
Journal on Satisfiability, Boolean Modeling and Computation 6 (2009) 121-139

Terse Integer Linear Programs

for Boolean Optimization

Christoph Buchheim∗ buchheim@informatik.uni-koeln.de

Institut für Informatik, Universität zu Köln

Pohligstr. 1, 50969 Köln, Germany

Giovanni Rinaldi rinaldi@iasi.cnr.it

Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del CNR

viale Manzoni 30, 00185 Roma, Italy

Abstract

We present a new polyhedral approach to nonlinear Boolean optimization. Compared
to other methods, it produces much smaller integer programming models, making it more
efficient from a practical point of view. We mainly obtain this by two different ideas: first,
we do not require the objective function to be in any normal form. The transformation into
a normal form usually leads to the introduction of many additional variables or constraints.
Second, we reduce the problem to the degree-two case in a very efficient way, by slightly
extending the dimension of the original variable space. The resulting model turns out to
be closely related to the maximum cut problem; we show that the corresponding polytope
is a face of a suitable cut polytope in most cases. In particular, our separation problem
reduces to the one for the maximum cut problem.

In practice, the approach appears to be very competitive for unconstrained Boolean
optimization problems. First experimental results, which have been obtained for some
particularly hard instances of the Max-SAT Evaluation 2007, show that our very general
implementation can outperform even special-purpose Max-SAT solvers. The software is
accessible online under “we.logoptimize.it”.

Keywords: pseudo-Boolean optimization, maximum satisfiability, cut polytope

Submitted July 2008; revised October 2008; published May 2009

1. Introduction

Nonlinear zero-one optimization problems are often solved by transforming the objective
function into an appropriate normal form, e.g., into conjunctive normal form (CNF) or
into a polynomial. The problem can then be addressed by a general solver for maximum
satisfiability, polynomial zero-one optimization or some other standard problem. However,
the transformation often increases the problem size significantly, since new variables or
constraints have to be added. Depending on the normal form, an exponential blow-up
might be unavoidable, e.g., if negations in a polynomial have to be resolved. But even if the
increase is tractable from a theoretical point of view, in practice it might lead to a problem
instance that is too large to be solved.

∗ Supported by the Marie Curie RTN 504438 (ADONET) funded by the European Commission and by
Deutsche Forschungsgemeinschaft (DFG) under grant BU 2313/1–1.

c©2009 Delft University of Technology and the authors.

C. Buchheim and G. Rinaldi

In this paper, we present a novel approach to nonlinear zero-one optimization that
avoids the transformation into any normal form, by directly modeling arbitrarily constructed
Boolean functions into an integer linear program (ILP). The strength of our approach lies
in the fact that, nevertheless, a tight polyhedral description for the resulting model can be
obtained. This description is based on a reduction of the general problem to the special case
of unconstrained quadratic zero-one optimization, which is known to be equivalent to the
maximum cut problem [8]. Our approach is mainly designed for unconstrained problems.
Under general linear or nonlinear constraints, our polyhedral results do not hold anymore,
however, our construction still gives rise to much tighter linear relaxations. Furthermore,
certain classes of constraints do not harm our polyhedral results, as discussed below.

We first deal with the quadratic case, i.e., the case where all objective function terms
contain at most one binary operator. We show that in this case the polytope corresponding
to our formulation is isomorphic to a cut polytope, no matter which operators are considered.
This is a generalization of a result of [6], where all operators are multiplications.

The situation is more complicated in the general case where we allow arbitrary Boolean
functions defined recursively by binary operators. Again, our aim is to avoid introducing
too many new variables or constraints, as done by other approaches such as lift-and-project.
In [4], we developed a new approach for polynomial zero-one optimization problems that
uses an efficient reduction to the quadratic case. The reduction can be applied after a slight
extension of the variable space; the resulting polytope then turns out to be a face of a
polytope corresponding to a quadratic instance of basically the same type. This allows to
derive a polyhedral description for a general instance from the polyhedral description of an
appropriate quadratic problem.

In the following, we generalize these results. In place of multiplications, we allow ar-
bitrary binary operators. For problem instances not containing any exclusive disjunctions
or equivalences, we show that the general polytope is still a face of an appropriate cut
polytope, defined on roughly four times as many variables as in the original model. If ex-
clusive disjunctions or equivalences are present, they can be replaced by at most three other
operators each.

Our problem is closely related to the pseudo-boolean optimization problem, which has
been investigated intensively in the literature. See [3] for a survey of applications and results.
In pseudo-boolean optimization methods, polyhedral techniques are often used in order to
derive stronger dual bounds on the optimal solutions, leading to smaller enumeration trees
in general. In this spirit, Manquinho and Marques-Silva [11, 12] propose the use of cutting
planes in SAT-based algorithms. Similarly, Joy et al. [10] devise classes of cutting planes
for the basic integer programming model of Max-SAT. Cutting planes are also used in a
hybrid approach presented by Sheini and Sakallah [14].

Our polyhedral approach presented in the following is different from these approaches,
in that it does not aim at the identification of single classes of cutting planes that can be
used to tighten dual bounds, but at a full integer programming model of the problem, for
which strong polyhedral results can be derived in a more general way.

We also give experimental evidence of the practical potential of our new approach. We
present the results obtained by an implementation of this approach, on all instances of the
Max-SAT Evaluation 2007 [1]. It turns out that our approach is very competitive and can
even outperform special-purpose Max-SAT solvers on particularly hard instances.

122

Terse ILP’s for Boolean Optimization

2. The Problem

We consider an unconstrained Boolean optimization problem in the following form: a set of
Boolean variables xi ∈ {0, 1} for i ∈ I is given, where I is a finite index set. We set n = |I|.
Moreover, we have a pseudo-boolean objective function

min
∑

k∈K

wkfk , (1)

where each fk is a Boolean function f : {0, 1}I → {0, 1} over the variables xi and the
coefficients wk are arbitrary real numbers. For our purposes, the set of Boolean functions
is defined recursively as follows: first, each variable xi for i ∈ I corresponds to a Boolean
function fi : {0, 1}I → {0, 1}, defined by fi(x) = xi. Second, if g and h are Boolean
functions and ◦ is any binary operator {0, 1}2 → {0, 1}, then g ◦ h is a Boolean function as
well. Observe that in the evaluation of (1), all Boolean operators have precedence over the
arithmetic ones.

In the following, our aim is to address problem (1) by an approach that is based on
modeling each such Boolean function independently.

Example 2.1. All CNF and DNF clauses are Boolean functions. In particular, the maxi-
mum satisfiability problem is a special case of (1).

Example 2.2. Binary monomials are Boolean functions, since multiplication of binary
variables can be considered a binary operator on Boolean variables. In particular, a special
case of (1) is binary polynomial optimization.

Example 2.3. If f is any Boolean function as defined above, then checking satisfiability
of f amounts to checking whether max(f) = 1. Checking whether f is a tautology amounts
to checking whether min(f) = 1. In particular, we can check equivalency of f and any other
logical formula g by minimizing the Boolean function f⇔ g.

A list of all possible 16 binary operators is given in Table 1. For ease of exposition, we
assume throughout that all operators appearing in the functions are proper binary operators,
i.e., we do not consider unary or constant operators. This situation can always be obtained
as follows: constant operators can be resolved easily. The only non-trivial unary operator
is negation. In the objective function, negations can be resolved by replacing ¬fk by 1−fk.
Elsewhere, negations can be merged into binary operators, e.g., we can consider a∨(¬b) a
binary operator in a and b. In Table 2, we list the corresponding replacements explicitly.
In summary, out of the 16 operators in Table 1, we only have to consider the first ten.

In theory, problem (1) can model the minimization of any function f : {0, 1}n → R, as

f(x) =
∑

t∈{0,1}n

f(t) ·
(

∧

ti=1

xi

)

∧
(

∧

ti=0

¬xi

)

. (2)

E.g., we could write a∨ b as (a∧ b)+ (a∧¬b)+ (¬a∧ b). Unfortunately, this representation
of f is useless, as it leads to a trivial problem: the optimal solution is readily obtained
with a simple linear time algorithm that produces the solution right after reading the
input to the problem. However, if a much more compact representation of f than (2)

123

C. Buchheim and G. Rinaldi

Table 1. All 16 binary operators.

truth table notation equivalent to description

a = 0 0 1 1
b = 0 1 0 1

0 0 0 1 a∧ b a · b, min(a, b) conjunction
0 0 1 0 a 6⇒ b a > b, min(a, 1 − b) non-implication
0 1 0 0 a 6⇐ b a < b, min(1 − a, b) converse non-implication
0 1 1 0 a⊕ b a 6= b, a+ b mod 2 exclusive disjunction
0 1 1 1 a∨ b a+ b− a · b, max(a, b) disjunction
1 0 0 0 a ∨̄ b (1 − a) · (1 − b), 1 − max(a, b) nondisjunction
1 0 0 1 a⇔ b a ≡ b, a+ b+ 1 mod 2 equivalence
1 0 1 1 a⇐ b a ≥ b, max(a, 1 − b) converse implication
1 1 0 1 a⇒ b a ≤ b, max(1 − a, b) implication
1 1 1 0 a ∧̄ b 1 − a · b, 1 − min(a, b) non-conjunction

0 0 0 0 a⊥ b 0 constant 0
0 0 1 1 a x b a left projection
0 1 0 1 a y b b right projection
1 0 1 0 a ȳ b ¬b, 1 − b right complementation
1 1 0 0 a x̄ b ¬a, 1 − a left complementation
1 1 1 1 a⊤ b 1 constant 1

Table 2. Equivalence relations among proper binary operators.

◦ a ◦ ¬b ¬a ◦ b ¬a ◦ ¬b

∧ a 6⇒ b a 6⇐ b a ∨̄ b
6⇒ a∨ b a ∧̄ b a 6⇐ b
6⇐ a ∨̄ b a∧ b a 6⇒ b
⊕ a⇔ b a⇔ b a⊕ b
∨ a⇐ b a⇒ b a ∧̄ b

◦ a ◦ ¬b ¬a ◦ b ¬a ◦ ¬b

∨̄ a 6⇐ b a 6⇒ b a∧ b
⇔ a⊕ b a⊕ b a⇔ b
⇐ a∨ b a ∧̄ b a⇒ b
⇒ a ∧̄ b a∨ b a⇐ b
∧̄ a⇒ b a⇐ b a∨ b

is provided, then the problem may become much more difficult to solve and the approach
presented in the following may become very efficient. Actually, the efficiency mainly depends
on the total number of operators in all functions fk, k ∈ K. Clearly, the number of
functions {0, 1}n → {0, 1} that can be modeled with a fixed number of arbitrary binary
operators, as explained above, is much bigger than, e.g., the number of CNF formulae
produced using the same number of operators.

In this context, we point out that some effort in compactifying the representation of f
can be worthwhile. Even if the original instance is given in some normal form such as
CNF, it might well pay off to give up the normal form if this leads to a smaller number of
operators. In general, the more the flexibility of our approach is exploited, the more it can
be expected to outperform methods designed for instances with a specific structure.

124

Terse ILP’s for Boolean Optimization

3. Branch-and-Cut and the Maximum Cut Problem

In this section, we review the basic ideas of branch-and-cut algorithms, with a view to-
wards the maximum cut problem. Branch-and-cut is an extension of branch-and-bound, in
which the bounds in all enumeration nodes are computed by solving LP-relaxations of the
problem [13].

In order to start a branch-and-cut approach, the problem must first be modeled as an
integer linear program (ILP), i.e., a linear program with additional integrality constraints
on all or some of the variables. In the following, all variable required to be integer will be
binary, i.e., will take only the values 0 or 1. Therefore, we will only consider the branch-
and-cut approach for the binary case. The branching step usually consists in creating two
subproblems that replace the original one; each of the two subproblems is obtained by fixing
an integer variable to one of its two possible values. The first LP-relaxation arises from
ignoring all integrality requirements. The optimal solution of this LP-relaxation then yields
a dual bound for the original problem (a lower or an upper bound depending on whether
we minimize or maximize, respectively).

If the optimal LP-solution is fractional, i.e., if it does not meet all integrality constraints,
then a branch-and-cut algorithm tries to improve the relaxation by adding further linear
inequalities that are valid for all feasible solutions of the ILP but violated by the given
fractional LP-solution. Such inequalities are called cutting planes. An algorithm trying to
find such cutting planes is called a separation algorithm. Usually, a separation algorithm is
designed to find cutting planes from within a specific class of candidate inequalities.

The separation problem leads to the mathematical task of understanding the polyhedral
structure of the problem. More precisely, it is necessary to characterize classes of valid
inequalities for the polytope defined as the convex hull of all feasible solutions of the ILP. The
separation algorithm must then decide whether a certain fractional point can be separated
from this polytope by some hyperplane from the known classes.

For an NP-hard problem, there is no hope of finding a complete characterization of the
system of linear inequalities describing the polytope. However, in practice, the performance
of a cutting plane algorithm generally increases even with a (very) limited knowledge of such
a system. Moreover, for the polytope associated with these difficult problems the separation
for several classes of valid inequalities is also NP-hard. Therefore, typically one has to resort
to heuristic separation algorithms. When such an algorithm returns a cutting plane from a
specific class, the answer is correct. However, if it terminates with the status “no separating
hyperplanes found”, this does not necessarily mean that indeed no such hyperplanes exist.

Due to the incomplete knowledge of the linear system, and due to the heuristic nature
of some separation algorithms, the cutting-plane phase may terminate with an optimal
LP-solution that still has some fractional components. The branch-and-cut algorithm then
proceeds with a branching phase. Cutting-plane and branching phases are recursively ap-
plied to all generated subproblems.

Branch-and-cut algorithms turned out to be very successful in practice for solving many
hard optimization problems. One of these problems concerns cuts in graphs. In a graph
G = (V,E), with every subset S ⊆ V we associate the set of all edges having exactly one
end-node in S. Such an edge set is called the cut of G defined by S and is denoted by δ(S).
Note that the sets S and V \ S define the same cut of G and that S can be empty (or can

125

C. Buchheim and G. Rinaldi

coincide with V), in which case the cut δ(S) is the empty set. Given a graph G = (V,E)
with edge weights we ∈ R, the maximum cut problem (max-cut) is to find a cut in G of
maximum total weight. In the standard ILP formulation of this problem, we have a binary
variable xe ∈ {0, 1} for each edge e ∈ E, such that xe = 1 if and only if e belongs to the
cut being modeled. Such a binary vector associated with a cut δ(S) is called its incidence

vector and is denoted by χS ∈ R
E . The cut polytope C(G) ⊂ R

E of G is the convex hull of
all incidence vectors of cuts in G.

Many classes of cutting planes as well as other structural properties of cut polytopes
have been discovered; see [7] for a broad overview. In our implementation, we currently only
use the most important class of cutting planes called cycle inequalities. These inequalities
model the fact that every cut of G must have an even intersection with every cycle in G,
i.e., for every cycle C in G and every odd subset F ⊆ C, we have that the inequality

∑

e∈F

xe −
∑

e∈C\F

xe ≤ |F | − 1

is satisfied by the incidence vectors of all cuts of G, thus it is as a valid inequality for the cut
polytope C(G). In general, there are exponentially many cycle inequalities for a given graph;
nevertheless, the corresponding separation problem can be solved in polynomial time [2].

Though polynomial, the exact separation algorithm for cycle inequalities is often too slow
in practice. Therefore, the separation is often done heuristically. In our implementation,
we use a heuristic based on maximum weight spanning trees, see Section 5 below.

4. New Formulation and Reduction to Maximum Cut

In the following, we develop our new model for Boolean optimization problems. This ap-
proach has two main advantages over other methods: the number of variables is kept small,
even if the objective function does not conform to any normal form. The second advantage
is that the corresponding polytope turns out to be a face of an appropriate cut polytope,
if the model is slightly extended and no exclusive disjunctions or equivalences appear in
the objective function. This allows us to address the general problem by a cutting plane
method that is entirely based on separation algorithms for the maximum cut problem. An
example illustrating the construction will be given in Section 4.3 below.

4.1 The Model

In order to develop a linear model for problem (1), we have to introduce further binary
variables. First, we need to linearize the objective function by adding a variable xk ∈ {0, 1}
representing fk, for every k ∈ K. The objective then translates to min c⊤xK , and it remains
to model the connection between the basic variables xI and the objective variables xK . More
precisely, we have to make sure that

xk = fk(xI) for every feasible solution x ∈ {0, 1}I∪K .

In order to bridge the gap between basic and objective variables, we additionally introduce
connection variables xj ∈ {0, 1}, j ∈ J . Every such variable corresponds to an intermediate
function in the recursive definition of the Boolean functions fk.

126

Terse ILP’s for Boolean Optimization

More formally, we determine the set of connection variables recursively as follows: we
start with J = ∅. Let j ∈ J ∪K with fj = g ◦j h, for appropriate Boolean functions g and h
and for a proper binary operator ◦j . If g = fs for some s ∈ I ∪ J ∪K, we define l(j) = s,
otherwise we add a new index l(j) to J , introduce a new variable xl(j) representing g, and
define fl(j) = g. Analogously, if h = fs for some s ∈ I ∪J ∪K, we define r(j) = s, otherwise
we add a new index r(j) to J , introduce a variable xr(s) representing h, and define fr(j) = h.
We continue in this way until every fj with j ∈ J ∪ K is of the form fl(j) ◦ fr(j) for
appropriate l(j), r(j) ∈ I ∪ J ∪ K. We finally extend each fs for s ∈ I ∪ J ∪ K to a
function fs : {0, 1}I∪J → {0, 1}, by ignoring all additional entries of x ∈ {0, 1}I∪J .

We have thus constructed a set of variables {xs | s ∈ I ∪ J ∪K} and a corresponding
set of Boolean functions F = {fs | s ∈ I ∪ J ∪ K} defined on the domain {0, 1}I∪J . In
the following, the unit vector corresponding to xs will be denoted by es. Every non-basic
function in F is the result of applying some binary operator to an appropriate pair of other
functions in F . Notice that the total number of connection and objective variables |J ∪K|
is at most the total number m of operators in the objective function, so the total number
of variables in our model is at most n+m. In practice, it is often possible to save a lot of
these variables by intelligent decomposition of the objective function.

Every feasible solution in our model is uniquely determined by a truth assignment for
all basic variables xi, i.e., by a function t : I → {0, 1}. The corresponding characteristic
vector χt ∈ {0, 1}I∪J∪K is defined in the obvious way—every component (χt)s takes the
value of fs under t, denoted by t(fs) in the following. Now we define

P = conv
{

χt | t : I → {0, 1}
}

⊂ R
I∪J∪K .

Equivalently, we have

P = conv
{

(xI , xJ , xK) ∈ {0, 1}I∪J∪K | xs = fs(xI , xJ) for all s ∈ J ∪K
}

.

We can thus restate problem (1) as min c⊤xK s.t. x ∈ P .

In order to solve this problem, it is necessary to find tight linear relaxations of the
polytope P . The standard techniques for linearizing polynomial terms in binary programs
could be adapted to our model, however, the resulting relaxations for P are weak in general.
Instead, we aim at generalizing the results we obtained for binary polynomial optimization,
presented in [4], to the more general situation considered here. In the remainder of this
section, we will show that P is a face of an appropriate cut polytope of small dimension if
the objective function does not contain exclusive disjunctions or equivalences.

The proof is done in two steps: first the result is shown in the quadratic case, i.e.,
when all objective terms fk contain at most one operator. In fact, P is isomorphic to a
cut polytope in this case. This is a generalization of a result given in [6], that states that
binary quadric polytopes are isomorphic to cut polytopes. We obtain this result without
restricting the set of allowed operators.

Second, we show that in the case of objective functions of arbitrary degree, the poly-
tope P is a face of a polytope P ∗ defined by a quadratic instance of our problem, if the
objective function does not contain exclusive disjunctions or equivalences. In other words,
under this assumption, the case of arbitrary degree can be reduced to the quadratic case.

127

C. Buchheim and G. Rinaldi

4.2 Quadratic Case

In the quadratic case, the polytope P is always isomorphic to an appropriate cut polytope
defined on the same number of variables.

Lemma 4.1. Let fk contain at most one operator for all k ∈ K. Then the polytope P is

isomorphic to a cut polytope. The corresponding graph has n+ 1 nodes and n+m edges.

Proof: In this case, we have J = ∅ and l(k), r(k) ∈ I for all k ∈ K. We can thus define a
graph G = (V,E) by

V = {z} ∪ {vi | i ∈ I}

E = {(z, vi) | i ∈ I} ∪ {(vl(k), vr(k)) | k ∈ K} .

In the following, let e(v,w) denote the unit vector in R
E associated with an edge (v, w) ∈ E.

Let fk = fl(k) ◦k fr(k) for all k ∈ K. We define a linear map ψ′ : R
E → R

I∪K by fixing the

images of all unit vectors of R
E :

e(z,vi) 7→ ei

+
∑

k∈K
i=l(k)

1/2(−0 ◦k 0 − 0 ◦k 1 + 1 ◦k 0 + 1 ◦k 1) · ek

+
∑

k∈K
i=r(k)

1/2(−0 ◦k 0 + 0 ◦k 1 − 1 ◦k 0 + 1 ◦k 1) · ek

e(vl(k),vr(k)) 7→ 1/2(−0 ◦k 0 + 0 ◦k 1 + 1 ◦k 0 − 1 ◦k 1) · ek .

As ψ′ is bijective, the map ψ : R
E → R

I∪K given by x 7→ ψ′(x)+
∑

k∈K(0◦k 0)ek is an affine
isomorphism. Hence it suffices to show that ψ induces a bijection between the vertices of
the cut polytope C(G) of G and the vertices of P .

So consider the incidence vector χS ∈ C(G) of any cut δ(S), S ⊆ V , where we may
assume, without loss of generality, that z 6∈ S. Define a truth assignment t : I → {0, 1} by
setting t(i) = 1 if and only if vi ∈ S. We claim that ψ(χS) = χt. Indeed,

χS =
∑

i∈I
vi∈S

e(z,vi) +
∑

k∈K
vl(k)∈S ⊕ vr(k)∈S

e(vl(k),vr(k)) ,

thus
ψ(χS) =

∑

i∈I
t(i)=1

ψ(e(z,vi)) +
∑

k∈K
t(l(k))⊕ t(r(k))=1

ψ(e(vl(k),vr(k))) ,

so that for i ∈ I we have ψ(χS)i = t(i) = (χt)i and, for k ∈ K,

ψ(χS)k = 1/2(−0 ◦k 0 + 0 ◦k 1 + 1 ◦k 0 − 1 ◦k 1) · t(l(k))⊕ t(r(k))

+1/2(−0 ◦k 0 − 0 ◦k 1 + 1 ◦k 0 + 1 ◦k 1) · t(l(k))

+1/2(−0 ◦k 0 + 0 ◦k 1 − 1 ◦k 0 + 1 ◦k 1) · t(r(k)) + (0 ◦k 0) (3)

= t(l(k)) ◦k t(r(k)) = (χt)k .

128

Terse ILP’s for Boolean Optimization

Table 3. Reformulation of binary operators in terms of exclusive disjunctions.

operator reformulation

a∧ b 1/2(a+ b− a⊕ b)
a∨ b 1/2(a+ b+ a⊕ b)
a⇒ b 1/2(−a+ b− a⊕ b) + 1
a⇐ b 1/2(a− b− a⊕ b) + 1
a ∧̄ b 1/2(−a− b+ a⊕ b) + 1
a ∨̄ b 1/2(−a− b− a⊕ b) + 1
a 6⇒ b 1/2(a− b+ a⊕ b)
a 6⇐ b 1/2(−a+ b+ a⊕ b)
a⊕ b a⊕ b
a⇔ b − a⊕ b + 1

Conversely, for given t : I → {0, 1} we define a cut of G by S = {vi ∈ V | t(i) = 1}. This
construction is obviously inverse to the one above, so the proof is complete. 2

The main ingredient in the proof of Lemma 4.1 is the reformulation of an arbitrary binary
operator as an affine combination of exclusive disjunction and basic variables, using (3). For
the ten operators to be considered, the corresponding formulae are listed in Table 3.

4.3 General Case

In this section, we do not require a quadratic objective function any more. Moreover, we
do not assume any normal form, all operators may be mixed arbitrarily. Nevertheless, we
can show the following result.

Theorem 4.1. Assume that no operator in the objective function is an exclusive disjunction

or an equivalence. Then the polytope P is isomorphic to a face of a cut polytope. The

corresponding graph has at most n+ 4m edges.

Proof: By the previous lemma, it suffices to show that P is a face of some polytope P ∗ that
corresponds to a quadratic instance of our problem with at most n+m basic variables and
at most 3m operators in total. In order to construct this quadratic instance, define the set
of basic variables to be {x0

s | s ∈ I ∪ J} and set I∗ = I ∪ J . Moreover, define a new set of
quadratic objective terms over these variables as

{x1
s = x0

l(s) ◦s x
0
r(s) | s ∈ J ∪K} ∪ {x2

s = x0
l(s) ∧x

0
s, x

3
s = x0

r(s) ∧x
0
s | s ∈ J} .

Let K∗ be an index set for these 3|J | + |K| objective terms. Denote the corresponding
polytope in R

I∗∪K∗

by P ∗. We will show that P is a face of P ∗.
For the following, we denote the unit vector in R

I∗∪K∗

associated with the variable xi
s

by eis, for s ∈ I∗∪K∗ and i = 0, 1, 2, 3. Moreover, we define cs = 1◦s 1+0◦s0−1◦s0−0◦s1.
Observe that cs 6= 0 for all proper binary operators. We first claim that

P ∼= conv
(

P ∗ ∩X ∩ {0, 1}I∗∪K∗
)

, (4)

129

C. Buchheim and G. Rinaldi

where X is the linear subspace of R
I∗∪K∗

given by the equations

x1
s = x0

s (5)

x2
s =

(

c−1
s (1 ◦s 1 − 1 ◦s 0)

)

x0
s (6)

+
(

c−1
s (1 ◦s 1 − 1 ◦s 0)(0 ◦s 0 − 1 ◦s 0) + (1 ◦s 0)

)

x0
l(s)

+
(

c−1
s (1 ◦s 1 − 1 ◦s 0)(0 ◦s 0 − 0 ◦s 1)

)

x0
r(s)

− c−1
s (1 ◦s 1 − 1 ◦s 0)(0 ◦s 0)

x3
s =

(

c−1
s (1 ◦s 1 − 0 ◦s 1)

)

x0
s (7)

+
(

c−1
s (1 ◦s 1 − 0 ◦s 1)(0 ◦s 0 − 0 ◦s 1) + (0 ◦s 1)

)

x0
r(s)

+
(

c−1
s (1 ◦s 1 − 0 ◦s 1)(0 ◦s 0 − 1 ◦s 0)

)

x0
l(s)

− c−1
s (1 ◦s 1 − 0 ◦s 1)(0 ◦s 0)

for all s ∈ J . The isomorphism is induced by the linear map ϕ : R
I∗∪K∗

∩ X → R
I∪J∪K

that is uniquely defined by ϕ(e0s) = es for s ∈ I∗ and ϕ(e1s) = es for s ∈ K. The images of
all other unit vectors of R

I∗∪K∗

under ϕ are determined by the equations (5) to (7).

To show (4), consider a vertex χt of P corresponding to an assignment t : I → {0, 1}.
Extend it to t∗ : I∗ → {0, 1} in the natural way, setting t∗(s) = t(fs) for all s ∈ J . Now by
construction we have χt = ϕ(χ∗

t∗), where χ∗
t∗ denotes the characteristic vector of t∗ in P ∗.

To see this, one can verify, by checking all possible operators ◦s and all possible truth
assignments to the variables xl(s), xr(s), and xs, that

xl(s) ◦s xr(s) = cs(xl(s) ∧xr(s)) + (1 ◦s 0 − 0 ◦s 0)xl(s) + (0 ◦s 1 − 0 ◦s 0)xr(s) + 0 ◦s 0

and that

(xl(s) ∧xs) = (1 ◦s 1 − 1 ◦s 0)(xl(s) ∧xr(s)) + (1 ◦s 0)xl(s)

(xr(s) ∧xs) = (1 ◦s 1 − 0 ◦s 1)(xl(s) ∧xr(s)) + (0 ◦s 1)xr(s) .

Conversely, any point in P ∗ ∩ {0, 1}I∗∪K∗

is a vertex χ∗
t∗ of P ∗ corresponding to a truth

assignment t∗ : I∗ → {0, 1}. Let t = t∗|I . By (5), all vectors in X satisfy

x0
s = x1

s = x0
l(s) ◦s x

0
r(s) for all s ∈ J ,

so that we can inductively show that x0
s = t(fs) for s ∈ I∗, supposed that the same holds

for s ∈ I. In other words, t∗ is the extension of t described above, hence we have χt = ϕ(χ∗
t∗)

again.

Having proved (4), it remains to show that X induces a face of P ∗, since this im-
plies that P ∗ ∩ X is integer so that (4) yields an isomorphism P ∼= P ∗ ∩ X. This is
true for all operators except for exclusive disjunctions and equivalences, i.e., for ◦s ∈
{∧,∨,⇒,⇐, ∧̄, ∨̄, 6⇒, 6⇐}.

130

Terse ILP’s for Boolean Optimization

For each of these operators, we claim that the equations (6) and (7) hold as inequalities
for P ∗, the direction depending on the operator. Indeed, the right hand side of (6) reads

x0
s for ◦s ∈ {∧, 6⇒}

x0
l(s) for ◦s ∈ {∨,⇐}

x0
s + x0

l(s) − 1 for ◦s ∈ {⇒, ∧̄}

0 for ◦s ∈ {∨̄, 6⇐} .

In the first two cases, this right hand side is greater or equal to x0
l(s) ∧x

0
s = x2

s for every

integer point in P ∗. In the other two cases, this right hand side is less or equal to x0
l(s) ∧x

0
s =

x2
s for every integer point in P ∗. Thus (6) induces a face of P ∗. For (7), the same result

follows by symmetry.
So let F be the face of P ∗ induced by the two equations (6) and (7). It remains to show

that (5) induces a face of F . From (6) we derive

x0
s = 0 or x0

l(s) = 1 if ◦s ∈ {∧, 6⇒}

x0
s = 1 or x0

l(s) = 0 if ◦s ∈ {∨,⇐}

x0
s = 1 or x0

l(s) = 1 if ◦s ∈ {⇒, ∧̄}

x0
s = 0 or x0

l(s) = 0 if ◦s ∈ {∨̄, 6⇐}

and (7) yields
x0

s = 0 or x0
r(s) = 1 if ◦s ∈ {∧, 6⇐}

x0
s = 1 or x0

r(s) = 0 if ◦s ∈ {∨,⇒}

x0
s = 1 or x0

r(s) = 1 if ◦s ∈ {⇐, ∧̄}

x0
s = 0 or x0

r(s) = 0 if ◦s ∈ {∨̄, 6⇒}

and hence
x0

s ≤ (x0
l(s) ◦s x

0
r(s)) = x1

s if ◦s ∈ {∧, ∨̄, 6⇒, 6⇐}

x0
s ≥ (x0

l(s) ◦s x
0
r(s)) = x1

s if ◦s ∈ {∨,⇒,⇐, ∧̄} .

This completes the proof. 2

Example 4.1. To illustrate the construction of Theorem 4.1, consider the case of a single
CNF-clause x1 ∨x2 ∨x3 containing three non-negated variables, which is the smallest non-
trivial example. Then the polytope P corresponding to the problem

min x1 ∨x2 ∨x3

s.t. x1, x2, x3 ∈ {0, 1}

is defined over five binary variables x1, . . . , x5, where the first three are basic variables and
can thus be chosen freely, while the other two variables are determined by the basic variables
according to

x4 = x1 ∨x2

x5 = x4 ∨x3 = (x1 ∨x2)∨x3 .

131

C. Buchheim and G. Rinaldi

We thus have I = {1, 2, 3}, J = {4}, and K = {5}, and P is spanned by the 23 vectors

(0 0 0 0 0) (0 1 0 1 1) (1 0 0 1 1) (1 1 0 1 1)
(0 0 1 0 1) (0 1 1 1 1) (1 0 1 1 1) (1 1 1 1 1)

Now the constructed polytope P ∗ is defined in R
I∗∪K∗

, where I∗ contains indices for the
new basic variables

x0
1, x

0
2, x

0
3, x

0
4 = (x1 ∨x2)

0

and K∗ contains indices for the new quadratic terms

x1
4 = x0

1 ∨x
0
2, x

1
5 = x0

4 ∨x
0
3, x

2
4 = x0

1 ∧x
0
4, x

3
4 = x0

2 ∧x
0
4 .

The 24 vertices of P ∗ are

(0 0 0 0 0 0 0 0) (0 1 0 0 1 0 0 0) (1 0 0 0 1 0 0 0) (1 1 0 0 1 0 0 0)
(0 0 0 1 0 1 0 0) (0 1 0 1 1 1 0 1) (1 0 0 1 1 1 1 0) (1 1 0 1 1 1 1 1)
(0 0 1 0 0 1 0 0) (0 1 1 0 1 1 0 0) (1 0 1 0 1 1 0 0) (1 1 1 0 1 1 0 0)
(0 0 1 1 0 1 0 0) (0 1 1 1 1 1 0 1) (1 0 1 1 1 1 1 0) (1 1 1 1 1 1 1 1)

Now equation (5) reads x1
4 = x0

4. This equation excludes half of the vertices of P ∗, namely
those where the fourth and fifth entry do not agree, i.e., those not corresponding to solutions
of the original problem. Equations (6) and (7) read x2

4 = x0
1 and x3

4 = x0
2. These equations

automatically hold for the remaining 23 vertices, but they are needed to ensure that P is
isomorphic to a face of P ∗. We end up with a quadratic problem formulation

min x0
4 ∨x

0
3

s.t. x0
1 ∨x

0
2 = x0

4

x0
1 ∧x

0
4 = x0

1

x0
2 ∧x

0
4 = x0

2

x0
1, x

0
2, x

0
3, x

0
4 ∈ {0, 1} .

Example 4.2. If one of the operators is an exclusive disjunction or an equivalence, it is not
true in general that ϕ(P) is a face of the polytope P ∗ constructed in Theorem 4.1. To see
this, consider the objective function x1 ◦ (x2 ⊕x3), for any operator ◦. Then P is defined
over five variables x1, . . . , x5 again, the last two of which correspond to quadratic terms

x4 = x2 ⊕x3

x5 = x1 ◦ x4 = x1 ◦ (x2 ⊕x3) .

The polytope P ∗ is now defined over the basic variables

x0
1, x

0
2, x

0
3, x

0
4 = (x2 ⊕x3)

0

and the quadratic terms

x1
4 = x0

2 ⊕x0
3, x

1
5 = x0

1 ◦ x
0
4, x

2
4 = x0

2 ∧x
0
4, x

3
4 = x0

3 ∧x
0
4 .

132

Terse ILP’s for Boolean Optimization

By (4), the polytope ϕ(P) is spanned by a subset of the vertices of P ∗, determined by the
equations (5) to (7). As ◦4 = ⊕ and c4 = −2, these equations read

x1
4 = x0

4

x2
4 = 1/2 · (x0

4 + x0
2 − x0

3)

x3
4 = 1/2 · (x0

4 − x0
2 + x0

3) .

Since P ∗ is symmetric with respect to all hyperplanes defined by these equations, it follows
that the barycenters of ϕ(P) and P ∗ agree, i.e., that ϕ(P) cuts through the center of P ∗.
The same holds with ⇔ in place of ⊕.

Corollary 4.1. The polytope P is isomorphic to a projection of a face of a cut polytope.

The corresponding graph has at most n+ 12m edges.

Proof: After replacing all exclusive disjunctions and equivalences using the identities

a⊕ b = (a 6⇒ b)∨(a 6⇐ b)

a⇔ b = (a⇒ b)∧(a⇐ b) ,

we get a new instance of our problem with at most 3m binary operators. Let P ′ denote the
polytope defined by this instance. Then, by Theorem 4.1, P ′ is isomorphic to a face of a
cut polytope on at most n+ 12m edges. On the other hand, it is clear by definition that P
is an orthogonal projection of P ′. 2

4.4 Constraints

So far we have discussed unconstrained Boolean optimization problems, where all Boolean
functions in the problem formulation appear in the objective function. However, it is clear
that the same approach works if we have constraints of the form fk = 0 or fk = 1, where fk

is any Boolean function. In this case, we model fk exactly as we model the objective terms.
If we consider the corresponding polytope P and intersect it with the hyperplane xk = 0
or xk = 1, then we obviously get a face of P .

If we consider linear constraints instead of Boolean ones, the situation is more compli-
cated. In general, we cannot rescue our polyhedral results in this case. However, in some
special cases, the situation is again favorable. To give an example, consider the constraint

∑

s∈L

fs ≤ 1 (8)

for an arbitrary subset L ⊆ I ∪ J ∪ K. This constraint states that at most one of the
functions fs with s ∈ L may evaluate to one. In order to model (8) without harming our
polytope P , we introduce a zero-weight objective term fL =

∨

s∈L fs. Moreover, we have
to add up to |L| − 1 connection variables. Then we can rephrase (8) as

∑

s∈L

fs = fL . (9)

133

C. Buchheim and G. Rinaldi

The latter formulation is preferable since
∑

s∈L fs ≥ fL is a valid constraint for P , so
that (9) induces a face of P . In the same way, we can deal with an equation

∑

s∈L

fs = 1 ,

stating that exactly one of the functions fs with s ∈ L evaluates to one. Additionally to (9)
we have to set fL = 1 here, which again induces a face.

5. Experiments

Experimental results obtained with a straightforward implementation of our approach show
that the increased modeling power leads to fast running times in practice. In this section,
in order to demonstrate this by some examples, we shortly discuss two classes of instances
taken from the Max-SAT Evaluation 2007 [1, 9]. The evaluation [1] was based on several
classes of instances. We chose those classes where the percentage of instances solved by the
best participating algorithm was particularly small, namely the logic-synthesis and the
SPOT5 instances. Both classes belong to the partial Max-SAT category, i.e., some of the
clauses have to be satisfied by every solution, while others have positive integer weights in
the objective function.

In our implementation, we first apply some very simple preprocessing techniques. Their
main objective is to reduce the number of variables in our model. Currently, we only do
this in a very restricted way: we use the equivalent replacement

fi ∨ fj for all i, j ∈ I with i 6= j ⇐⇒
∑

i∈I

(¬fi) ≤ 1 ,

where each fi can be an arbitrary Boolean function. Notice that SAT solvers can only
handle the former group of constraints, while in our approach we can also deal with the
latter constraint, as explained in Section 4.4. This reduces the number of operators from

(

|I|
2

)

to |I|−1. To detect such sets of constraints, we apply a simple algorithm for finding maximal
cliques in the conflict graph defined as follows: the graph contains a vertex for every Boolean
function fi appearing in the instance. Two vertices corresponding to Boolean functions fi

and fj are adjacent if and only if the instance contains a subformula fi ∨ fj .
In principle, we could apply much more sophisticated reformulation techniques in order

to decrease the number of operators in our objective function, exploiting the fact that the
result is not requested to be in CNF. However, developing such techniques was not the focus
of our work. Moreover, in our opinion, the flexibility of our approach is best exploited if
the user takes advantage of this flexibility already in the modeling phase.

It is also possible to save variables without decreasing the number of operators. For
this, note that the variables corresponding to expressions fi ◦1 fj and fi ◦2 fj , containing
the same operands fi and fj , determine each other: by (3), the variables for fi, fj , fi ◦1 fj ,
and fi◦2fj satisfy an affine equation. In other words, we only need one variable for modeling
both expressions fi ◦1 fj and fi ◦2 fj .

Generally speaking, it is thus desirable to have a large number of expressions with the
same pair of operands. In our implementation, we try to increase this number by exploiting
associativity and commutativity of ∧ and ∨: for all subformulae of the objective function

134

Terse ILP’s for Boolean Optimization

containing only conjunctions or only disjunctions, we can group the operands in an arbitrary
way, e.g., we can write fi ∨ fj ∨ fk as (fi ∨ fj)∨ fk, (fi ∨ fk)∨ fj , or (fj ∨ fk)∨ fi, which
leads to different sets of variables in our model. Considering such expressions at different
positions in the objective function simultaneously, one can possibly save many variables by
choosing a nesting that leads to a large number of equivalent variables.

In our preprocessing phase, we determine the nesting in a greedy way: we always choose
a pair of operands (fi, fj) that jointly appears in a maximal number of such expressions,
and introduce a variable for fi ◦ fj . In other words, we consider (fi ◦ fj) as a single operand
in the following, and proceed like this until all conjunctions and disjunctions are defined
on exactly two operands. For example, having two formulae fi ∨ fj ∨ fk and fi ∧ fj ∧ fl, we
would determine the nesting as (fi ∨ fj)∨ fk and (fi ∧ fj)∧ fl, as we only need one variable
for both formulae fi ∨ fj and fi ∧ fj .

After preprocessing, an initial ILP formulation of the reduced instance is handed over
to the CPLEX 11.1 MIP solver [5], which tries to optimize it using a classical branch-
and-cut algorithm, see Section 3. Our only (but crucial) extension of the standard solver
concerns the separation phase, where we make use of our results presented in Section 4:
we first create the graph corresponding to the cut polytope constructed in the proof of
Lemma 4.1, after transforming the original problem to a quadratic one as described in the
proof of Theorem 4.1. Whenever CPLEX tries to separate a fractional LP-solution, we
first transform this solution to the variable space of the corresponding cut polytope. Then
we can apply any separation algorithm for max-cut on this graph, with the transformed
fractional point as input.

In our current implementation, we only separate cycle inequalities. We do this heuristi-
cally in the following way: we first compute a maximum weight spanning tree with respect
to the current fractional LP-values. Then we consider all fundamental cycles defined by
this tree, the number of which is linear in the number of edges of the graph. We only add
inequalities defined on cycles not exceeding a given length (in our current implementation,
the limit is |V |/50). Any resulting cutting plane can easily be transformed back to the
original variable space. Note that this heuristic approach is much faster than the exact
separation algorithm, but it may fail to find a violated cycle inequality even if there is one.
Moreover, it does not necessarily find the most violated cycle inequalities, like the exact
separation algorithm does.

An important advantage of our approach is the fact that all other components of the
branch-and-cut algorithm can be applied to the original set of variables, since all cutting
planes generated by our max-cut based separation algorithm are expressed in these variables.
In particular, the solution of LP-relaxations as well as the branching can be performed on
the original set of variables. The transformation to a max-cut problem defined in a higher-
dimensional space is only necessary within the separation phase.

All experimental results reported in the following were obtained on an Intel Xeon pro-
cessor with 2.33 GHz running Linux, i.e., on a machine that is slightly faster than the one
used for the Max-SAT Evaluation 2007. As it was done with the codes evaluated in this
contest, we set the cpu time limit of 30 minutes for all instances. We first report our results
for two classes of particularly hard instances.

Instances in the class logic-synthesis are unweighted. The running times obtained
with our approach described above turn out to be more than competitive: In 30 cpu minutes,

135

C. Buchheim and G. Rinaldi

we could solve to optimality 15 out of the 17 instances in this class. On the contrary,
half of the 10 participants of the Max-SAT Evaluation could not solve a single of these
instances, while the others could solve between 1 and 4 of them. More detailed results are
displayed in Table 4. We state the number of solved instance and the average values of the
running time in cpu seconds, the running time without preprocessing (i.e., the running time
for the branch-and-cut algorithm), the number of subproblems in the enumeration tree,
the number of nodes and edges in the auxiliary max-cut graph, and the number of cycle
inequalities generated. We noticed in our experiments that generating a relatively small
number of cycle inequalities can already lead to a significant reduction of the number of
subproblems in the enumeration tree. Adding more cycle inequalities can reduce the number
of subproblems even further, but at the expense of a longer separation time, which only
pays off for larger instances. Notice that preprocessing uses a large portion of running time
for the logic-synthesis problems, which however pays off as it shrinks these instances
by up to 90 %. Here we would like to point out again that all preprocessing techniques we
apply are very straightforward and are not adjusted to the given type of instances.

The second example class consists of the weighted SPOT5 instances. Our results are
again very positive: as shown in Table 4, we could solve 17 instances in the subclass DIR

and 15 in LOG. In the Max-SAT Evaluation, the best participant could solve only 6 instances
in each class. So it seems that our method is consistently superior to other approaches when
applied to very hard Max-SAT instances, in spite of the fact that it is designed for much
more general problems.

Table 4. Experimental results for logic-synthesis and SPOT5 instances.

total b & c b& c auxiliary graph cycle
instances solved time time nodes nodes edges ineqs

logic-synthesis 15/17 126.56 8.83 7.5 4357.0 9580.7 131.9

SPOT5/DIR 17/21 62.96 59.31 2430.7 1001.1 6877.0 241.1

SPOT5/LOG 15/21 202.88 130.06 1751.3 1636.6 8119.6 1039.9

The presented running times, in particular those for logic-synthesis, suggest that a lot
of work is done in the preprocessing. As discussed above, the preprocessing aims at a more
compact reformulation of the problem. Indeed, when running the same instances without
preprocessing, running times are significantly longer and less instances can be solved, as
shown in Table 5 (where the running time for the branch-and-cut algorithm now coincides
with the total time). This is mainly due to the larger size of the auxiliary graphs used in
the max-cut separation. Nevertheless, our algorithm still outperforms all participants of
the Max-SAT Evaluation on these instances.

The instances discussed so far turned out to be the hardest instances for all solvers in the
Max-SAT Evaluation 2007. On these instances, our approach performs particularly well.
However, it is also competitive on most of the other instances; see Table 6 for a complete
overview of our experimental results. The results show that our approach “prefers” sparse
instances, i.e., instances with a small ratio between the number of operators and the number
of basic variables. This could be expected, as it is well-known that integer programming

136

Terse ILP’s for Boolean Optimization

Table 5. Experimental results without preprocessing.

total b& c auxiliary graph cycle
instances solved time nodes nodes edges ineqs

logic-synthesis 12/17 139.62 18.7 13410.4 37155.5 415.9

SPOT5/DIR 16/21 29.62 2114.9 1001.8 6434.6 145.8

SPOT5/LOG 6/21 9.00 913.0 555.3 1459.2 621.8

approaches to max-cut perform much better on sparse instances. For dense instances, we
plan to develop other methods in the future, e.g., using approaches based on semidefinite
programming.

Moreover, as our method mainly addresses the dual side of the optimization, while not
containing any nontrivial primal heuristics, it is not surprising that traditional Max-SAT
solvers perform better on instances where all clauses can be satisfied simultaneously. On
such instances, the optimization aspect takes a back seat, and dual bounds are necessarily
trivial. However, it is clearly plausible that our algorithm can be improved by combining
it with any primal heuristic for SAT or Max-SAT.

6. Conclusion

We presented a novel integer programming approach to nonlinear Boolean optimization
problems. Unlike other approaches, it avoids adding many artificial variables to the model,
at the same time allowing to derive tight linear relaxations of the corresponding polytope.
In the special case of binary polynomial optimization, which has been investigated in [4],
our approach proved to be very successful in practical experiments. Computational results
for hard Max-SAT instances reported in this paper seem to confirm the good performance
of our approach also for other nonlinear optimization problems.

The software described in the paper is accessible online at the web site

we.logoptimize.it

Acknowledgments

We thank the anonymous referees for their comments that helped us to improve the read-
ability of the paper.

137

C. Buchheim and G. Rinaldi

Table 6. Experimental results for all instances of the Max-SAT Evaluation 2007, the runtime limit

is 30 min. On instances marked with a star, we significantly outperform all participating solvers.

instances solved total time b & c time b& c nodes

MAX3SAT/40VARS 16/40 417.38 417.35 1282.4
MAX3SAT/50VARS 10/40 311.04 311.02 3137.8
MAX3SAT/60VARS 10/40 176.65 176.64 2154.6
MAX3SAT/70VARS 10/40 89.68 89.67 868.0
SPINGLASS 20/20 45.43 45.42 1679.0
RAMSEY 24/48 168.92 168.42 302.4
MAX2SAT/100VARS 106/110 260.72 260.70 12504.4
MAX2SAT/140VARS 78/110 189.44 189.43 7999.4
MAX2SAT/60VARS 110/110 4.98 4.96 112.2
MAX3SAT/40VARS 23/50 409.10 409.07 943.4
MAX3SAT/60VARS 10/50 0.52 0.51 10.2
MAX3SAT/80VARS 11/50 45.20 45.19 129.0
MAXCUT/DIMACS MOD 32/62 292.89 292.87 5483.7
MAXCUT/RANDOM 19/40 633.38 633.36 35030.7

⋆ MAXCUT/SPINGLASS 5/5 231.79 231.74 1214.2
RAMSEY 24/48 119.43 118.94 108.5
WMAX2SAT 82/90 184.32 184.31 10402.9
WMAX3SAT 11/80 219.02 219.00 2371.1
WMAXCUT/DIMACS MOD 38/62 284.39 284.38 4767.1
WMAXCUT/RANDOM 33/40 542.00 541.97 31876.1

⋆ WMAXCUT/SPINGLASS 5/5 46.71 46.66 107.0
RANDOM/PMAX2SAT 53/90 463.60 463.44 2037.4
RANDOM/PMAX3SAT 18/60 88.05 88.02 536.1
MAXCLIQUE/RANDOM 96/96 65.74 64.75 7314.9
MAXCLIQUE/STRUCTURED 30/62 266.95 213.55 17505.0
MAXONE/3SAT 58/80 92.38 92.35 437.5
MAXONE/STRUCTURED 41/60 65.88 61.69 373.8

⋆ PSEUDO/garden 6/7 215.79 215.78 6511.0
⋆ PSEUDO/logic-synthesis 15/17 126.56 8.83 7.5

PSEUDO/primes-dimacs-cnf 78/148 38.11 37.41 649.0
PSEUDO/routing 12/15 47.26 28.81 11.1
WCSP/MAXCSP/DENSE LOOSE 20/20 39.94 39.90 5698.6
WCSP/MAXCSP/DENSE TIGHT 20/20 34.27 34.24 35760.1
WCSP/MAXCSP/SPARSE LOOSE 20/20 14.91 14.87 4897.7
WCSP/MAXCSP/SPARSE TIGHT 20/20 47.94 47.92 18979.6

⋆ WCSP/WQUEENS 7/7 0.98 0.69 24.3
RANDOM/WPMAX2SAT 56/90 532.59 532.41 2065.8
RANDOM/WPMAX3SAT 18/60 209.05 209.01 1615.3

⋆ AUCTIONS/AUC PATHS 88/88 0.07 0.01 1.0
AUCTIONS/AUC REGIONS 84/84 4.09 0.26 1.0

⋆ AUCTIONS/AUC SCHEDULING 84/84 0.93 0.04 1.0
PSEUDO/factor 186/186 35.84 34.87 126.7
PSEUDO/miplib 5/16 14.08 14.01 773.8
QCP 18/25 75.71 70.11 135.6
WCSP/PLANNING 71/71 94.65 4.29 9.8

⋆ SPOT5/DIR 17/21 62.96 59.31 2430.7
⋆ SPOT5/LOG 15/21 202.88 130.06 1751.3

138

Terse ILP’s for Boolean Optimization

References

[1] J. Argelich, C. M. Li, F. Manyà, and J. Planes. The first and second max-sat evalua-
tions. Journal on Satisfiability, Boolean Modeling and Computation, 4:251–278, 2008.

[2] F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Programming,
36:157–173, 1986.

[3] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathe-

matics, 123(1–3):155–225, 2002.

[4] C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization
to the quadratic case. SIAM Journal on Optimization, 18(4):1398–1413, 2007.

[5] CPLEX 11.1, www.ilog.com/products/cplex.

[6] C. De Simone. The cut polytope and the Boolean quadric polytope. Discrete Mathe-

matics, 79(1):71–75, 1990.

[7] M. Deza and M. Laurent. Geometry of Cuts and Metrics, 15 of Algorithms and

Combinatorics. Springer-Verlag, 1997.

[8] P.L. Hammer. Some network flow problems solved with pseudo-boolean programming.
Operations Research, 13:388–399, 1965.

[9] F. Heras, J. Larrosa, S. de Givry, and T. Schiex. 2006 and 2007 max-sat evaluations:
Contributed instances. Journal on Satisfiability, Boolean Modeling and Computation,
4:239–250, 2008.

[10] S. Joy, J. Mitchell, and B. Borchers. A branch-and-cut algorithm for MAX-SAT and
weighted MAX-SAT. In Satisfiability Problem: Theory and Applications, 35 of DI-

MACS Series in Discrete Mathematics and Theoretical Computer Science, pages 519–
536. American Mathematical Society, 1997.

[11] V. M. Manquinho and J. Marques-Silva. On applying cutting planes in DLL-based al-
gorithms for pseudo-boolean optimization. In Theory and Applications of Satisfiability

Testing, 3569 of LNCS, pages 451–458. Springer, 2005.

[12] V. M. Manquinho and J. Marques-Silva. On using cutting planes in pseudo-boolean
optimization. Journal on Satisfiability, Boolean Modeling and Computation, 2:209–219,
2006.

[13] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review, 33:60–100, 1991.

[14] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT-solver. Journal

on Satisfiability, Boolean Modeling and Computation, 2:165–189, 2006.

139

	Introduction
	The Problem
	Branch-and-Cut and the Maximum Cut Problem
	New Formulation and Reduction to Maximum Cut
	The Model
	Quadratic Case
	General Case
	Constraints

	Experiments
	Conclusion

