all negative
clauses, and finally the conjunction of these two. In our setting, the clauses of the pigeonhole
formula may be processed in any arbitrary order. We show that for any OBDD refutation
of the pigeonhole formula some of the intermediate OBDDs have size exponential in n. A
consequence of our result is that the gap between polynomial and exponential in the OBDD
refutation framework for pigeonhole formula is caused by existential quantification, i.e. by
the Projection rule.

The difference with respect to [13] and [3] is the following. We consider a weaker OBDD
proof system containing only two rules, Axiom and Join. For this proof system we show
that an unrestricted application of it cannot simulate resolution polynomially. At present
it is not known whether there is an exponential separation between tree-like and DAG-like
OBDD proof systems based on the Apply method. Therefore, we cannot say whether a
tree-like proof system from [13] subsumes the OBDD proof system considered in this paper.
Still a direct proof of exponential separation between an unrestricted OBDD Apply proof
system and unrestricted resolution is presented for the first time in this paper. Moreover,
although for a weaker proof system, we quantitatively improve the lower bounds on OBDD
refutations presented in [12, 13].

2. Propositional proof systems

We consider propositional formulas in Conjunctive Normal Form (CNF). Basic blocks for
building CNFs are propositional variables that take the values false or true. The set of
propositional variables is denoted by Var. A literal is either a variable x or its negation ¬x.
A clause is a disjunction of literals, and a CNF is a conjunction of clauses. By ⊥ we denote
the empty clause. In the following, for convenience, we consider clauses as sets of variables,
and a CNF as a set of clauses.

By Cls(ϕ) we denote the set of clauses contained in a CNF ϕ and by Var(ϕ) we denote
the set of variables contained in the CNF ϕ. By A : Var → {true, false} we denote a function
that assigns variables either to true or to false. We write F |=A true if a CNF F takes a
value true for an assignment A and F |=A false if F takes a value false.

2.1 Resolution

The resolution principle, due to Robinson [11], is a method to construct proofs by con-
tradiction. The resolution rule produces a new clause implied by two clauses containing
complementary literals. The resulting clause contains all literals except the complementary
ones. Formally this can be presented as following.
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Resolution:
C ∪ {l} D ∪ {¬l}

C ∪D
Thus, from clauses C∪{l} and D∪{¬l} a new clause C∪D is derived. A clause C∪D is

called a resolvent of C ∪{l} and D∪{¬l}. The resolution proof rule defines a proof system
in which there are no axiom schemata, and only one proof rule, resolution. The proofs by
resolution start with clauses of the input CNF and derive new clauses until a contradiction
which is expressed as the empty clause is obtained.

Definition 1 (Resolution refutation). A resolution refutation of an unsatisfiable CNF ϕ is
a sequence of CNFs ϕ ≡ ϕ0, ϕ1, . . . , ϕn with the following properties.

• ϕi ≡ ϕi−1 ∪ {Ci}, i = 1, . . . , n, where Ci is a resolvent of two clauses in ϕi−1.

• ⊥ ∈ ϕn and ⊥ 6∈ ϕi for i = 0, . . . , n− 1.

We say that n is the size of the resolution refutation.

2.2 OBDDs as a proof system

A binary decision diagram (BDD) is a a rooted, directed, acyclic graph, which consists
of decision nodes and two terminal nodes 0 and 1. Each decision node is labeled by a
propositional variable from Var and has two child nodes called a low child and a high child.
The edge from a node to a low (high) child represents an assignment of the variable to 0 (1).
Such a BDD is called an ordered BDD (OBDD) if different variables appear in the same
order on all paths from the root. Therefore, OBDDs assume that there is a total order ≺
on the set of variables, and every node in the OBDD is less then its children with respect
to this order.

An OBDD is said to be reduced if the following two rules are not applicable: 1) merge
isomorphic subgraphs; 2) eliminate any node whose two children are isomorphic. We assume
all our OBDDs to be reduced.

These OBDDs have the following property: For a fixed order ≺ on the set of variables,
every propositional formula ϕ is uniquely represented by an OBDD B(ϕ,≺). Together
with the efficient computation, this unicity is the main property to be exploited in BDD
technology. In particular, two formulas ϕ and ψ are equivalent if and only if B(ϕ,≺) =
B(ψ,≺).

Given a propositional formula ϕ and an order on variables ≺, we define the size of an
OBDD B(ϕ,≺) representing ϕ with respect to ≺ as the number of its internal nodes and
denote it by size(B(ϕ,≺)).

In this paper we consider OBDDs as a propositional proof system. Since we are dealing
only with unsatisfiable CNFs, we give a definition of an OBDD refutation adapting the
definition from [3].

Definition 2 (OBDD refutation). Given a total order on variables ≺, an OBDD refutation
of an unsatisfiable CNF ϕ is a sequence of OBDDs

B1(ϕ1,≺), . . . ,Bn(ϕn,≺)

such that Bn(ϕn,≺) is the OBDD representing the constant false, and for each Bi(ϕi,≺),
1 ≤ i ≤ n, exactly one of the following holds:
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Figure 1. OBDD refutation of ϕ ≡ (x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ ¬y ∧ ¬z for the order on variables

x ≺ y ≺ z.

• (AXIOM) Bi(ϕi,≺) represents one of the clauses C ∈ ϕ;

• (JOIN) there are OBDDs Bi′(ϕi′ ,≺) and Bi′′(ϕi′′ ,≺) such that 1 ≤ i′ < i′′ < i and
ϕi = ϕi′ ∧ ϕi′′.

The size of the OBDD refutation is defined as
∑n

i=1 size(Bi(ϕi,≺)).

When it is convenient, instead of B(ϕ,≺) we write B(ϕ) or just B. By Cls(B(ϕ)) we
mean the set of clauses and by Var(B(ϕ)) the set of variables contained in ϕ.

Example 1. Figure 1 depicts an OBDD refutation of CNF ϕ ≡ (x∨y∨z)∧(¬x∨y)∧¬y∧¬z
for the order on variables x ≺ y ≺ z. OBDDs a) − d) correspond to applications of
Axiom rule and OBDDs e) − g) correspond to applications of Join rule.

The size of the OBDD representing a propositional formula F for a given order on
variables ≺ is described by the structure theorem from [14].

Theorem 1 (Sieling and Wegener, 1993). Let mi, i < n, be the number of subfunctions of a
Boolean function f(xi, . . . , xn), which are obtained by replacing the variables x1, . . . , xi−1 by
constants and which depend essentially on xi (a function f depends essentially on a variable
y if f|y=0 6= f|y=1). Then the OBDD for f with respect to the order x1 ≺ x2 ≺ · · · ≺ xn

contains exactly mi nodes labelled xi which are reached for the different subfunctions.

The above observation is very simple and helpful to prove lower bounds. In this paper we
use Theorem 2 which is a variant of Theorem 1 and was presented in [6]. We use B = {0, 1}
to denote the set of Boolean constants.
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Theorem 2. Suppose for a given formula ϕ the following holds:

• |Var(ϕ)| = n;

• ≺ is a total order on the set of variables Var(ϕ);

• x1, . . . , xk are the smallest k elements with respect to ≺ for some k < n;

• A ⊆ {1, . . . , k};

• z = (z1, . . . , zk) ∈ Bk.

• For all distinct −→x 1,
−→x 2 ∈ Bk such that xi

1 = xi
2 = zi for all i 6∈ A there exists a

−→y ∈ Bn−k such that ϕ(−→x 1,
−→y ) 6= ϕ(−→x 2,

−→y ).

Then the size of the OBDD B(ϕ,≺) is at least 2|A|.

The proof of the lower bounds presented in Section 4 is based on Theorem 2. However,
in order to obtain a lower bound we still have to solve some combinatorial problems.

3. Pigeonhole formulas and beyond

The pigeonhole formulas is a family of unsatisfiable CNFs parameterized by n. They are
often used as a standart benchmark for checking efficiency of (UN)SAT algorithms. It is very
easy to give an argument for unsatisfiability of these formulas but most of the techniques
need time exponential in n to produce a formal proof of unsatisfiability.

In our paper we consider also another class of unsatisfiable CNFs that we call as extended
pigeonhole formulas. These formulas were introduced by Cook in his paper on the extended
resolution proof of the pigeonhole formulas [4].

3.1 Pigeonhole formulas

The pigeonhole principle states that n holes can hold at most n objects with one object in
a hole. The propositional formulas describing this principle were introduced as following.
Atomic proposition Pij says that i is mapped to j, and the set of clauses PHPn states that
there is a one-to-one map from the set {1, . . . , n+ 1} to the set {1, . . . , n}.

Definition 3 (Pigeonhole Formulas). The pigeonhole formula PHPn, n > 0, is defined as
follows.

PCn =
n+1
∧

i=1

[
n
∨

j=1

Pi,j ], NCn =
∧

1≤i<j≤n+1
1≤k≤n

[¬Pi,k ∨ ¬Pj,k],

PHPn = PCn ∧ NCn.

The formula PCn states that at least one variable is true in all n + 1 rows and the
formula NCn states that at most one variable is true in all n columns. These formulas
were studied intensively in relation to complexity of different propositional proof systems,
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and in particular, it has been proved in [7] that every resolution proof for PHPn has size
exponential in n.

The variables of the pigeonhole formula can be seen as entries of a matrix with n + 1
rows and n columns, where the variables are placed according to the indexes. We denote
such a matrix by Matrix(PHPn). Then the i-th row corresponds to the clause

∨n
j=1 Pij and

vice versa. Therefore, if it is needed, we can refer to a row as to a clause.

3.2 Extended pigeonhole formulas

Years before a proof of an exponential lower bound on resolution refutation for the pigeon-
hole formulas was found by Haken, Cook showed that there exists a short proof of PHPn

with extended resolution of size polynomial in n [4]. The idea of Cook was to define new
variables Qij as Qij ≡ Pij ∨ (Pin ∧ Pn+1,j), 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1 and to describe this
equivalence by the set Qn of the following clauses.

(1) Qij ∨ ¬Pij ,

(2) Qij ∨ ¬Pin ∨ ¬Pn+1,j ,

(3) ¬Qij ∨ Pij ∨ ¬Pin,

(4) ¬Qij ∨ Pij ∨ ¬Pn+1,j .

We rename the variables as follows: We denote Pij by P 0
ij and P k

ij ≡ P k−1
ij ∨ (P k−1

in ∧
P k−1

n+1,j) for 1 ≤ k ≤ n− 1, 1 ≤ i ≤ n− k + 1, 1 ≤ j ≤ n− k. Then using the idea of Cook,
we can define extended pigeonhole formulas.

Definition 4 (Extended Pigeonhole Formulas). The extended pigeonhole formula EPHPn

for n > 1 is defined as EPHPn = PHPn ∧ ∧4
i=1 ECi

n, where clauses ECi
n are constructed as

follows.

(1) EC1
n =

∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[P k
ij ∨ ¬P k−1

ij ],

(2) EC2
n =

∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[P k
ij ∨ ¬P k−1

in ∨ ¬P k−1
n+1,j ],

(3) EC3
n =

∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[¬P k
ij ∨ P k−1

ij ∨ P k−1
in ],

(4) EC4
n =

∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[¬P k
ij ∨ P k−1

ij ∨ P k−1
n+1,j ].

The resulting EPHPn formula has interesting properties. It is constructed by adding
4n(n− 1)(n+ 1)/3 new clauses to PHPn. Hence, it is a simple unsatisfiable CNF with size
polynomial in n. There is a resolution refutation of EPHPn with size O(n4) [4]. But, as we
prove in Section 5, all OBDD refutations of EPHPn have size exponential in n. Moreover,
for each OBDD refutation of EPHPn there is a corresponding OBDD refutation of PHPn

such that lower bound on the OBDD proof of EPHPn is not smaller than lower bound on
the OBDD proof of PHPn.
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Theorem 3 (Cook). There is a resolution refutation of EPHPn, n > 1, of size O(n4).

We present here a proof of the above theorem because it is missing in the original paper
and we think that it is of interest itself. In our proof we follow the idea from [4] that from
EPHPn one can derive the clauses PHPn−1 in O(n3) resolution steps.

Proof of Theorem 3. Let Pn be the set Qn but after renaming the variables, i.e.

Pn = {P 1
ij ∨ ¬P 0

ij , P 1
ij ∨ ¬P 0

in ∨ ¬P 0
n+1,j , ¬P 1

ij ∨ P 0
ij ∨ ¬P 0

in, ¬P 1
ij ∨ P 0

ij ∨ ¬P 0
n+1,j}.

The proof has the following steps.

(1) Show that P 1
i1 ∨ · · · ∨ P 1

i,n−1, 1 ≤ i ≤ n, can be derived from PHPn and the set of
clauses Pn in O(n) resolution steps.

(2) Show that ¬P 1
ik ∨ ¬P 1

jk, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n− 1, can be derived from PHPn and

the set of clauses Pn in O(n2) resolution steps.

After repeating the above steps n−1 times one produces the set of clauses PHP1 from which
the empty clause can be derived in two resolution steps. It results in a resolution refutation
of size O(n4). The size of the refutation can be expressed alternatively as O(N4/3), where
N is a number of clauses in EPHPn.

(1) We show how to derive P 1
i1 ∨ · · · ∨ P 1

i,n−2 from PHPn and the set of clauses Pn.

(a) P 1
i1∨· · ·∨P 1

i,n−1∨P 0
in is derived from P 0

i1∨· · ·∨P 0
in and P 1

ij ∨¬P 0
ij , 1 ≤ j ≤ n−1.

(b) P 1
i1 ∨ · · · ∨ P 1

i,n−1 ∨ ¬P 0
n+1,j , 1 ≤ j ≤ n− 1, is derived from (a) and P 1

ij ∨ ¬P 0
in ∨

¬P 0
n+1,j .

(c) ¬P 0
i,n ∨ P 0

n+1,1 ∨ · · · ∨ P 0
n+1,n−1 is derived from P 0

n+1,1 ∨ · · · ∨ P 0
n+1,n and ¬P 0

in ∨
¬P 0

n+1,n.

(d) P 0
n+1,1 ∨ · · · ∨ P 0

n+1,n−1 ∨ P 1
i1 ∨ · · · ∨ P 1

i,n−1 is derived from (a) and (c).

(e) P 1
i1 ∨ · · · ∨ P 1

i,n−2 is derived from (b) and (d).

(2) We show how ¬P 1
ik ∨ ¬P 1

jk can be derived from PHPn and the set of clauses Pn in

O(n2) resolution steps.

(a) ¬P 1
ik ∨ ¬P 1

jk ∨ P 0
n+1,k is derived from ¬P 0

ik ∨ ¬P 0
jk and ¬P 1

ik ∨ P 0
ik ∨ P 0

n+1,k and

¬P 1
jk ∨ P 0

jk ∨ P 0
n+1,k.

(b) ¬P 1
ik ∨ ¬P 1

jk ∨ ¬P 0
ik is derived from (a) and ¬P 0

ik ∨ ¬P 0
n+1,k.

(c) ¬P 1
ik ∨ ¬P 1

jk ∨ ¬P 0
jk is derived from (a) and ¬P 0

jk ∨ ¬P 0
n+1,k.

(d) ¬P 1
ik ∨ ¬P 1

jk ∨ P 0
in is derived from (b) and ¬P 1

ik ∨ P 0
ik ∨ P 0

in.

(e) ¬P 1
ik ∨ ¬P 1

jk ∨ P 0
j,n is derived from (c) and ¬P 1

ik ∨ P 0
jk ∨ P 0

jn.

(f) ¬P 1
ik ∨ ¬P 1

jk ∨ ¬P 0
jn is derived from (d) and ¬P 0

in ∨ ¬P 0
jn.

(g) ¬P 1
ik ∨ ¬P 1

jk is derived from (e) and (f).

Hence, we have shown the correctness of the theorem by presenting the resolution steps.
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4. Technical background

In this section we introduce notations and technical lemmas that will be used throughout
the paper. Some combinatorial properties of square matrices are presented in Lemma 1.
Lemma 2 generalizes a well-known fact about binary trees claiming the existence of subtrees
with a weight lying between a and 2a for any definition of weight as a sum of the weights
of its leaves.

4.1 Notations

Let S≺ denote a set containing the ⌊n2/2⌋ smallest elements of Var(PC∗
n), where ≺ is a

given order on variables and PC∗
n is obtained from PCn by removing an arbitrary clause.

And S≻ = Var(PHPn)\S≺. We denote by S∗
≺ and by S∗

≻ the following sets:

S∗
≺ = {Pab ∈ Var(PHPn) | Pab � max

Pcd∈S≺

Pcd} and S∗
≻ = Var(PHPn)\S∗

≺.

Suppose B1, . . . ,Bl is an OBDD refutation on PHPn. Then for each Bi we define

Si
≺ = S∗

≺ ∩ Var(Bi) and Si
≻ = Var(Bi)\Si

≺.

Moreover, we define

Clsneg(Bi) = Cls(Bi) ∩ Cls(NCn) and Clspos(Bi) = Cls(Bi) ∩ Cls(PCn).

4.2 Technical lemmas

Lemma 1 was presented for the first time in [16], but with a smaller coefficient c = 1
2− 1

4

√
2 ≈

0.146. This lemma is of interest from a point of view of Ramsey Theory that typically asks
questions of the form: How many elements of some structure must there be to guarantee
that a particular property will hold?

Groote and Zantema in [6] considered an n×m matrix containing entries equally colored
white and black and proved that such a matrix has either

√
2(n−1)/2 rows or

√
2(m−1)/2

columns containing both a black and a white entry. Lemma 1 presents another combinatorial
property of a matrix containing entries equally colored white and black. In comparison with
[16] we present another proof that gives us a better c = 3

4 − 1
4

√
5 ≈ 0.19098.

Lemma 1. Consider a matrix M = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Let the matrix entries
be colored equally white and black, i.e. the difference between the number of white entries
and the number of black entries is at most one. Let m = ⌊cn⌋ for c = 3

4 − 1
4

√
5 ≈ 0.19098.

Then at least one of the following holds.

• One can choose m rows, and in every of these rows a white and a black entry, such
that all these 2m entries are in different columns.

• One can choose m columns, and in every of these columns a white and a black entry,
such that all these 2m entries are in different rows.

Proof. Starting by the given matrix repeat the following process as long as possible.
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Choose a row in the matrix containing both a white and a black entry and not
chosen previously. Remove both the column containing the white entry and the
column containing the black entry.

Assume this repetition stops after k steps. Write x = k/n. If x ≥ c the first property of the
lemma holds and we are done. In the remaining case we have x < c. We assume that the
second property of the lemma does not hold, and then we will derive a contradiction.

The remaining matrix M ′ consists of n rows and n(1 − 2x) columns. The xn chosen
rows in M ′ can be either mixed or monochromatic, and the other n−xn rows consist either
only of white entries or only of black entries (otherwise the process of choosing rows could
continue).

We denote by R(M ′) the set of the xn rows chosen by the above process and contained
in the remaining matrix M ′, and we denote by R′(M ′) the set of n(1 − x) rows that were
not chosen and that are also contained in M ′.

Assume that in R′(M ′), pn of the rows are totally white and qn of the rows are totally
black. Then p+ q = 1 − x, where all the numbers p, q, x are reals in the interval [0, 1].

Assume that in R(M ′), there are in total axn2 white entries and bxn2 black entries,
where a, b are real numbers in the interval [0, 1]. It is easy to see that such a and b exist
since the total number of the entries in R(M ′) is less than xn2. Since the total number of
the entries in R(M ′) is (a+ b)xn2 = (1 − 2x)xn2, we obtain a+ b = 1 − 2x.

The total number of white entries in the remaining matrix M ′ is p(1 − 2x)n2 + axn2.
This is strictly less than n2/2 since at least one row was chosen. So

p(1 − 2x) + ax <
1

2
,

and similarly q(1 − 2x) + bx < 1
2 for the black entries.

Now assume that q ≥ c and p + a ≥ c. We will construct at least m = ⌊cn⌋ columns
in M ′ satisfying the second property of the lemma. For the first an choose a white entry
from a mixed row and a black entry in the same column from a full black row. This can
be repeated at least l = min(an, qn) times. If l = qn, we are done. If l < qn, the process
is continued by choosing pn entries from the full white rows. Since q ≥ c and p + a ≥ c
we have chosen at least cn columns in this way, yielding the second property of the lemma.
Since we assume this second property does not hold, we conclude

q < c ∨ p+ a < c.

By symmetry we similarly obtain p < c ∨ q + b < c. Since the combination of q < c and
p < c can not occur due to x < c < .2 and p + q = 1 − x, we either have p + a < c or
q + b < c. By symmetry we may assume without loss of generality that p + a < c. Now
substituting b = 1 − 2x− a and q = 1 − x− p in q(1 − 2x) + bx < 1

2 we obtain

(1 − x− p)(1 − 2x) + (1 − 2x− a)x <
1

2

hence

1 − p+ (2p− a− 2)x <
1

2
.
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Figure 2. An example of a 7 × 7 matrix with entries equally colored black and white.

Since x < c and 2p− a− 2 < 0 (the latter since p < 1 and a ≥ 0), we conclude

1 − p+ (2p− a− 2)c <
1

2
.

Since p+ a < c we conclude

1 − p+ (3p− c− 2)c <
1

2
.

Hence, 1 − c2 − 2c− p(1 − 3c) < 1
2 . Since c > p and 1 − 3c > 0, this yields

1

2
= 2c2 − 3c+ 1 = 1 − c2 − 2c− c(1 − 3c) <

1

2
,

contradiction, using c = 3
4 − 1

4

√
5.

By fine-tuning the argument the constant c in Lemma 1 can be improved. We conjecture
that it also holds for c = 1 − 1

2

√
2 ≈ 0.293. Choosing the n × n matrix in which the left

upper k × k-square is black for k ≈ n√
2

and the rest is white, one observes that this value

will be sharp. As our main result involves an exponential lower bound, we do not focus on
the precise optimal value of c.

Example 2. Consider a square 7× 7 matrix with 24 black and 25 white entries as depicted
in Figure 2. For this example there are three rows such that one can pick up one black and
one white entry in each row in such a way that all entries are in different columns. At the
same time Lemma 1 gives us much lower but a guaranteed bound.

The intuition behind Lemma 1 and how it will be used in the subsequent proof is as
follows: The matrix elements correspond one-to-one to propositional variables of the PHPn

formula where the last positive clause is dropped. For a given order ≺, the colors black
and white correspond to variables in the upper and lower part of an OBDD. As Lemma 1
covers all possible colorings of the matrix, it is applicable to all possible orders ≺. Then,
depending on the order of variables, we either apply Lemma 3 or Lemma 4 to obtain an
intermediate OBDD (containing a subset of all PHPn clauses) with a given property. For
each variable in the upper part of the OBDD we can find a variable in the lower part that
influences the truth value. Thus, we can apply Theorem 2.
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The OBDD representing an unsatisfiable CNF is just a terminal node 0. Therefore,
we have to show that for an arbitrary order on variables and an arbitrary way to combine
clauses there is an intermediate OBDD of a size exponential in n. Hence, we start by the
simple observations describing some properties of intermediate OBDDs. And the following
lemma generalizes a well-known fact about binary trees claiming the existence of subtrees
with a weight lying between a and 2a.

Lemma 2. Let C be a finite set, R ⊆ C with |R| ≥ 2, and B1, . . . , Bl ⊆ C a sequence with:

1. Bl = C

2. For each Bi (1 ≤ i ≤ l), either Bi = ∅, Bi = {c} for c ∈ C, or Bi = Bj ∪Bk for some
j, k with j < k < i.

Then, for each a with 1
|R| < a ≤ 1

2 , there is a j < l such that

a|R| ≤ |Bj ∩R| < 2a|R|.
Proof. We give a proof by contradiction. Suppose, for each Bj , either |Bj ∩ R| < a|R| or
|Bj ∩R| ≥ 2a|R|.

As Bl ∩ R = C ∩ R = R, the inequality |Bl ∩ R| ≥ 2a|R| holds for the final element Bl

of the sequence. On the other hand, for singletons Bj = {c}, we have |Bj ∩ R| = 0 < a|R|
for c /∈ R, and |Bj ∩ R| = 1 < a|R| for c ∈ R, as a > 1/|R|. Moreover, for Bi = ∅,
|Bi ∩R| < a|R| obviously holds. Following now the predecessors of Bl (via the construction
by set union) in the sequence Bi backwards, we finally arrive at an index k for which the
following holds:

• |Bk ∩R| ≥ 2a|R|, and

• Bk = Bk′ ∪Bk′′ , where |Bk′ ∩R| < a|R| and |Bk′′ ∩R| < a|R|.
As Bk∩R = (Bk′∪Bk′′)∩R = (Bk′∩R)∪(Bk′′∩R), and thus |Bk∩R| ≤ |Bk′∩R|+|Bk′′∩R| <
2a|R|, we arrive at a contradiction to |Bk ∩R| ≥ 2a|R|.

Lemma 3. Suppose B1, . . . ,Bl is an OBDD refutation either on PHPn or on EPHPn and
R ⊆ Cls(PCn) with |R| ≥ 4. Then there is an i < l such that

|R|/4 ≤ |Cls(Bi) ∩R| < |R|/2.
Proof. Follows directly from Lemma 2.

Let B1, . . . ,Bl be an OBDD refutation either on PHPn or on EPHPn. For each i ≤ l, we
define Ji as follows:

Ji = {j ∈ {1, . . . , n} | ∃a, b : ¬Paj ∨ ¬Pbj ∈ Cls(Bi) & Paj ∈ S≺ & Pbj ∈ S≻}.
Lemma 4. Suppose B1, . . . ,Bl is an OBDD refutation either on PHPn or on EPHPn for a
total order on variables ≺. Let G ⊆ {1, . . . , n} such that |G| ≥ 4. Then there is an i < l
such that

|G|/4 ≤ |Ji ∩G| < |G|/2.
Proof. Follows from Lemma 2, using C = {1, . . . , n}, R = G, a = 1/4, and J1, . . . , Jl for the
sequence (Bi)1≤i≤l, for which the precondition of Lemma 2 holds, as is easily checked.
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Figure 3. A 5× 4 matrix for PHP5. The black and the white entries represent elements from the

sets S≺ and S≻ correspondingly.

5. Exponential lower bound on OBDD refutations of PHPn and EPHPn

In this section we prove lower bounds on OBDD refutations of the pigeonhole formula
PHPn and related extended pigeonhole formula EPHPn. We start by proving lower bound
for PHPn and the proof of lower bound for EPHPn is a direct consequence of it.

5.1 Lower bound on OBDD refutations of PHPn

Our proof of lower bound on OBDD refutations of PHPn is based on Theorem 2 and Lemmas
1-4. Before presenting the details of a formal proof we start with an example to give some
intuition behind it.

Example 3. Let us consider PHP4. This formula can be presented with a 5× 4 matrix, as
for example in Figure 3.

Suppose one of the intermediate OBDDs is an OBDD depicted in Figure 4 and it rep-
resents

3
∧

i=2

[
4

∨

j=1

Pij ] ∧ [¬P24 ∨ ¬P34],

where P21 ≺ P31 ≺ P32 ≺ P22 ≺ P23 ≺ P33 ≺ P24 ≺ P34.
Our proofs of lower bounds on OBDD refutations are based on Theorem 2. Hence, we

need to choose set A satisfying the theorem conditions. For this we use Lemma 1. The
black and white entries represent elements of sets S≺ and S≻ correspondingly. We collect
the black entries satisfying Lemma 1 in A. The white entries satisfying Lemma 1 are used
to prove the conditions of Theorem 2.

We apply Lemma 1 and Theorem 2 to this example and collect the variables P21 and
P32 in A. According Theorem 2 the size of the OBDD is at least 2|{P21,P32}| = 4. For
this particular example the size of the OBDD is much larger. This raises an open question
whether lower bounds presented in this paper can be improved.

Lemma 5. Let B1, . . . ,Bl be an OBDD refutation of PHPn and ≺ be an order on variables.
Assume that there are two sets, a set R of rows and a set SR of entries of Matrix(PHPn)
such that the following holds:

• For each r ∈ R there are Pra, Prb ∈ SR such that Pra ∈ S≺ and Prb ∈ S≻.

• For distinct Pab, Pcd ∈ SR, b 6= d.

47



O. Tveretina et al.

P21

P31 P31

P32 P32

P22 P22

P23 P23

P33 P33

P24 P24

P34

0 1

Figure 4. An OBDD for
∧3

i=2[
∨4

j=1 Pij ] ∧ [¬P24 ∨ ¬P34], where P21 ≺ P31 ≺ P32 ≺ P22 ≺
P23 ≺ P33 ≺ P24 ≺ P34.

Then there is an i < l such that

size(Bi) ≥ 2|R|/4.

Proof. Let for 1 ≤ i ≤ l,

Ri = Cls(Bi) ∩R.

We apply Lemma 3. Thus we know that there is an i < l such that

|R|/4 ≤ |Ri| < |R|/2,

and we get

2|Ri| + 1 ≤ |R|.

Since for each C ∈ Clspos(Bi), either C ∈ Ri or C ∈ PCn and |PCn| = n+ 1, we compute

|Clspos(Bi)| ≤ (n+ 1) − (|R| − |Ri|)
≤ (n+ 1) − ((2|Ri| + 1) − |Ri|)
= n− |Ri|.

We denote Ri = Clspos(Bi)\Ri. By definition Ri ⊆ Clspos(Bi). Hence, we obtain

|Ri| = |Clspos(Bi)| − |Ri|
≤ n− 2|Ri|.
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For each row r ∈ Ri we fix an entry that is in the set S≺. We collect these elements in the
set A. For each row r ∈ Ri we also fix an entry that is in S≻ and collect these elements in
the set Y . Suppose

Rc = {j | ∃i : Pij ∈ A ∪ Y }.
Since the set of rows Ri satisfies Lemma 1, we get

|Rc| = 2|Ri|.

Let J = n− |Rc|. Then we obtain

J = n− 2|Ri|

and

|Ri| ≤ |J |.
Taking into account |Ri| ≤ |J |, for each row in Ri we fix one entry, collect these entries in
the set X. We require the following.

• for distinct Pab, Pcd ∈ X, b 6= d;

• for each Pab ∈ X, b 6∈ Rc.

We define

X≺ = S∗
≺ ∩X, and X≻ = S∗

≻ ∩X.
We apply Theorem 2 on

k = |Si
≺|,

where Si
≺ = S∗

≺ ∩ Var(Bi). Let for j = 1, . . . , k,

zj =

{

1, if zj ∈ X≺
0, otherwise

Choose distinct −→x ,−→x ′ ∈ Bk such that xj = x′j = zj for all zj 6∈ A. Then there is j′ such that
xj′ 6= x′j′ . Let −→y = (yk+1, . . . , yq), where q = |Var(Bi)|, be the vector defined for yj ∈ Y by

yj =

{

0, if yj is in the same row as xj′

1, otherwise

and for yj 6∈ Y by

yj =

{

1, if yj ∈ X≻
0, otherwise

Hence, the subset of clauses represented by Bi evaluates to xj′ for the assignment (−→x ,−→y )
and to x′j′ for the assignment (−→x ′,−→y ). Taking into account that |A| ≥ |R|/4, by Theorem
2, we obtain

size(Bi) ≥ 2|A| ≥ 2|R|/4.
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Lemma 6. Let B1, . . . , Bl be an OBDD refutation of PHPn and ≺ be a given order on
variables. Assume that there is a set Q of columns and a set SQ of entries of Matrix(PHPn)
such that the following holds:

• For each q ∈ Q there are Paq, Pbq ∈ SQ such that Paq ∈ S≺ and Pbq ∈ S≻.

• For distinct Pab, Pcd ∈ SQ, a 6= c.

Then there is an i < l such that
size(Bi) ≥ 2|Q|/4.

Proof. Let

Qc
i = {j | ∃a, b : ¬Paj ∨ ¬Pbj ∈ Cls(Bi) & Paj ∈ S≺ & Pbj ∈ S≻}.

By Lemma 4, there is an i < l such that

|Q|/4 ≤ |Qc| < |Q|/2.

For each column in Qc we fix one entry that is in the set S≺ and collect these elements
in A. For each column in Qc we also fix one entry that is in the set S≻ and collect these
elements in the set Y . Let

Qr = {i | ∃j : Pij ∈ A ∪ Y }.
Suppose

Qc = Q\Qc
i .

Then we get
Qc > |Q|/2.

For each j ∈ Qc we fix Pajj , Pbjj ∈ SQ, where Pajj ∈ S≺ and Pbjj ∈ S≻. We collect Pajj in

X≺ and we collect Pbjj in X≻ for all j ∈ Qc. We define

Qr = {a | ∃b : Pab ∈ X≺ ∪X≻}.

By Lemma 1 all entries collected in Qr are from different rows. Hence, we obtain

|Qr| = 2|Qc|.

Taking into account that Qc > |Q|/2, we get

Qr > |Q|

and since Qr is a natural number we get

Qr ≥ |Q| + 1.

We denote
Q∗ = Clspos(Bi)\Qr.

No restrictions are posed on the size of the set Clspos(Bi). Hence,

1 ≤ |Clspos(Bi)| ≤ n+ 1.
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We take into account that |Qr| ≥ |Q| + 1 and compute

|Q∗| ≤ (n+ 1) − |Qr|
≤ (n+ 1) − (|Q| + 1)

= n− |Q|.

We define J = {j |∃a : Paj ∈ Var(PHPn) & j 6∈ Q}. Then

|J | = n− |Q|.

Therefore,

|Q∗| ≤ |J |.

We take into account |Q∗| ≤ |J | and for each row r ∈ Q∗ we fix one entry and collect these
entries in the set W . We require the following:

• for distinct Pab, Pcd ∈W , b 6= d;

• for each Pab ∈W , b 6∈ Qc.

We apply Theorem 2 on

k = |Si
≺|,

where Si
≺ = S∗

≺ ∪ Var(Bi). We denote W≺ = Si
≺ ∩W and W≻ = Si

≻ ∩W . For j = 1, . . . , k
we define

zj =

{

1, if zj ∈ X≺ ∪W≺
0, otherwise

Choose −→x ,−→x ′ ∈ Bk such that −→x 6= −→x ′ and xj = x′j = zj for all zj 6∈ A. Since x 6= x′

there is a j′ such that xj′ 6= x′j′ . Let −→y = (yk+1, . . . , yq), where q = |Var(Bi)|, be the vector
defined for yj ∈ Y by

yj =

{

1, if yj is in the same column as xj′

0, otherwise

and for yj 6∈ Y by

yj =

{

1, if yj ∈ X≻ ∪W≻
0, otherwise

Hence, the subset of clauses represented by Bi evaluates to ¬xj′ for the assignment (−→x ,−→y )
and to ¬x′j′ for the assignment (−→x ′,−→y ). Taking into account that |A| ≥ |Q|/4, by Theorem
2 we obtain

size(Bi) ≥ 2|A| ≥ 2|Q|/4.

Theorem 4. For every order ≺ on the set of variables, the size of each OBDD refutation
of PHPn is 2Ω(n).
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Proof. Let n > 20, and B1, . . . ,Bl be a OBDD refutation of PHPn. We prove that for an
arbitrary total order on variables ≺ there is i ≤ l such that

size(Bi) ≥ 2n( 3

4
− 1

4

√
5)/4 > 1.14n.

Hence, the size of an arbitrary OBDD refutation on PHPn is 2Ω(n). First we apply Lemma
1 to the matrix representing PC∗

n, where PC∗
n is obtained from PCn by removing one (arbi-

trary) clause. Then one of the following holds.

(1) There is a set of ⌊n(3
4 − 1

4

√
5)⌋ rows (we denote this set by R) and there is a set of

2⌊n(3
4 − 1

4

√
5)⌋ entries (we denote this set by SR) such that the following holds:

– For each r ∈ R there are Pra, Prb ∈ SR such that Pra ∈ S≺ and Prb ∈ S≻.

– For distinct Pab, Pcd ∈ SR, b 6= d.

(2) There is a set of ⌊n(3
4 − 1

4

√
5)⌋ columns (we denote this set by Q) and there is a set

containing 2⌊n(3
4 − 1

4

√
5)⌋ entries (we denote this set by SQ) such that the following

holds:

– For each q ∈ Q there are Paq, Pbq ∈ SQ such that Paq ∈ S≺ and Pbq ∈ S≻.

– For distinct Pab, Pcd ∈ SQ, a 6= c.

We obtain by Lemma 5 in the first case

size(Bi) ≥ 2|R|/4 = 2n( 3

4
− 1

4

√
5)/4,

and by Lemma 6 in the second case

size(Bi) ≥ 2|Q|/4 = 2n( 3

4
− 1

4

√
5)/4.

From this we conclude that an arbitrary OBDD refutation of PHPn has size exponential in
n.

5.2 Lower bound on OBDD refutations of EPHPn

In this section we give a formal proof that an arbitrary OBDD refutation of EPHPn has a
lower bound exponential in n.

Theorem 5. For every order ≺ on the set of variables, the size of each OBDD refutation
of EPHPn is 2Ω(n).

First we need to prove intermediate lemmas.

Lemma 7. Let F and G be CNFs such that F ⊂ PHPn and G ⊆ ∧4
1 ECi

n. Assume that
A : Var → {true, false} is an assignment of variables such that F |=A true. Then there is an
assignment A′ : Var → {true, false} such that for each Pij ∈ Var(F ), A′(Pij) = A(Pij) and
F ∪G |=A′ true.
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Proof. It follows straightforwardly from the construction of
∧4

1 ECi
n.

Lemma 8. Let F ⊆ PHPn, G ⊆ ∧4
1 ECi

n. Then for any order on variables ≺

size(B(F ∪G,≺)) ≥ size(B(F,≺)).

Proof. Our proof is based on Theorem 1. It is sufficient to show that if B(F,≺) has k nodes
labeled with a variable Pij then B(F ∪G,≺) has at least k nodes labeled with Pij . To prove
this we need to show the following.

(1) If there is a node in B(F,≺) labeled with a variable Pij then there is a corresponding
node in B(F ∪G,≺) labeled with Pij .

(2) For two distinct nodes in B(F,≺) labeled with a variable Pij there are two distinct
nodes in B(F ∪G) labeled with Pij .

Now we prove the above statements.

(1) Suppose n1 ∈ B(F,≺) is labeled with a variable Pij . Then the sub-OBDDs rooted at
the left child and the right child of the node are not isomorphic and therefore cannot
be merged. It follows from Lemma 7 that there is a node n2 ∈ B(F ∪ G,≺) labeled
with Pij such that the sub-OBDDs rooted at the left child and the right child of this
node are not isomorphic and therefore cannot be merged. Hence, there is a node in
B(F ∪G,≺) labeled with a variable Pij .

(2) Let n1, n
′
1 ∈ B(F,≺) be distinct nodes labeled with a variable Pij . Then the sub-

OBDDs rooted either at the left children of the nodes or at the right children of the
nodes (or both) are not isomorphic and therefore cannot be merged. Let us assume
that the sub-OBDDs that are not isomprphic rooted at the left children of the nodes.
It follows from Lemma 7 that there are nodes n2, n

′
2 ∈ B(F ∪ G,≺) labelled with a

variable Pij such that the sub-OBDDs rooted at the left children of these node are
not isomorphic and therefore cannot be merged. We conclude that there are distinct
nodes n2, n

′
2 ∈ B(F ∪G,≺) labeled with a variable Pij .

By Theorem 1, we conclude that size(B(F ∪G,≺)) ≥ size(B(F,≺)).

Now we are ready to give a proof of Theorem 5.

Proof of Theorem 5. Let n > 20, and B1, . . . ,Bl be an OBDD refutation of EPHPn. Similar
to the proof of Theorem 4 we show that for an arbitrary total order on variables ≺ there is
an i < l such that

size(Bi) ≥ 2n( 3

4
− 1

4

√
5)/4.

We apply Lemma 1 to the matrix representing PC∗
n, and then one of the following holds.

(1) There is a set of ⌊n(3
4 − 1

4

√
5)⌋ rows (we denote this set by R) and there is a set of

2⌊n(3
4 − 1

4

√
5)⌋ entries (we denote this set by SR) such that the following holds:

– For each r ∈ R there are Pra, Prb ∈ SR such that Pra ∈ S≺ and Prb ∈ S≻.
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– For distinct Pab, Pcd ∈ SR, b 6= d.

(2) There is a set of ⌊n(3
4 − 1

4

√
5)⌋ columns (we denote this set by Q) and there is a set

containing 2⌊n(3
4 − 1

4

√
5)⌋ entries (we denote this set by SQ) such that the following

holds:

– For each q ∈ Q there are Paq, Pbq ∈ SQ such that Paq ∈ S≺ and Pbq ∈ S≻.

– For distinct Pab, Pcd ∈ SQ, a 6= c.

For each i < l we denote by B∗
i the OBDD representing Cls(Bi) ∩ Cls(PHPn) with the same

order on variables ≺. We conclude by Lemmas 5 and 8 in case (1) that there is an i < l
such that

size(Bi) ≥ size(B∗
i ) ≥ 2|R|/4 = 2n( 3

4
− 1

4

√
5)/4,

and by Lemmas 6 and 8 in case (2) that there is an i < l such that

size(Bi) ≥ size(B∗
i ) ≥ 2|Q|/4 = 2n( 3

4
− 1

4

√
5)/4.

Hence, for an arbitrary OBDD refutation of EPHPn there is an intermediate OBDD with
size exponential in n.

6. Unrestricted OBDDs do not simulate resolution polynomially

The above observations establish that unrestricted OBDD proof system without existen-
tial quantification cannot simulate unrestricted resolution proofs polynomially. In particu-
lar, there are contradictory CNFs for which there is a resolution refutation exponentially
stronger than any OBDD refutation containing only two rules, Axiom and Join.

Theorem 6. There is a sequence of contradictory CNFs ϕi, i > 0, of size O(N3/4) for
which there is a resolution refutation of size O(N) and an arbitrary OBDD refutation has

size 2Ω(N3/4).

Proof. Let ϕi be EPHPi and N = n4/3. Then the size of ϕi is O(N3/4) and by Theorems 3
and 4 there is a resolution refutation of size O(N) and an arbitrary OBDD refutation has

size 2Ω(N3/4).

7. Experiments

To give additional, empirical evidence for our theoretical results, we made experiments with
a SAT solver and a BDD package. We used MiniSAT 2.0 and the BDD package buddy 2.4
for our tests1..

MiniSAT implements a CDCL (conflict driven clause learning) algorithm, which is a
modification of the well-known DPLL method. The runs of CDCL solvers directly cor-
respond to resolution proofs. Buddy is a BDD package that provides the usual Boolean
operations on BDDs.

1. MiniSAT is available at http://minisat.se, buddy can be downloaded from
http://buddy.sourceforge.net.
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Figure 5. Run-time comparison of a DPLL-based SAT solver (MiniSAT 2.0) and an OBDD

package (buddy 2.4) on PHPn and EPHPn formulas.

We ran both MiniSAT and buddy on the PHPn and EPHPn formulas, using a machine
equipped with an Intel Xeon CPU running at 2.66 GHz and 4 GB RAM under Ubuntu
Linux. We measured run-times for values of n ranging between 4 and 16, using a run-time
limit of ten hours.

The results are shown in Fig. 5, where the run-times (in seconds, on a logarithmic scale)
are plotted against parameter n. Regarding BDDs, it turned out that adding the extension
clauses (thus switching from PHP to EPHP) lead to dramatically decreased performance2..
This is in accordance with Lemma 8, which claims that adding extension clauses to a subset
of the pigeon hole clauses increases the size of the BDD. Regarding MiniSAT, adding the
extension clauses did not increase performance, although a short (polynomial) resolution
proof for EPHPn exists. In principle, a CDCL SAT solver, such as MiniSAT, can polyno-
mially simulate any (general) resolution proof—given the right heuristics for restarts and
branching [10]. However, our experiments indicate that the standard heuristic of MiniSAT
is not able to find the existing short proof.

2. We have chosen a fixed variable ordering with Pi,j ≺ Pi′,j′ iff (i ≺ i′) ∨ (i = i′ ∧ j ≺ j′). Clauses have
been added in the following order: first negative clauses, then extension clauses, then positive clauses
(as this has shown best performance).
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8. Conclusions and future research

One of the results of the paper is a class of CNFs that for infinitely many values of N
has a resolution refutation of size O(N), and an arbitrary OBDD Apply refutation of these

formulas has size at least 2Ω(N3/4). This extends earlier work on comparison of OBDD-based
proof systems and resolution-based systems in the following ways.

(1) An exponential separation between a particular OBDD proof system and resolution
is presented in [6]. The problem whether there are CNFs of size O(N) that have
resolution refutation of size polynomial in N and an arbitrary refutation for a more
efficient OBDD Apply proof system, like for example the one in [20], has size at least
exponential in N was open in [6]. In comparison with [6], we considered a stronger
OBDD proof system that allows clauses to be proceed in an arbitrary order. In this
paper we solved the above open problem by presenting a class of formulas that are
easy for resolution and hard for an arbitrary OBDD Apply method.

(2) We have improved from 1.025Ω(n) to 1.14Ω(n) lower bound on OBDD refutations of
PHPn presented in [16] .

(2) The main open question in [12] is to improve lower bound on arbitrary OBDD refu-

tations by increasing the constant in the Ω() of the 2Ω( 7
√

N/ ln N). This constant is
extremely small and it is below 2−500. We considered a family of CNFs that have a
higher lower bound on OBDD refutations. But the OBDD proof system we considered
is weaker than the one in [12].

(3) A lot of research has been done on exponential lower bounds on the sizes of OBDDs
for Boolean functions. But most of the methods to obtain such lower bounds are
based on one-way communication complexity and the results from monotone circuits
complexity. Clearly, solving structured combinatorial problems in style of Ramsey
Theory may lead to new approaches for proving lower bounds.

Still some interesting questions related to comparison of OBDD-based and resolution-
based proof systems remain unsolved. It is shown in [6] that biconditional formulas have
short OBDD proofs and after transforming them into CNFs they require exponentially long
resolution proofs. But OBDD proofs of the transformed formulas need exponential size
OBDD proofs too.

For OBDD methods that allow existential quantification we know that there are for-
mulas that have polynomial size OBDD refutations [3], but resolution refutations of only
exponential size, i.e. the OBDD proof system with existential quantification is stronger
than resolution. An open question is whether the OBDD Apply method can be simulated
by resolution polynomially for formulas in CNF.

Another open problem is to give a proof of the tight constant in Lemma 1. The constant
c can be improved, and we conjecture that the lemma also holds for c = 1 − 1

2

√
2 ≈ 0.293.

Although, it is very easy to give an intuitive explanation why it holds, a precise proof is still
needed. Such a proof would result in a better lower bound on OBDD refutations presented
in this paper.
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