
Journal on Satisfiability, Boolean Modeling and Computation 6 (2009) 141-164

IOS Press

Algorithms and Complexity Results

for Input and Unit Resolution

Alexander Hertel ∗ ahertel@cs.toronto.edu

Alasdair Urquhart urquhart@cs.toronto.edu

Department of Computer Science

University of Toronto

Canada

Abstract

In this paper we explore the complexity of various problems pertaining to Input Res-
olution. In the first part of this paper we survey a number of earlier results for Input
Resolution, showing the tractability of various aspects of this proof system. In the second
part, we prove the PSPACE-Completeness of both Input Resolution total space and width,
as well as a massive size/total space tradeoff for Input Resolution. These results suggest
that although Input Resolution is completely tractable with respect to certain complexity
measures such as refutation size, when quantities such as space and width are considered,
the system shows a surprising level of difficulty.

Keywords: satisfiability, complexity, resolution, input resolution

Submitted November 2007; revised June 2008; published May 2009

1. Introduction and Motivation

The Resolution (RES) proof system has been studied extensively, and is understood quite
well. Because it forms the basis of most automated theorem proving algorithms, there is a
strong practical motivation for understanding its limitations. When devising SAT-solving
algorithms, there is always a tension between proof size and proof search; more powerful
proof systems have shorter proofs, but they are much harder to find, making it difficult to
design proof search algorithms. For this reason, virtually all automated theorem provers
implement weak proof systems such as RES rather than more powerful systems such as
Frege. However, automated proof search is too complicated even in RES, so researchers
have further developed ‘Resolution refinements’, restricted forms of Resolution aimed at
simplifying proof search at the possible expense of increasing minimum proof size. Common
refinements include Tree Resolution/DPLL and clause learning, which have both been very
successful when used as the basis of SAT-solving algorithms. Of course, in some cases a RES

refutation of minimal size may be of length exponential in the size of the input clauses, as
follows from the basic results on the size of RES proofs, beginning with the result of Armin
Haken [16]; the reader is referred to the textbook by Clote and Kranakis [9] for background
in this area. However, in spite of these complexity results, we can nevertheless take as a

∗ The authors gratefully acknowledge NSERC and the University of Toronto Department of Computer
Science for supporting this research.

1574–0617 c© 2009 IOS Press, Delft University of Technology and the authors.

A. Hertel and A. Urquhart

goal of automated theorem proving the development of algorithms capable of finding proofs
that are only polynomially larger than the optimal. Proof systems in which this is possible
are said to be automatizable.

One particularly extreme refinement is Input Resolution (I-RES), in which we require
that at least one of the inputs to each application of the resolution rule be an initial, or
input clause. This clearly restricts the search space that any I-RES algorithm would have
to deal with, but the cost is very high, since I-RES is not even complete. However, despite
its simplicity and obvious limitations, we shall show that the I-RES proof system is more
interesting than it may first appear. It is important both theoretically as well as practically
because of a theorem by Chang [8] showing that a formula has an I-RES refutation if and
only if it has a Unit Resolution (U-RES) refutation. This in part motivates the study of
I-RES, since U-RES is an important subroutine found in many areas of computer science,
not least of all in automated theorem proving and SAT-solving.

In this paper we prove a number of complexity results for I-RES including P-Completeness,
NP-Completeness, PSPACE-Completeness, and exponential tradeoff results. In addition,
we show that I-RES is automatizable, and optimally automatizable on minimally unsatis-
fiable formulas. The first part of this paper contains straightforward results dedicated to
investigating the more tractable aspects of I-RES, whereas the second half investigates its
more complex characteristics. Preliminary versions of the results in this paper can be found
in [18].

Specialized definitions and concepts that we shall require can be found in Section 2.
Beyond these definitions, we assume that the reader is familiar with basic proof complexity
as well as general complexity theory, and use the textbooks by Clote and Kranakis [9] and
Papadimitriou [22] as our standard references.

Our results start in Section 3, where we show how formulas with I-RES refutations (IRES-
UNSAT) are related to Horn formulas, and minimally unsatisfiable formulas that have
I-RES refutations (MU -IRES-UNSAT) are related to the minimally unsatisfiable formulas
in MU(1).

Next, in Section 4, we prove a number of tractability results for I-RES. For example, we
combine some previous results to show that IRES-UNSAT is P-Complete. We also show
that the problem of determining if a formula is minimally unsatisfiable and has an I-RES

refutation, as well as the problem of determining if a formula is minimally unsatisfiable and
has an I-RES refutation of size at most k are both in P. These results lead us to Section 5,
in which we develop algorithms for automatizing I-RES and automatizing I-RES optimally
on minimally unsatisfiable formulas.

This brings us to the second half of our paper and the more complicated aspects of
I-RES. In Section 6, we note that the problem of approximating optimal I-RES and U-RES

refutation size to within a linear factor for IRES-UNSAT is NP-Hard and that given a
formula F and integer k, the problem of determining whether F has an I-RES refutation of
size at most k is NP-Complete. This stands in contrast with the tractability of the same
problem for MU -IRES-UNSAT from the previous section.

Next, in Section 7 we prove an equivalence between I-RES total space and pebbling,
followed immediately by its implications for complexity theory. We show that for any binary
DAG G, its pebbling number is off by exactly a constant from the total space required by
any I-RES proof of a slight modification to the formula Peb(G). This equivalence allows

142

Algorithms and Complexity Results for Input and Unit Resolution

us to prove our main results, namely the PSPACE-Completeness of the I-RES total space
problem, by reducing from the pebbling game on DAGs, itself shown to be PSPACE-
Complete by Gilbert, Lengauer, and Tarjan [15]. These results show that although with
respect to some complexity measures, I-RES is very simple, with respect to others it is
extremely complex.

Finally, in Section 8 we prove two interesting corollaries to the equivalence results in the
previous section. The first is the PSPACE-Completeness of I-RES derivation width. How-
ever, the most interesting corollary that we prove is an extreme (and optimal) size/total
space tradeoff for I-RES; we show that there exists an infinite family of formulas whose
I-RES proofs with the minimum required total space have size 2Ω(n), where n is the number
of distinct variables. However, if only one single additional unit of total space is permitted,
then the size drops to only O(n), once again contrasting strongly with the apparent sim-
plicity of I-RES as suggested by the earlier tractability and automatizability results. Apart
from being a massive size/space tradeoff, this is also a tradeoff similar to those explored by
Ben-Sasson in [6] because it shows that for certain formulas, it is not possible to optimize
both I-RES size and space at the same time.

2. Definitions

2.1 Resolution Proof, Size, and Width

A literal is a propositional variable x or its negation ¬x; we assume the identification
¬¬x = x. A clause is a set of literals. The notions of size and width can be formalized
using a fairly simple definition of what constitutes a RES proof, whereas the notion of space
requires a slightly more complicated definition:

Definition 2.1 (RES Proof). If C ∪{x} and D∪{¬x} are clauses, then the resolution rule
allows us to derive the clause C ∪D by resolving on the variable x. If F is a set of clauses,
then the sequence of clauses π = C1, C2, ..., Ck is a RES proof of Ck from F if each Ci in π
appears in F (i.e. is an input, or initial clause) or follows from two previous clauses in π
by the resolution rule.

If the graph underlying the structure of π is a tree (i.e. each clause in π is a premise
for at most one application of the resolution rule), then the proof is said to be a Tree-Like
Resolution (T-RES) proof. Otherwise it is said to be DAG-Like. A RES refutation of F is
a RES proof from F in which Ck = ∅ (the empty clause).

In a RES proof (considered as a sequence of clauses), the first two clauses resolved on
are called the top clauses of π. The final result of the proof, Ck, is called the goal clause.

Definition 2.2 (Resolution Size and Width). If a RES proof π of formula F contains k
clauses, then it is said to have size k. The width of a clause C refers to how many literals it
contains, and is denoted w(C). The width of a formula F is the width of the widest clause
in F , and is denoted w(F). The width of a RES refutation π, w(π), is equal to the width
of its widest clause. Finally, the minimum width of any RES refutation of F is denoted
w(F ⊢RES ∅).

143

A. Hertel and A. Urquhart

2.2 Resolution Space

The definition of the space measure that we shall be discussing requires an alternative
definition of RES proof that depends on the notion of configuration. This new definition
of a RES proof was introduced independently by Esteban and Torán [13] and Alekhnovich,
Ben-Sasson, Razborov and Wigderson [2]; Esteban and Torán’s definition is a modification
of an earlier definition due to Kleine Büning and Lettmann [7]. For more information on
the history of proof complexity space research as well as several space results related to this
paper, please refer to [18].

Definition 2.3 (Configuration-Style RES Proof). A configuration C is a set of clauses. If
F is a set of clauses, then the sequence of configurations π = C0,C1, ...,Ck is a RES proof
of C from F if C0 = ∅, C ∈ Ck, and for each i < k, Ci+1 is obtained from Ci by one of the
following rules:

1. Delete one or more of the clauses in Ci;

2. Add the resolvent of two clauses of Ci;

3. Add one or more of the clauses of F (initial clauses).

In addition, π is said to be an I-RES proof if at least one input to every instance of the
resolution rule is an input clause, and it is said to be an I-RES-W− (I-RES with negative
weakening) proof if we add the following rule:

4. Replace one of the clauses C ∈ Ci with the clause C ∪D, where D is a set of negative
literals.

Finally, if at least one input to every instance of the resolution rule is a unit clause (i.e. it
contains just one literal), then we say that π is a Unit Resolution (U-RES) proof, and if
∅ ∈ Ck, then π is a refutation.

The next definition is intended to capture the idea that a RES proof might be very long
(perhaps exponential in the size of the input clauses), but that it could be presented in a
convincing way using only a small amount of space. The reader should imagine that each
configuration in Definition 2.3 represents a set of clauses written on a blackboard, where
the prover can both write and erase clauses. Our terminology differs from that introduced
by Ben-Sasson in [6]; what he describes as ‘variable space’, we refer to as ‘total space.’

Definition 2.4 (Total Space). Let F be a set of clauses and π be a configuration-style RES

proof of clause C from F . The total space of a configuration C in π, denoted TS(C), is
defined as

∑
C∈Cw(C). The total space of π, denoted TS(π) is the maximum TS(C) over

all C in π. Finally, the total space of deriving C from F , denoted TS(F ⊢RES C), is the
minimum TS(π) over all RES proofs π of C from F .

2.3 Pebbling Games on DAGs

The investigation of RES space is closely associated with the well-known pebbling game and
pebbling number of a DAG, originally explored in by Cook and Sethi [11, 10] as a means
of investigating bounds on storage requirements.

144

Algorithms and Complexity Results for Input and Unit Resolution

Definition 2.5 (Pebbling Game on DAGs). The pebbling game is a single-player game
played on a DAG G in which the goal is to place a pebble on a designated target node of
G; we shall assume in what follows that the target is always a unique node of out-degree 0.
Vertices of in-degree 0 are source nodes.

A DAG in which all non-source nodes have in-degree 2 is called a ‘binary DAG’. In the
initial position of the game, there are no pebbles on the DAG. Play then proceeds according
to one of the following moves:

1. The player can place a pebble on an empty source node.

2. The player may remove one or more pebbles from nodes.

3. For any unpebbled node v, if all of v’s immediate predecessors have pebbles on them,
then the player may place a pebble on v. Alternatively, the player may choose to slide
a pebble from u to v, where u is a predecessor of v.

4. The game ends once the target node has a pebble on it.

Obviously, the player can complete the game simply by placing pebbles successively on
all of G’s nodes. The game becomes considerably more difficult if the aim is to use as few
pebbles as possible.

Definition 2.6 (Pebbling Numbers of DAGs). The pebbling number of G is the minimum
number of total pebbles that the player needs in order to complete the pebbling game on G.

The difficulty of determining the pebbling number of a DAG is emphasized by the
following result of Gilbert, Lengauer and Tarjan; this is the basic complexity result on
which our main result depends:

Theorem 2.7 ([15]). Given a DAG G and an integer k, the problem of determining if G
can be pebbled with k pebbles is PSPACE-Complete.

2.4 Pebbling Contradictions

A number of important families of unsatisfiable formulas called the ‘pebbling contradictions’
are based on the various different forms of the pebbling game. Eli Ben-Sasson [6] provides
a brief history of how these formulas have been used in the literature.

Definition 2.8 (One-Colour Pebbling Contradictions for DAGs). The one-colour pebbling
contradiction of a DAG G, denoted Peb(G), is a formula constructed from G, consisting of
the following clauses:

1. For each source node s, the singleton clause {s}.

2. For each node y0 of degree d with immediate predecessors y1, y2, ..., yd, the propagation
clause {¬y1,¬y2, ...,¬yd, y0}.

3. For the target node t, the singleton clause {¬t}.

145

A. Hertel and A. Urquhart

Each variable x can be interpreted as meaning that the vertex x can be pebbled according
to the rules of the pebbling game. This interpretation makes it easy to see that for any
DAG G, Peb(G) is unsatisfiable; by imitating the pebbling rules, we can successively deduce
all of the one-literal clauses corresponding to the nodes of G, including the target node t,
contradicting the initial clause {¬t}.

3. Input Resolution, Horn Formulas, and MU Formulas

IRES-UNSAT is defined to be the set of all unsatisfiable formulas that have I-RES refuta-
tions, and URES-UNSAT the set of all unsatisfiable formulas that have U-RES refutations.
A formula F is said to be Horn if each of its clauses contains at most one positive literal.
We will refer to the set of all satisfiable Horn formulas as HORN-SAT, and the set of all
unsatisfiable Horn formulas as HORN-UNSAT.

The tree underlying an I-RES refutation has a restricted form that we call a herringbone.
These are binary trees of depth d > 0 in which there are exactly two branches (paths from
the root to a leaf) of depth d, and exactly one branch for each depth less than d; for
examples, see Figures 3 and 4. As a degenerate case, we also consider the tree with a single
node as a herringbone.

A formula F is minimally unsatisfiable if it is unsatisfiable, but the same cannot be
said of any proper subset of its clauses. These minimally unsatisfiable formulas comprise
the set MU . We define MU(k) as the set of all minimally unsatisfiable formulas on n
variables that contain exactly n + k clauses. In addition, MU -IRES-UNSAT contains all
of the minimally unsatisfiable formulas in IRES-UNSAT, and MU -HORN-UNSAT contains
all of the minimally unsatisfiable formulas in HORN-UNSAT.

The pebbling formula Peb(G) is in HORN-UNSAT, and in MU -HORN-UNSAT for any
DAG G in which there is a unique sink node reachable by a directed path from any node
in G [18].

3.1 Input Resolution and Unit Resolution

It is well known that every formula in HORN-UNSAT has a unit refutation [17]. However,
it is easy to see that there are minimally unsatisfiable formulas which have U-RES and I-RES

refutations, but are not in HORN-UNSAT; for example, the formula F = (x∨y)∧(¬x)∧(¬y)
is not Horn but has an I-RES refutation. That being said, we can characterize formulas in
IRES-UNSAT by a natural generalization of the class HORN-UNSAT.

Define the class RENAMEABLE-HORN-UNSAT to be the family of unsatisfiable for-
mulas that are derived from Horn formulas by replacing a literal by its complement. For
example, the formula F in the preceding paragraph is in RENAMEABLE-HORN-UNSAT,
because it can be converted into a formula in HORN-UNSAT by the renaming all instances
of x and y to their opposite literals.

Theorem 3.1. Let F be a set of clauses.

1. F has an I-RES refutation if and only if it has a U-RES refutation, which means that
IRES-UNSAT = URES-UNSAT.

146

Algorithms and Complexity Results for Input and Unit Resolution

2. If F is minimally unsatisfiable, then F has an input refutation (equivalently, a unit
refutation) if and only if F is in RENAMEABLE-HORN-UNSAT.

Proof: The first part of the theorem was proved by C.L. Chang [8]. The second part is a
result of Henschen and Wos [17]. 2

Although the preceding theorem shows that the U-RES and I-RES rules are equivalent
as refutation methods, they are not equally efficient, as shown by the next result:

Theorem 3.2. There is a linear separation between the I-RES and U-RES proof systems;
more specifically,

1. For any formula F ∈ IRES-UNSAT there exists an I-RES refutation of F with size
at most 2n + 1, where n is the number of distinct variables in F .

2. There exists an infinite family of formulas FU ⊆ IRES-UNSAT such that each Fn ∈
FU requires U-RES refutations of size at least (n2 + 3n + 2)/2, where n is the
number of distinct variables in Fn.

Proof: (Part 1) The proof is by induction on n. For n = 0, F = {∅}, which has an I-RES

refutation containing 2n + 1 = 1 clauses.

Suppose that our statement is true for n − 1, and that F is a formula in IRES-UNSAT
with n variables. Since F has a U-RES refutation, it must contain a unit clause {l}. Restrict
F by setting l to True to produce the formula F ↾l=True, which has n − 1 variables, and
also has a U-RES refutation. Our induction hypothesis therefore applies, so F ↾l=True has
an I-RES refutation π′ of size ≤ 2(n − 1) + 1 = 2n − 1. Lifting the restriction on F and all
corresponding clauses in π′ yields an I-RES derivation π of the empty clause or the clause
{¬l}, where π has size at most 2n− 1. If π is a derivation of the empty clause, then we are
done. In the case where π proves {¬l}, recall that F contains the input clause {l}, so simply
resolve with this in order to produce the empty clause. In either case we have produced an
I-RES refutation containing ≤ 2n − 1 + 2 = 2n + 1 clauses, as required.

(Part 2): The family Fn is defined inductively as follows:

1. F0 = {∅};

2. Fn+1 = {C ∪ {¬xn+1} | C ∈ Fn} ∪ {{xn+1}}.

By construction, Fn contains exactly n + 1 clauses and each variable xi has exactly
one positive occurrence, i negative occurrences, and deriving the empty clause requires all
variables in the formula to be eliminated. Eliminating each xi requires exactly i resolutions,
although these resolution steps are only possible after the positive unit clause {xi} has been
derived, since we are dealing with U-RES. Fn therefore requires n+(n−1)+(n−2)+ ...+1
applications of the resolution rule, which sums to exactly n(n + 1)/2 clauses derived. In
addition, each of the n+1 initial clauses must be present in the proof. Any U-RES refutation
of Fn therefore contains at least (n2 + 3n + 2)/2 clauses. 2

147

A. Hertel and A. Urquhart

3.2 The Relationship Between Input Resolution and MU Formulas

Having established the relationship between IRES-UNSAT and Horn formulas in the previ-
ous section, we now investigate the relationship between IRES-UNSAT and MU(k). In this
section we will prove exact bounds on the size of I-RES proofs, and relate Horn Resolution,
I-RES, and MU(1). Finally, we will prove some facts about MU(1), MU -IRES-UNSAT,
and unit propagation which will be useful in later sections.

3.2.1 Exact Bounds on the Size of Input Resolution Refutations

The smallest k for which MU(k) is interesting is k = 1. This is because a lower bound on
the number of clauses in minimally unsatisfiable formulas is known, showing that the set
MU(0) is empty:

Lemma 3.3 ([1]). Any minimally unsatisfiable formula on n variables contains at least
n + 1 clauses.

This lower bound also has a useful corollary:

Corollary 3.4. Any formula with fewer than n clauses is not minimally unsatisfiable,
and any unsatisfiable formula F containing exactly n + 1 clauses is minimally unsatisfiable
(i.e. F ∈ MU(1)).

In addition, Lemma 3.3 helps us to prove bounds on the size of refutations for minimally
unsatisfiable formulas which hold for all forms of Resolution:

Corollary 3.5. For any minimally unsatisfiable formula F with n variables, any refutation
of F in any form of Resolution contains at least 2n + 1 clauses.

Proof: This lower bound is easy to see: Since F is minimally unsatisfiable, each of its
clauses must be used in any refutation of F . Therefore by Lemma 3.3, any refutation of F
contains at least n + 1 clauses. However, since every variable in F is introduced into the
proof at some point and must be eliminated, we need to derive at least n more clauses (one
for each variable elimination), bringing our total to at least 2n + 1. 2

Together with the upper bound from Theorem 3.2, this gives us tight bounds on the
size of I-RES refutations for MU -IRES-UNSAT:

Corollary 3.6. For any formula F ∈ MU -IRES-UNSAT the size of every I-RES refutation
of F is at least 2n + 1, where n is the number of distinct variables in F . In addition, there
exists an I-RES refutation of F with size at most 2n + 1.

Proof: The lower bound follows from Corollary 3.5, and the upper bound from Theorem
3.2. 2

3.2.2 Horn Resolution, Input Resolution and MU(1)

The previous results allow us to relate MU -IRES-UNSAT to MU(1):

Theorem 3.7. Any minimally unsatisfiable formula on n variables which has an I-RES

refutation contains exactly n + 1 clauses, so that MU -IRES-UNSAT ⊂ MU(1).

148

Algorithms and Complexity Results for Input and Unit Resolution

Proof: If F is minimally unsatisfiable, and has an I-RES refutation, then by Theorem 3.2,
it has an I-RES refutation with 2n + 1 clauses. Of these, n are derived by resolution, so F
contains at most n + 1 clauses. 2

In [12], Davydov, Davydova and Kleine-Büning prove a version of Theorem 3.7; their
proof is for U-RES rather than I-RES, but Theorem 3.1 shows the equivalence of the results.
It is easy to see that the set inclusion in Theorem 3.7 is proper because there exist formulas
such as F = (x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (¬x ∨ ¬z) in MU(1) which do not have I-RES

refutations.
Combining Theorems 3.1 and 3.7 allows us to produce a simple set diagram that shows

the exact relationship between IRES-UNSAT, MU(1), MU -IRES-UNSAT, HORN-UNSAT,
and MU -HORN-UNSAT. This diagram is shown below in Figure 1.

IRES-UNSAT

MU-IRES-UNSAT

UNSAT
MU-HORN-

HORN-UNSAT

MU(1)

Figure 1. The Relationship Between I-RES, Horn Formulas, and MU(1) Formulas

The exact relationship between I-RES and MU(1) can be illuminated by using a striking
characterization of MU(1) due to Oliver Kullmann [20]. Let T be an ordered binary tree
(that is to say, the leaves of T are ordered from left to right). Label the interior nodes of T
with distinct variables. Now associate a clause Cf with each leaf f in T as follows: Trace
down the path from root to f , and for each interior node labeled with a variable x that
occurs on the path, include x if the path below the node goes to the left, otherwise include
¬x. Define S(T) to be the conjunction of all the clauses Cf , where f is a leaf in T ; it is
easy to see that S(T) is in MU(1). As an example of this construction, the example given
immediately after Theorem 3.7 can be derived from the complete binary tree of depth 2 by
an appropriate labeling.

These examples have already occurred in the proof complexity literature. Cook pro-
posed the formulas S(T) based on complete binary trees as examples separating analytic
tableaux from T-RES [11]; the general construction appears in published versions of Cook’s
result [24], [5].

The examples S(T), however, do not encompass all of MU(1). They constitute the
saturated formulas in MU(1); these formulas have the property that no new literal can
be added to a clause without making the formula satisfiable. The construction has to be
generalized to produce a characterization of MU(1).

149

A. Hertel and A. Urquhart

Definition 3.8. Let T be an ordered binary tree with the interior nodes labeled with distinct
variables. A CNF formula F in these variables is derived from T if it satisfies the following
conditions:

1. Each clause in F is associated with a leaf f of T , and is a subset of Cf .

2. For every interior node in T labeled with a variable x, the left subtree below x has a
leaf with an associated clause containing x, and the right subtree below x has a leaf
with an associated clause containing ¬x.

Kullmann’s elegant result shows that this construction produces all formulas in MU(1).
An earlier related characterization was given by Davydov, Davydova and Kleine-Büning
in [12]; they show that MU(1) consists exactly of the formulas which can be encoded
as ‘basic’ matrices. A similar matrix-based characterization of MU -IRES-UNSAT can be
found in [18].

Theorem 3.9 ([20]). The formulas in MU(1) are exactly those derived from labeled binary
trees.

We can now single out the formulas in MU -IRES-UNSAT by choosing an appropriate
family of trees.

Theorem 3.10. The formulas in MU -IRES-UNSAT are exactly those that are based on
herringbones.

Proof: By Theorem 3.2, if F is a formula in MU -IRES-UNSAT, then it has an input
refutation in which each variable is resolved on exactly once. The tree underlying the
refutation is a herringbone. Label the interior nodes of the tree with the variable resolved
on at that step in the refutation. Then it is easy to see that F is derived from the resulting
labeled tree. 2

The preceding characterization also sheds some light on the characterization of MU -
IRES-UNSAT in Theorem 3.1 due to Henschen and Wos. Horn formulas are exactly those
derived from herringbones ordered in such a way that the longest branch occurs on the far
right; the renaming operation corresponds to the interchange of left and right subtrees.

3.2.3 MU(1), MU-IRES-UNSAT, and Unit Propagation

We now prove that both MU(1) and MU -IRES-UNSAT are closed under unit propagation,
a fact that will be useful in subsequent sections.

Lemma 3.11. For any formula F , if F contains two clauses C1 and C2 such that C1 (C2,
then F is not minimally unsatisfiable.

Proof: If F is unsatisfiable, and C1 (C2 are both clauses in F , then F − {C2} is also
unsatisfiable, since any assignment satisfying C1 satisfies C2, so F cannot be minimally
unsatisfiable. 2

We can use this lemma to prove that MU(1) is closed under unit propagation:

150

Algorithms and Complexity Results for Input and Unit Resolution

Lemma 3.12. For any formula F ∈ MU(1), if F contains a unit clause {l} for some literal
l, then F ↾l=True ∈ MU(1).

Proof: If F ∈ MU(1) contains a unit clause {l} for some literal l, then l does not occur
anywhere else in F by Lemma 3.11. Therefore F ↾l=True contains n−1 variables and exactly
n clauses, which means that it is minimally unsatisfiable by Corollary 3.4, so F ↾l=True

∈ MU(1), as required. 2

Combining the previous lemma with Theorem 3.7 yields the following corollary which
shows that MU -IRES-UNSAT is closed under unit propagation:

Corollary 3.13. For any formula F ∈ MU -IRES-UNSAT, if F contains a unit clause {l}
for some literal l, then F ↾l=True ∈ MU -IRES-UNSAT.

4. Tractable Aspects of Input Resolution

In the previous section we related various languages such as HORN-UNSAT, MU(1), and
MU -IRES-UNSAT to IRES-UNSAT. We shall use these results to explore the complexities
of some of the tractable aspects of the I-RES proof system. First we shall review some
previous results showing that HORN-UNSAT and IRES-UNSAT are P-Complete, and that
MU(1) ∈ P. Following this we show that MU -IRES-UNSAT ∈ P and that the size
problem for MU -IRES-UNSAT is in P.

4.1 Complexities of HORN-UNSAT, IRES-UNSAT, and MU(1)

We now review some previous results about the tractability of HORN-UNSAT, IRES-
UNSAT, and MU(1). For example, the complexity of HORN-UNSAT is well-understood:

Theorem 4.1 ([22], p.176). The problem of determining whether or not a given Horn for-
mula is satisfiable (i.e. of deciding the language HORN-SAT) is P-Complete; hence HORN-
UNSAT is P-Complete.

Jones and Laaser proved that URES-UNSAT is P-Complete.

Theorem 4.2 ([19]). The problem of determining whether or not a given formula has a
U-RES refutation (i.e. of deciding the language URES-UNSAT) is P-Complete.

Since we know from Theorem 3.1 that IRES-UNSAT = URES-UNSAT , this imme-
diately implies the P-Completeness of IRES-UNSAT :

Corollary 4.3. IRES-UNSAT is P-Complete, and furthermore there exists an O(n · m)
algorithm that takes as input a formula F and determines whether or not it has an U-RES

(and therefore I-RES) refutation, where n is the number of distinct variables in F , and m
is the number of clauses.

Proof: Showing that IRES-UNSAT is P-Complete is trivial, since IRES-UNSAT =
URES-UNSAT , which is P-Complete by Theorem 4.2. It can be solved by the following
unit propagation algorithm: Repeatedly pick a unit clause and resolve it with every other
clause possible. Since U-RES is closed under restriction, this algorithm is clearly correct,

151

A. Hertel and A. Urquhart

will take at most O(n · m) time in total, and will either yield the empty clause, so that
it has a U-RES refutation (and therefore I-RES refutation by Theorem 3.1), or a formula
where no more U-RES steps are possible, so that no unit refutation exists. 2

In addition, much is also known about the complexity of MU(k):

Theorem 4.4 ([12]). MU(1) ∈ P and there exists an O(n2) algorithm which decides if a
formula F is in MU(1), where n is the number of distinct variables in F .

The preceding theorem has been generalized to all of MU(k) by Fleischner, Kullmann
and Szeider; this is the deepest result to date on the structure of MU .

Theorem 4.5 ([20],[14]). For fixed k > 0, there is a polynomial-time algorithm to determine
whether or not a CNF formula belongs to MU(k).

4.2 The Tractability of MU-IRES-UNSAT

Having proved that IRES-UNSAT is P-Complete, we now show that MU -IRES-UNSAT ∈
P by counting clauses:

Corollary 4.6. MU -IRES-UNSAT ∈ P and has an O(n · m) algorithm, where n is the
number of distinct variables and m is the number of clauses.

Proof: Given a formula F , we determine if F ∈ MU -IRES-UNSAT. By Corollary 3.4 we
know that any formula containing fewer than n variables is not minimally unsatisfiable, so
if this is the case, then reject. Similarly, by Theorem 3.7, any formula containing more than
n+1 variables cannot be in MU -IRES-UNSAT, so if this is the case, then reject. Therefore
we are left with the case where F contains exactly n+1 clauses; we can determine whether or
not it has an I-RES refutation (in which case it is in MU -IRES-UNSAT) using the O(n ·m)
algorithm from Corollary 4.3. 2

4.3 Tractability of the MU-IRES-UNSAT Size Problem

The size problem for MU -IRES-UNSAT takes as input a formula/integer pair (F, k) and
asks if F is minimally unsatisfiable and has an I-RES refutation of size at most k. We now
show that this problem is in P:

Corollary 4.7. Given a formula F and integer k, the problem of determining whether or
not F ∈ MU -IRES-UNSAT and has an I-RES refutation of size at most k is in P and
has an O(n · m) algorithm, where n is the number of distinct variables in F , and m is the
number of clauses.

Proof: We can use the algorithm from Corollary 4.6 to determine if F ∈ MU -IRES-
UNSAT. If not, then reject, and otherwise compare k with 2n + 1. If k ≥ 2n + 1, then by
Corollary 3.6 we can simply accept, and otherwise we reject. 2

4.4 Tractability of the MU-IRES-UNSAT Problem with Top Clause

In previous sections we have seen that various versions of the MU -IRES-UNSAT problem
are in P. We now prove that another generalized form of the problem is also tractable.

152

Algorithms and Complexity Results for Input and Unit Resolution

Instead of asking whether a minimally unsatisfiable formula F has an I-RES refutation, we
can ask if it has an I-RES refutation in which one of the top clauses is C. We shall refer to
this as the MU -IRES-UNSAT problem with top clause. In order to prove that it is in P,
we will first prove a ‘top clause’ lemma:

Lemma 4.8 (Top Clause Lemma). If a formula F ∈ MU(1) has an I-RES refutation, then
it has an I-RES refutation with any arbitrary clause C ∈ F as one of the top clauses.

Proof: By induction on n, the number of distinct variables in F . For n = 0, F = ∅, and so
has an I-RES refutation consisting of ∅. Suppose that our statement is true for n − 1, and
let F be a formula in MU(1) on n variables that has an I-RES refutation. By Theorem 3.1,
F must contain a unit clause {l} for some literal l. We want to show that F has an I-RES

refutation with top clause C, where C is a in F . In order to apply our induction hypothesis,
we restrict F to produce F ′ = F ↾l=True. By Lemma 3.12, F ↾l=True ∈ MU(1). In addition,
I-RES is closed under restriction, so our induction hypothesis applies to F ′, which therefore
has an I-RES refutation with any arbitrary C↾l=True ∈ F ′ as top clause; let us call this proof
π′. There are two cases to consider.

Suppose that C 6= {l}. Since F ∈ MU(1) and {l} ∈ F is a unit clause, Lemma 3.11
applies, so the literal l does not occur anywhere else in F , including C. Therefore the
restricted clause C↾l=True does not disappear from F ′. Furthermore, since F ′ is minimally
unsatisfiable, every clause is used in π′, so lifting the restriction of l = True yields π which
is an I-RES derivation from F of {¬l} with top clause C. We resolve the final clause {¬l}
of π with our unit input clause {l} to complete the refutation.

Suppose that C = {l}. We know that F is minimally unsatisfiable, so it must contain a
clause of the form D = E ∪{¬l}, and n ≥ 2, so E ∈ F ′. By our induction hypothesis, there
exists an I-RES refutation π′ from F ′ with top clause E. Lift the restriction of l = True
from all clauses of π′, but don’t add {¬l} back to the top clause E. Now resolve {l} with
D = E ∪ {¬l} at the top of π′ to produce E, and if necessary, also resolve {l} with the
singleton clause {¬l} (if it exists) at the bottom of the proof to complete the refutation.
This yields an I-RES refutation from F with top clause C = {l}. 2

This lemma allows us to prove that the MU -IRES-UNSAT problem with top clause is
in P:

Theorem 4.9. Given a minimally unsatisfiable formula F and a clause C ∈ F , determining
if F has an I-RES refutation with top clause C is in P.

Proof: To show that this problem is in P, we first determine if F ∈ MU -IRES-UNSAT,
which can be done in polynomial time by Corollary 4.6. If not, then reject. Otherwise, by
Lemma 4.8 F has an I-RES refutation with C as top clause, so accept. 2

5. The Automatizability of Input Resolution

In this section we show that I-RES is automatizable and that MU -IRES-UNSAT is optimally
automatizable. These results form an interesting contrast with the results in the next
section showing that the problem of computing the optimum size of I-RES refutations is
NP-Complete.

153

A. Hertel and A. Urquhart

Informally, a proof system S is automatizable if there exists an algorithm that can
always find proofs that are only polynomially larger than the optimal. Such algorithms are
obviously of great practical interest because they allow us to efficiently automate theorem
proving. More formally, automatizability is defined as follows:

Definition 5.1 (Automatizability). A propositional proof system S is automatizable if there
exists a deterministic algorithm A such that for every formula F ∈ UNSAT (or TAUT),
A returns an S-proof of F in time polynomial in |F | and |π|, where |F | is the number of
clauses in F , and |π| is the size of the smallest S-proof of F .

Because they form the basis of so many practical SAT-solving algorithms, RES and
its refinement T-RES are some of the best candidate proof systems that researchers would
like to automatize. However, Alekhnovich and Razborov [4] have shown that, under widely-
believed parameterized complexity assumptions, they are not automatizable for the strongest
systems (although for Resolution the result is true unless W[P] is in RP, which is a param-
eterized complexity assumption). It is therefore likely that the only possible automatizable
Resolution refinements are incomplete. In other words, results such as the ones in this
section are in a sense the best we can hope for.

We now prove that for I-RES there exists a polytime algorithm for finding a refutation
that is at worst linearly longer than the optimal, thereby showing its automatizability. In
fact, I-RES is strongly automatizable in the sense that we can always find a refutation
that is polynomial in the length of the input formula. Automatizability with respect to
formula size is usually not even a reasonable thing to ask for because many proof systems
have exponential size lower bounds, making this impossible. This further shows just how
tractable the I-RES proof system is.

Theorem 5.2. The I-RES proof system is automatizable. More specifically, given a formula
F containing n distinct variables and m clauses, there exists an O(n · m) algorithm that
finds an I-RES refutation containing at most 2n + 1 clauses or reports that F has no I-RES

refutation.

Proof: First use the O(n ·m) algorithm from Corollary 4.3 to determine if F has an I-RES

refutation. If not, then we report that none exists. Next we apply the O(n · m) DPLL

algorithm implicit in the induction step of the first part of Theorem 3.2 to produce an
I-RES refutation of F containing at most 2n + 1 clauses. 2

It is worth noting that for minimally unsatisfiable formulas this algorithm produces the
shortest possible proof, but if F is not minimally unsatisfiable, then this algorithm may not
produce the optimal.

6. The NP-Completeness of Input Resolution Size

In previous sections we saw that I-RES is automatizable, IRES-UNSAT is P-Complete, that
I-RES is optimally automatizable on MU -IRES-UNSAT, and the size problem for MU -
IRES-UNSAT is in P. However, in this section we show an interesting contrast with these
tractability results by noting that the size problem for IRES-UNSAT is NP-Complete. This
result follows immediately from an interesting result proved by Alekhnovich, Buss, Moran
and Pitassi [3]:

154

Algorithms and Complexity Results for Input and Unit Resolution

Theorem 6.1 ([3]). The problem of approximating the size (regardless of whether size is
measured in total symbols or number of clauses) of the smallest Resolution refutations of

formulas from HORN-UNSAT to within a factor of 2log1−o(1)n is NP-Hard.

Corollary 6.2. The problem of approximating the size (regardless of whether size is mea-
sured in total symbols or number of clauses) of the smallest I-RES or U-RES proofs of

formulas from IRES-UNSAT to within a factor of 2log1−o(1)n is NP-Hard.

Proof: There is no need to change the proof in [3]; it is easy to see that the reduction from
Circuit MMSA produces Horn formulas that have both I-RES and U-RES refutations, so the
result holds for these proof systems as well. 2

This corollary in turn yields another one, namely that given a formula F and integer k,
the problem of determining if F has an I-RES refutation of size at most k is NP-Complete.
The language associated with this problem is defined as follows:

Definition 6.3 (IRES-SIZE). IRES-SIZE = {(F, k) | F is a formula for which there
exists an I-RES refutation with size at most k}

Corollary 6.4. IRES-SIZE is NP-Complete under Cook reducibility.

Proof: We first show that IRES-SIZE is in NP: IRES-UNSAT is in P by Corollary 4.3
and is therefore also in NP, so we first check to see if F has an I-RES refutation. If it does
not, then we reject. Otherwise it has an I-RES refutation of size at most 2n+1 by Theorem
5.2. We therefore compare k with 2n + 1 and if k is greater, then we accept immediately.
Otherwise we nondeterministically guess the shortest I-RES refutation of F , which we know
must have a size of at most 2n + 1 and accept if and only if its size is at most k, thereby
completing our NP algorithm.

Next we show that IRES-SIZE is NP-Complete via a Cook reduction from the problem
of approximating minimum I-RES refutation size which was proved NP-Hard in Corollary
6.2. Assuming that we have an algorithm for IRES-SIZE, we can use it as a subroutine to
create an algorithm for determining the size of the smallest refutation of F as follows: By
Theorem 5.2, F has an I-RES refutation containing at most 2n + 1 clauses. We therefore
perform a binary search between the range 1 and 2n + 1 using our IRES-SIZE algorithm
to determine the size of the smallest refutation. Since this is only a logarithmic number of
subroutine calls, it follows that IRES-SIZE is NP-Complete, as required. 2

7. The Complexity of Input Resolution Total Space

This section contains a number of results pertaining to pebbling and the total space of
I-RES. In Section 7.1 we prove that for any DAG G, the pebbling number of G is equivalent
to the total space of any I-RES-W− derivation of a certain variant of the Peb(G) formulas.
Following this we show how to dispense with weakening and prove the equivalent result for
I-RES. In Section 7.2 we put these equivalence results to use in order to prove the PSPACE-
Completeness of the I-RES Total Space Problem. Finally, in Section 8.2 we prove another
corollary to our equivalence results, namely an optimal I-RES size/total space tradeoff.

155

A. Hertel and A. Urquhart

7.1 Equivalence of Pebbling Number and Input Resolution Total Space

We shall prove that for any DAG G, the pebbling number of G is almost exactly equal
to the minimum total space of any I-RES-W− derivation from Peb(G)∗ with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} (recall from Definition 2.3 that I-RES-W− is the
I-RES proof system with an added rule of negative weakening).

In analyzing the complexity of I-RES, it is convenient to make a small modification in
the definition of the pebbling formulas Peb(G). The new formulas, unlike Peb(G), are in
3-CNF :

Definition 7.1 (Peb(G)∗). For a binary DAG G, the Peb(G)∗ formulas are defined in the
same way as Peb(G), except that we include dummy literals ¬α and ¬β in each singleton
clause so that each source clause {s} becomes {s,¬α,¬β} and the target clause becomes
{¬t,¬α,¬β}.

In Peb(G)∗, there are no positive instances of α or β, so a proof of Peb(G) ⊢ ∅ will
correspond exactly with a proof of Peb(G)∗ ⊢ {¬α,¬β}.

If G is a DAG with a unique target node, we define a pebbling history S = S0, S1, ..., Sj

to be a sequence of sets of nodes in G so that S0 = ∅ and Si+1 is derived from Si by one
of the moves of the pebbling game. A pebbling strategy is a history which has met the
termination condition of the game (that is to say, the target node of G is in Sj).

Definition 7.2 (I-RES Spine). Let T be the tree underlying an I-RES refutation π of a
formula F . The spine B of π is the linear portion of T starting at π’s top clause C0 and
ending at the goal clause Ck, with all of the remaining clauses (which are all input clauses)
removed from T . B can therefore be written as a sequence of clauses B = B0, B1, ..., Bk.

7.1.1 The Equivalence of Pebbling Number and Input Total Space With
Weakening

Our first lemma proves the forward direction of our equivalence and states that it is possible
to take a pebbling strategy of a DAG G and from it build an I-RES-W− derivation from
Peb(G)∗ with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which the spine perfectly
encodes the strategy.

The intuition behind this translation is illustrated by the following example: Consider
the pyramid graph G shown below in Figure 2. We will use the labels on its nodes to
correspond to the variable names in its pebbling formula, so Peb(G)∗ = (4∨¬α∨¬β)∧ (5∨
¬α ∨ ¬β)∧ (6 ∨ ¬α ∨ ¬β)∧ (¬4 ∨ ¬5 ∨ 2) ∧ (¬5 ∨ ¬6 ∨ 3) ∧ (¬2 ∨ ¬3 ∨ 1) ∧ (¬1 ∨ ¬α ∨ ¬β).

Figure 3 below shows how to translate the pebbling strategy S0, S1, ..., S8 for G into
an I-RES-W− derivation of from Peb(G)∗ with top clause {¬1,¬α,¬β} and goal clause
{¬α,¬β} in which the spine perfectly encodes the strategy:

More formally, translating a pebbling strategy into an I-RES-W− proof can be carried
out according to the following lemma:

Lemma 7.3. For any DAG G with target node t, if G has a k-pebbling strategy S =
S0, S1, S2..., Sj−1, Sj where t ∈ Sj, then Peb(G)∗ has an I-RES-W− derivation π with top
clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a spine B = B0, B1, ..., Bj−1, Bj

156

Algorithms and Complexity Results for Input and Unit Resolution

6

1

2 3

4 5

Figure 2. An Example of a Pyramid Graph; The target node is vertex 1.

(2 ∨ ¬4 ∨ ¬5)

S8 : {1}

S7 : {1, 3}

S6 : {2, 3}

S5 : {2, 3, 6}

S4 : {2, 5, 6}

S3 : {2, 5}

S2 : {4, 5}

S1 : {4}

S0 : {} (¬α ∨ ¬β)

(4 ∨ ¬α ∨ ¬β)(¬4 ∨ ¬α ∨ ¬β)

(5 ∨ ¬α ∨ ¬β)(¬4 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬5 ∨ ¬6 ∨ ¬α ∨ ¬β) (6 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬3 ∨ ¬6 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬3 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬3 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬α ∨ ¬β)

Weaken

Weaken

(1 ∨ ¬2 ∨ ¬3)

(3 ∨ ¬5 ∨ ¬6)

Figure 3. A Pebbling Strategy for G (Left) and its Corresponding I-RES-W− Refutation (Right)

(where Bj is the top clause and B0 is the goal clause) such that for all 0 ≤ i ≤ j,
Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}.

Proof: Let S = S0, S1, S2..., Sj−1, Sj be a k-pebbling strategy of G. Note that S0 = ∅ and
t ∈ Sj . We will show that there is a corresponding I-RES-W− derivation with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} by induction on the number of steps in the pebbling
strategy S. Because the dummy literals ¬α and ¬β are present in every clause of the proof
spine, each spinal clause has a width that is two greater than the corresponding step in the
pebbling strategy. Since S0 = ∅, and B0 = {¬α,¬β} = ∅ ∪ {¬α,¬β}, the base case of the
induction holds.

Suppose that we have been able to translate our pebbling strategy up to and including
step i to I-RES proof steps in which the clauses in the spine encode the pebbling strategy,
so that Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, holds for step Si. We now show how to translate step
i + 1 of our pebbling strategy into a corresponding clause in the spine. That is, we need

157

A. Hertel and A. Urquhart

to show that Bi+1 =
⋃

v∈Si+1
{¬v} ∪ {¬α,¬β} holds for Si+1, step i + 1 in our pebbling

strategy. Pebbling step Si+1 could have come from step Si in one of exactly three ways:

1. By pebbling a source node s.

2. By removing a pebble or pebbles from vertex u.

3. If nodes a and b are pebbled predecessors of c, by sliding one of the pebbles from a
or b to c.

Case 1: In this case, Si+1 = Si ∪ {s}. Let Bi+1 = Bi ∪ {¬s}. Then we can derive Bi from
Bi+1 by resolving Bi+1 with the input clause {s,¬α,¬β}, so this is a valid resolution step
resolving on the variable s. By our induction hypothesis, Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, but
Bi+1 = Bi∪{¬s}, so Bi+1 =

⋃
v∈Si

{¬v}∪{¬α,¬β}∪{¬s}. Since Si+1 = Si∪{s}, we know
that Bi+1 =

⋃
v∈Si+1

{¬v} ∪ {¬α,¬β}, as required.

Case 2: In this case, Si+1 = Si − {u}. Let Bi+1 = Bi − {¬u}. Then we can derive
Bi from Bi+1 by weakening Bi+1 to introduce {¬u}, so this is a valid resolution step.
By our induction hypothesis, Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi − {¬u}, so
Bi+1 =

⋃
v∈Si

{¬v} ∪ {¬α,¬β} − {¬u}. Since Si+1 = Si − {u}, we know that Bi+1 =⋃
v∈Si+1

{¬v} ∪ {¬α,¬β}, as required.

Case 3: Without loss of generality, assume that we are sliding the pebble from a to c. In this
case, Si+1 = Si−{a}∪{c}. Let Bi+1 = Bi−{¬a}∪{¬c}. Then we can derive Bi from Bi+1

by resolving Bi+1 on variable a with the input clause {¬a,¬b, c}, so this is a valid I-RES-W−

step resolving on the variable c. By our induction hypothesis, Bi =
⋃

v∈Si
{¬v}∪ {¬α,¬β},

but Bi+1 = Bi − {¬a} ∪ {¬c}, so Bi+1 =
⋃

v∈Si
{¬v} ∪ {¬α,¬β} − {¬a} ∪ {¬c}. Since

Si+1 = Si − {a} ∪ {c}, we know that Bi+1 =
⋃

v∈Si+1
{¬v} ∪ {¬α,¬β}, as required.

Therefore, in all cases, there exists a valid next step in the spine such that Bi+1 =⋃
v∈Si+1

{¬v}∪{¬α,¬β}, so by induction we can translate pebbling into an I-RES-W− proof
in which the spine perfectly encodes the pebbling strategy. In order to ensure that the
I-RES-W− proof has top clause {¬t,¬α,¬β}, we may have to apply several weakenings in
reverse. This is because the pebbling strategy may end with more than just the target
node pebbled, in which case we would have to remove the literals corresponding to these
superfluous pebbles in order to ensure that the top clause is indeed at the top of our
I-RES-W− proof. 2

Our next lemma shows the opposite direction, namely that it is possible to take an
I-RES-W− derivation π and translate it into a pebbling strategy that uses at most two fewer
pebbles than π’s spinal width.

Once again, we use the pyramid graph G from Figure 2 above as our example. Figure
4 below shows how to translate the I-RES derivation of from Peb(G)∗ with top clause
{¬1,¬α,¬β} and goal clause {¬α,¬β} into a pebbling strategy S0, S1, ..., S10 in which the
strategy perfectly encodes the spine of the proof. In fact, weakening is never required in
this example, so it translates an I-RES rather than an I-RES-W− derivation to a pebbling
strategy. Note how each resolution step may require up to two corresponding pebbling
moves.

158

Algorithms and Complexity Results for Input and Unit Resolution

(¬2 ∨ ¬3 ∨ ¬α ∨ ¬β)

S8 : {1}

S7 : {1, 3}

S6 : {2, 3}

S5 : {2, 3, 5}

S3 : {3, 5}

S2 : {5, 6}

S1 : {6}

S0 : {}

S4 : {3, 4, 5}

(¬6 ∨ ¬α ∨ ¬β)

(5 ∨ ¬α ∨ ¬β)

(2 ∨ ¬4 ∨ ¬5)

(3 ∨ ¬5 ∨ ¬6)

(1 ∨ ¬2 ∨ ¬3) (¬1 ∨ ¬α ∨ ¬β)

(¬4 ∨ ¬α ∨ ¬β)

(¬α ∨ ¬β)

(6 ∨ ¬α ∨ ¬β)

(¬5 ∨ ¬6 ∨ ¬α ∨ ¬β)

(¬3 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬3 ∨ ¬4 ∨ ¬5 ∨ ¬α ∨ ¬β)

Figure 4. An I-RESDerivation of {¬α,¬β} fromPeb(G)∗ (Left) and its Corresponding Pebbling

Strategy (Right)

Lemma 7.4. For any DAG G with target node t, if Peb(G)∗ has an I-RES derivation π with
top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a spine B = B0, B1, ..., Bj

(where B0 is the goal clause and Bj is the top clause), then there exists a pebbling strategy
S = S0, S1, S2, . . . , Sl where l is ≤ 2j with S0 = ∅ and Sl = {t} such that it is possible to
translate each Bi into either one pebbling step Sq such that Sq =

⋃
¬v∈Bi

{v} − {¬α,¬β},
or to translate Bi into two consecutive pebbling steps Sq1 , Sq2 such that |Sq1 | ≤ |Bi| − 2 and
Sq2 =

⋃
¬v∈Bi

{v} − {¬α,¬β}.

Proof: We reverse the simulation of Lemma 7.3; there is a slight difference from the
previous proof in that we may need to insert some additional pebbling moves as compared
to the steps in the I-RES proof. We argue by induction on the length of the spine, starting
with the goal clause B0. The base case is immediate, since S0 = ∅ = B0 − {¬α,¬β}.

For the induction step, assume that the simulation has been completed as far as step i,
so that Sq =

⋃
¬v∈Bi

{v}−{¬α,¬β}, where q ≤ 2i. If the clause Bi is derived from Bi+1 by
resolving with a source clause {s,¬α,¬β} on the variable s, then Bi+1 = Bi ∪ {¬s}, so we
set Sq+1 = Sq ∪ {s}; that is to say, we add a pebble to the source node s.

If the clause Bi is derived from Bi+1 by resolving with a propagation clause {¬a,¬b, c}
on the variable c, then our corresponding pebbling moves depend on whether ¬a or ¬b were
already present in Bi+1. If exactly one of ¬a or ¬b was already present in Bi+1 (without
loss of generality, let us assume it was ¬a), then we slide the pebble on the opposite one (in
this case b) in Sq to node c in order to create Sq+1. If both ¬a and ¬b were already present
in Bi+1, then we create Sq+1 from Sq by placing a pebble on node c. Finally, if neither ¬a
nor ¬b were already present in Bi+1, then we make two corresponding pebbling moves: We
first slide the pebble on a or b to c to create Sq+1, and then we remove the other pebble to
produce Sq+2. In all cases, our pebbling strategy perfectly encodes the spine of the I-RES

proof, and never is the number of pebbles too great. 2

159

A. Hertel and A. Urquhart

7.1.2 Dispensing With Weakening

The weakening rule, although useful in showing close links between pebbling strategies
and input proofs, is somewhat artificial. In the present section, we show how to remove
weakening steps in I-RES-W− proofs without increasing the size or total space.

Lemma 7.5. For any unsatisfiable set of Horn clauses F , C ∈ F , if there exists an
I-RES-W− proof of D from F with top clause C, with spinal width at most k, then there
exists an I-RES proof of D

′
⊆ D from F with top clause C with spinal width at most k.

Proof: We argue by induction on the length of the spine of the I-RES-W− proof of D from
F with top clause C. If the proof contains only one clause, C, the Lemma holds trivially.
Now assume the Lemma for proofs of length n, and assume given a proof of D with spinal
length n + 1, and spinal width at most k.

If D = E ∪ F is derived by weakening from E, then by the induction hypothesis, there
is an I-RES proof of D

′
⊆ D from F with top clause C, having spinal width at most k. This

proof fulfills the condition of the Lemma.

If D = E∪F is derived from E∪{¬x} and F ∪{x} by resolution, then by the induction
hypothesis, there is an I-RES proof of E

′
⊆ E from F with top clause C, having spinal

width at most k. If ¬x 6∈ E′, then this proof already fulfills the condition of the Lemma;
otherwise, resolve E′ and F ∪ {x} to derive (E′ − {¬x}) ∪ F ⊆ D. 2

Corollary 7.6. For any DAG G with target node t, G has a k-pebbling strategy if and only
if Peb1(G)∗ has an I-RES derivation with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β}
with total space k + 5.

Proof: ⇒ Assume that there is a k-pebbling strategy for G. By Lemma 7.3, there is
an I-RES-W− proof from Peb(G)∗ with top clause {¬t,¬α,¬β}, goal clause {¬α,¬β}, and
spinal width bounded by k + 2. It follows from Lemma 7.5 that there is an I-RES proof
from Peb(G)∗ of a subclause of {¬α,¬β} satisfying the same conditions. However, since
the variables α and β occur only negatively in Peb(G)∗, they can never be removed from
the spine, so the I-RES proof must be a proof of {¬α,¬β}.

⇐ Conversely, assume that there is an I-RES proof from Peb(G)∗ with top clause
{¬t,¬α,¬β}, goal clause {¬α,¬β}, and total space at most k + 5. 2

7.2 The PSPACE-Completeness of Input Derivation Total Space

Theorem 7.7. The following problem is PSPACE-Complete under logspace reducibility:
Given a Horn formula F , clauses C, D and integer k as input, does there exist an I-RES

refutation with top clause C, goal clause D, and total space at most k?

Proof: We first show that the problem is in PSPACE . We are given an input instance
(F , C ∈ F , D, k), we can guess an I-RES refutation of the required sort. Our algorithm
proceeds as follows: Start with a configuration C0 = {C}. Guess configuration C1, check
to ensure that it follows from C0 by a legal I-RES step, and erase configuration C0. Next,
guess configuration C2, check to make sure that it follows from C1, and erase configuration
C1. Continue this way until the goal clause has been derived. Note that at any time, there
are only two configurations in memory. But since we are dealing with input refutations, we

160

Algorithms and Complexity Results for Input and Unit Resolution

know that each configuration contains no more than two clauses. Since each clause contains
at most n literals, it is clear that our non-deterministic algorithm requires polynomial space.
This shows that the problem is in NPSPACE . Finally, we appeal to Savitch’s Theorem [23]
to show that it is in PSPACE .

Next we show that the problem is PSPACE-Hard by giving a reduction from the
PSPACE-Complete pebbling number problem from [15] (See Theorem 2.7). We are given
an instance (G, k) where t is the target node in G and we wish to convert it to an instance
(F , C ∈ F , D, k) such that G can be pebbled with k pebbles if and only if F has an I-RES

derivation with total space at most k of D from top clause C. Our reduction proceeds as
follows: Take (G, k) and output (Peb(G)∗, {¬t,¬α,¬β}, {¬α,¬β}, k + 5), which is clearly
a logspace reduction. The proof of correctness for this reduction is given by Corollary 7.6.
2

8. Related Complexity Results

The PSPACE-Completeness of I-RES total space has some interesting corollaries:

8.1 The PSPACE-Completeness of the Input Derivation Width Problem

One interesting point of note is that I-RES total space and width are virtually identical.
More specifically, for every r-CNF formula, w(F ⊢I-RES D) = TS(F ⊢I-RES D) − r.

The Peb(G)∗ formulas are 3-CNF formulas, so the width of any I-RES derivation of
goal clause {¬α,¬β} from Peb(G)∗ with top clause {¬t,¬α,¬β} is k + 5− 3 = k + 2. This
implies that the I-RES derivation width problem is therefore also PSPACE-Complete:

Corollary 8.1. Given a formula F , a top clause C, goal clause D, and integer k, the
problem of determining if there exists an I-RES derivation of D from F with top clause C
with width at most k is PSPACE-Complete under logspace reducibility.

8.2 Optimal Size/Total Space Tradeoffs For Input Resolution

In this section we describe another corollary to the results in Section 7.1. This result also
relies closely on one of the most surprising facts concerning pebbling, namely that there
exist infinite families of DAGs that take an exponential amount of time to be pebbled with
the minimum number of pebbles, but if one is willing to use just one or two more pebbles,
then they can be pebbled in linear time. The earliest known example of this phenomenon
can be found in [21], where Lingas gives an infinite family of monotone circuits such that

pebbling any of them with the minimum number of pebbles requires 2Ω(n1/3) time, where n
is the number of nodes in the circuit. However, if given only two more pebbles, the amount
of time required drops exponentially to only O(n), giving a massive pebble/pebbling time
tradeoff. This result was later improved by Gilbert, Lengauer, and Tarjan:

Lemma 8.2 ([15]). There exists an infinite family of DAGs G, such that pebbling any G ∈ G
with the minimum number of pebbles takes Ω(2n) time, but if only one more pebble is used,
then the amount of time required to pebble G drops exponentially to only O(n), where n is
the number of vertices in G.

161

A. Hertel and A. Urquhart

Such an exponential separation at the cost of only one pebble is extraordinary, but
since Corollary 7.6 gives an exact relationship between pebbling and total space for I-RES

derivations, it is possible to translate this amazing result from the world of pebbling over
to Resolution, thereby giving a massive size/total space tradeoff for I-RES:

Corollary 8.3. There exists an infinite family of formulas F = {Peb(G)∗|G ∈ G} such
that for every F ∈ F , every I-RES derivation π of F with top clause {¬t,¬α,¬β} and goal
clause {¬α,¬β} where π has the minimum required total space, has size Ω(2n), where n is
the number of variables in F . However, if only one more unit of total space is permitted,
then the size of π drops to only O(n).

Proof: Let G be the family of DAGs from Lemma 8.2, and let F be any arbitrary formula
from F . Therefore F = Peb(G)∗ for some G ∈ G. G can be pebbled with k but not
with fewer than k pebbles. By Corollary 7.6, F has an I-RES derivation π with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} such that π requires total space k + 5, but does not
have an I-RES derivation with total space less than k + 5. We know that to pebble G with
k pebbles requires Ω(2n) time, so by Corollary 7.6, π has a size of at least Ω(2n). Similarly,
we know that pebbling G with k + 1 pebbles requires O(n) time, so again by Corollary 7.6,
there exists a proof π′ with total space k + 5 + 1 = k + 6 and size O(n), as required. 2

Acknowledgements

We would like to thank Toni Pitassi for her very helpful comments regarding this paper. In
addition, we are grateful for the reports of the referees; these led to considerable improve-
ments in both our results and exposition.

References

[1] R. Aharoni and N. Linial. Minimal Non-Two-Colorable Hypergraphs and Minimal
Unsatisfiable Formulas. Journal of Combinatorial Theory, Series A, 43:196 – 204,
1986.

[2] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, and A. Wigderson. Space Complexity
in Propositional Calculus. SIAM Journal of Computing, 31(4):1184 – 1211, 2001.

[3] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum Propositional Proof
Length is NP-Hard to Linearly Approximate. Journal of Symbolic Logic, 66:171 – 191,
2001.

[4] M. Alekhnovich and A. Razborov. Resolution is Not Automatizable Unless W[P]
is Tractable. Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2002.

[5] N. H. Arai, T. Pitassi, and A. Urquhart. The Complexity of Analytic Tableaux. Journal
of Symbolic Logic, 71:777 – 790, 2006. Preliminary version: 33rd ACM Symposium on
the Theory of Computing (STOC), 2001, pages 356 - 363.

[6] E. Ben-Sasson. Size Space Tradeoffs For Resolution. Proceedings of the 34th ACM
Symposium on the Theory of Computing (STOC), pages 457 – 464, 2002.

162

Algorithms and Complexity Results for Input and Unit Resolution

[7] H. Kleine Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. B.G.
Teubner, Stuttgart, 1994.

[8] C. L. Chang. The Unit Proof and the Input Proof in Theorem Proving. Journal of the
Association for Computing Machinery, 17(4):698 – 707, 1970.

[9] P. Clote and E. Kranakis. Boolean Functions and Computation Models. Springer-
Verlag, Berlin, 2001.

[10] S. Cook and R. Sethi. Storage Requirements for Deterministic Polynomial Time Rec-
ognizable Languages. Journal of Computer & System Sciences, 13(1):25–37, 1976.

[11] S. A. Cook. An Observation on Time-Storage Tradeoff. Proceedings of the 5th Annual
ACM Symposium on Theory of Computing (STOC), pages 29 – 33, 1973.

[12] G. Davydov, I. Davydova, and H. Kleine Büning. An Efficient Algorithm for the
Minimal Unsatisfiability Problem for a Subclass of CNF. Annals of Mathematics and
Artificial Intelligence, 23:229 – 245, 1998.

[13] J. Esteban and J. Torán. Space Bounds for Resolution. Information and Computation,
171:84 – 97, 2001. Preliminary Version: Proceedings of the 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), 1999, pages 551 - 561.

[14] H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of minimal
unsatisfiable formulas with fixed clause-variable difference. Theoretical Computer Sci-
ence, 289(1):503 – 516, 2002.

[15] J. R. Gilbert, T. Lengauer, and R. E. Tarjan. The Pebbling Problem is Complete in
Polynomial Space. SIAM Journal of Computing, 9(3):513 – 524, 1980.

[16] A. Haken. The Intractability of Resolution. Theoretical Computer Science, 39:297 –
308, 1985.

[17] L. Henschen and L. Wos. Unit Refutations and Horn Sets. Journal of the Association
for Computing Machinery, 21:590 – 605, 1974.

[18] A. Hertel. Applications of Games to Propositional Proof Complexity. Ph.D. Thesis,
University of Toronto, 2008.

[19] N. D. Jones and W. T. Laaser. Complete Problems For Deterministic Polynomial Time.
Theoretical Computer Science, 3:105 – 117, 1977.

[20] O. Kullmann. An Application of Matroid Theory to the SAT Problem. Proceedings
of the 15th Annual IEEE Conference on Computational Complexity, pages 116 – 124,
2000.

[21] A. Lingas. A PSPACE-Complete Problem Related to a Pebble Game. In Proceedings
of the 5th Colloquium on Automata, Languages and Programming, pages 300 – 321,
London, UK, 1978. Springer-Verlag.

163

A. Hertel and A. Urquhart

[22] C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman, New
York, 1994.

[23] W. Savitch. Relationships Between Nondeterministic and Deterministic Tape Com-
plexities. Journal of Computer and System Sciences, 4:177 – 192, 1970.

[24] A. Urquhart. The Complexity of Propositional Proofs. The Bulletin of Symbolic Logic,
1(4):425 – 467, 1995.

164

	Introduction and Motivation
	Definitions
	Resolution Proof, Size, and Width
	Resolution Space
	Pebbling Games on DAGs
	Pebbling Contradictions

	Input Resolution, Horn Formulas, and MU Formulas
	Input Resolution and Unit Resolution
	The Relationship Between Input Resolution and MU Formulas
	Exact Bounds on the Size of Input Resolution Refutations
	Horn Resolution, Input Resolution and MU(1)
	MU(1), MU-IRES-UNSAT, and Unit Propagation

	Tractable Aspects of Input Resolution
	Complexities of HORN-UNSAT, IRES-UNSAT, and MU(1)
	The Tractability of MU-IRES-UNSAT
	Tractability of the MU-IRES-UNSAT Size Problem
	Tractability of the MU-IRES-UNSAT Problem with Top Clause

	The Automatizability of Input Resolution
	The NP-Completeness of Input Resolution Size
	The Complexity of Input Resolution Total Space
	Equivalence of Pebbling Number and Input Resolution Total Space
	The Equivalence of Pebbling Number and Input Total Space With Weakening
	Dispensing With Weakening

	The PSPACE-Completeness of Input Derivation Total Space

	Related Complexity Results
	The PSPACE-Completeness of the Input Derivation Width Problem
	Optimal Size/Total Space Tradeoffs For Input Resolution

