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Abstract

The degree of falsity of an inequality in Boolean variables shows how many variables
are enough to substitute in order to satisfy the inequality. Goerdt introduced a weakened
version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity
of intermediate inequalities [6]. He proved an exponential lower bound for CP proofs with
degree of falsity bounded by n

log2 n+1
, where n is the number of variables.

In this paper we strengthen this result by establishing a direct connection between CP
and Resolution proofs. This result implies an exponential lower bound on the proof length of
Tseitin-Urquhart tautologies when the degree of falsity is bounded by cn for some constant
c. We also generalize the notion of degree of falsity for extensions of Lovász-Schrijver calculi
(LS), namely for LSk+CPk proof systems introduced by Grigoriev et al. [8]. We show that
any LSk+CPk proof with bounded degree of falsity can be transformed into a Res(k) proof.
We also prove lower and upper bounds on the proof length of tautologies in LSk+CPk with
bounded degree of falsity.
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1. Introduction

The systematic study of propositional proof complexity was initiated by Cook and Reckhow
in [4]. It was motivated by the fact that the NP6=co-NP assumption is equivalent to the
existence of hard examples for any proof system. In this paper we deal with semialgebraic
proof systems. They restate a Boolean tautology as a set of inequalities and prove that
this set has no solutions in {0, 1}-variables. For many semialgebraic proof systems, no
hard examples are known, while classical hard examples, e.g. the pigeonhole principle or
Tseitin-Urquhart tautologies, enjoy short proofs.
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The degree of falsity of an inequality in Boolean variables measures how many variables
are enough to substitute in order to satisfy the inequality (we discuss its formal definitions in
Section 2.3). A weakened version of the Cutting Plane (CP) proof system with a restriction
on the degree of falsity of intermediate inequalities was introduced by Goerdt [6]. He proved
an exponential lower bound for CP proofs with degree of falsity bounded by n

log2 n+1
, where

n is the number of variables.

In this work we strengthen this result by establishing a direct connection between CP
and Resolution proofs. Basically, we show that if an inequality has low degree of falsity,
it is equivalent to a small amount of Boolean clauses. This allows us to reason that if all
inequalities in a CP proof have low degree of falsity, then the CP proof can be simulated
step-by-step by Resolution with reasonably low overhead. This implies an exponential lower
bound on the proof length of the Tseitin-Urquhart tautologies for the proofs with degree of
falsity bounded by cn for some constant c.

Then we proceed to extending the notion of the degree of falsity to higher degree semi-
algebraic proof systems and prove lower and upper bounds for the considered systems. We
prove that an LSk+CPk proof with restricted degree of falsity can be transformed into a
Res(k) proof. Hence, strongly exponential lower bounds for Res(k) imply strongly exponen-
tial lower bounds for LSk+CPk with restricted degree of falsity. We also provide exponential
separations of the new (restricted) proof system from CP and Res(k) by giving short proofs
of the Pigeonhole Principle and the Weak Clique Coloring tautologies.

There is a longstanding open question about an exponential lower bound on Tseitin-
Urquhart formulas for semialgebraic proof systems that use the rounding rule. Only partial
results in this direction are known, namely exponential lower bound for tree-like systems
[10] and systems with bounded degree of falsity [6]. In this paper we give a simplified proof
of Goerdt’s result and extend it to higher degree proof systems.

Let us discuss the main ideas of transforming LSk+CPk proofs into Res(k) proofs. Given
an LSk+CPk proof Π we first linearize this proof, that is, replace each monomial by a new
variable. This allows us to work with linear inequalities only. By a Boolean representation
of a linear inequality we mean a CNF formula equivalent to this inequality. By bounding
the degree of falsity of an inequality one bounds the size of this formula. We show that for
any step of the proof Π it is possible to derive the Boolean representation of the conclusion
from the Boolean representations of the premise(s). Thus, we transform an LSk+CPk proof
into a Resolution proof of an auxiliary formula (with additional variables). This implies the
existence of a Res(k) proof of an initial formula.

The paper is organized as follows. Section 2 contains the necessary definitions. The main
results begin to unveil in Section 3 where we show how any Cutting Plane proof can be
transformed into a Resolution proof and how the exponent of this transformation depends
on the upper bound on the degree of falsity. In Section 4.1 we show that any LSk+CPk

proof with bounded degree of falsity can be transformed into a Res(k) proof. Finally, in
Section 5 we prove exponential lower bounds for LSk+CPk with restricted degree of falsity;
we also present short proofs of the Pigeonhole Principle and Weak Clique Coloring with
restricted degrees of falsity.
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2. General Setting

2.1 Proof Systems

A proof system [4] for a language L is a polynomial-time computable function mapping
words in some alphabet (treated as proof candidates) to L (whose elements are treated as
theorems). A propositional proof system is a proof system for the co-NP-complete language
TAUT of all Boolean tautologies in disjunctive normal form (DNF). Since this language is in
co-NP, any proof system for a co-NP-hard language L can be considered as a propositional
proof system. However, we need to fix a concrete reduction of TAUT to L before we can
compare proof systems.

The proof systems we consider are dag-like derivation systems, where a proof is a se-
quence of lines such that every line is either an axiom or is obtained by applying a derivation
rule to several previous lines. The proof finishes with a line called goal. Such a proof system
can be defined by its notions of a line, a goal, a set of axioms and a set of derivation rules.

The Resolution proof system [17] has clauses (disjunctions of literals) as its proof lines
and the empty clause as its goal. Given a formula F in DNF, one takes clauses of the CNF
of ¬F as axioms and uses the following rules:

Resolution:
A ∨ x ¬x ∨ B

A ∨ B
, Weakening:

A

A ∨ l
.

The Res(k) proof system [12] is a generalization of Resolution where one uses k-DNFs
(disjunctions of at most k terms, i.e. conjunctions of literals) as lines. The goal is to
derive an empty clause. We take clauses of the formula ¬F as axioms and use the following
inference rules:

Weakening:
A

A ∨ l
, AND-introduction:

A ∨ l1 · · ·A ∨ lj

A ∨∧j
i=1 li

,

Cut:
A ∨∧j

i=1 li B ∨∨j
i=1 ¬li

A ∨ B
, AND-elimination:

A ∨∧j
i=1 li

A ∨ li
.

Let us now turn to semialgebraic proof systems. To define a propositional proof system
dealing with inequalities, we should translate each formula F in DNF with n variables into
a system D of linear inequalities such that F is a tautology if and only if the system D has
no solutions in {0, 1}-variables. We usually do it as follows: for a given tautology F , we
translate each clause Ci of ¬F with variables xi1 , . . . , xit into the inequality

l1 + . . . + lt ≥ 1, (2.1)

where lk = xik if the variable xik occurs positively in the clause, and lk = 1 − xik if xik

occurs negatively. For every variable xk, 1 ≤ k ≤ n, we also add inequalities 0 ≤ xk and
xk ≤ 1 to the system D.

The proof lines in the Cutting Plane proof system (CP) [5, 7] are linear inequalities with
integer coefficients. The goal is a trivial contradiction 0 ≥ 1. We use the system of linear
inequalities D provided by the translation described above as axioms. The inference rules
are

Addition:
f ≥ 0 g ≥ 0

f + g ≥ 0
, Rounding:

af ≥ c

f ≥ ⌈ c
a⌉

, Multiplication:
f ≥ c

af ≥ ac
,
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where a, c are constants, a > 0, f, g are polynomials.

Another well-known semialgebraic system is the Lovász-Schrijver system LS [13, 14].
This system operates with quadratic inequalities. It includes the Addition rule as above
and introduces the Multiplication by Literal rule:

f ≥ 0

fx ≥ 0
,

f ≥ 0

f(1 − x) ≥ 0
, (2.2)

where f is linear. In order to fix variables to be 0-1, one also needs to introduce the following
axioms for each variable:

x2 − x ≥ 0, x − x2 ≥ 0. (2.3)

It is straightforward to define an extension of LS by allowing LS to deal with polynomials
of higher degree; if we bound the polynomials to degree k, we call the resulting system LSk.

The system LSk was introduced and studied by Grigoriev, Hirsch, and Pasechnik [8].
They also considered a combination of this system with CP: the proof system LSk+CPk

operates with inequalities of degree at most k with integer coefficients as lines, using the
same set of axioms as LSk. The rules are the CP rules restricted to premises of degree k
and the Multiplication by Literal rule restricted to premises of degree (k − 1).

2.2 Proof Linearization

In order to transform an LSk+CPk proof into a Res(k) proof we transform the initial proof
into a Resolution proof of an auxiliary formula. We show the connection between Res(k)
proofs of the initial formula and Resolution proofs of the auxiliary formula below. The
construction closely follows [3], where it is used to prove non-automatizability results for
Res(k).

For every set of distinct and non-opposite literals l1, . . . , lm of a formula F (2 ≤ m ≤ k)
we define a new variable z(l1, . . . , lm) denoting the conjunction of all these literals. This
can be expressed by the following m + 1 clauses:

(z(l1, . . . , lm) ∨ ¬l1 ∨ · · · ∨ ¬lm), (¬z(l1, . . . , lm) ∨ l1), . . . , (¬z(l1, . . . , lm) ∨ lm) .

By F (k) we denote the conjunction of F with all such clauses. We need the following
property of F (k):

Proposition 2.1 ([3]) If F (k) has a Resolution proof of size S, then F has a Res(k) proof
of size O(kS).

Definition 2.2 For a variable zi = z(l1, . . . , ls) of F (k) and a variable x of F , by z(zi, x)
we mean the variable z(l1, . . . , ls, x). For an inequality ι of degree at most k, by lin(ι) we
denote the linear inequality obtained from ι by replacing each of its monomials x1 · · · · · xm

by the linear monomial z(x1, . . . , xm).

To prove the main theorem we also need the following simple lemma:
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Lemma 2.3 Let C be a clause containing variables of F (k) and x be a variable of F . Let
C ′ be a clause obtained from C by replacing each of the variables zi by z(zi, x). Then the
clause

(C ′ ∨ ¬x)

can be inferred from C and clauses of F (k) in at most O(nk) Resolution steps. If, in
addition, C contains at least one negated variable zi, then one can also derive C ′.

Proof. For each variable zi = z(l1, . . . , ls) we can derive clauses (zi ∨ ¬z(zi, x)) and
(¬zi ∨ z(zi, x) ∨ ¬x) by resolving (zi ∨ ¬l1 ∨ · · · ∨ ¬ls), (¬z(zi, x) ∨ l1), . . . , (¬z(zi, x) ∨ ls)
and (z(zi, x) ∨ ¬l1 ∨ · · · ∨ ¬ls ∨ ¬x), (¬zi ∨ l1), . . . , (¬zi ∨ ls), respectively.

For a literal zi of the clause C, we resolve C with (¬zi ∨ z(zi, x) ∨ ¬x) and for a literal
¬zi we resolve C with (zi ∨ ¬z(zi, x)). The result of these operations is either the clause
C ′ or the clause (C ′ ∨¬x). If it is C ′, we derive (C ′ ∨¬x) by applying the Weakening rule.
If C contains at least one negated variable, we resolve (C ′ ∨ ¬x) with (¬z(zi, x) ∨ x) for
¬zi ∈ C.

The number of steps is as required, since the number of variables in C does not exceed
O(nk). �

2.3 Degree of Falsity

The definition of the degree of falsity of a linear inequality was given by Goerdt [6].

Definition 2.4 For a linear inequality ι of the form
∑s

i=1 αixi ≥ c, DGF1(ι) is the difference
of c and the minimal value of its left-hand side over xi ∈ {0, 1}:

DGF1(ι) = c − min
x1,...,xs

s
∑

i=1

αixi.

We present a more combinatorial definition of the same object that also turns out to be
more useful.

Definition 2.5 A literal form of a linear inequality is its representation in the form

s
∑

i=1

αixi +
s′
∑

i=s+1

αi(1 − xi) ≥ c ,

where αi > 0 for 1 ≤ i ≤ s′. For an inequality ι, DGF2(ι) is the free coefficient of the literal
form of ι.

It is easy to see that these definitions are equivalent, i.e., for any linear inequality
ι, DGF1(ι) = DGF2(ι). Both these definitions can be extended naturally to inequalities of
arbitrary degrees (one can just replace variables by monomials in both definitions). However,
the new definitions would not be equivalent. E.g., DGF1(xy + xz − xyz ≥ 2) = 2, while
DGF2(xy + xz − xyz ≥ 2) = 3. Moreover, it is not difficult to show that DGF1 never exceeds
DGF2.
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Lemma 2.6 For any inequality ι,

DGF1(lin(ι)) = DGF2(lin(ι)) = DGF2(ι) ≥ DGF1(ι) .

Proof. The first equality is discussed above. The second one is obvious, because the literal
form does not change when we replace monomials by new variables. For the inequality
consider an inequality ι of the form

s
∑

i=1

αimi(x1, . . . , xn) +
s′
∑

i=s+1

αi(1 − mi(x1, . . . , xn)) ≥ c ,

where mi’s are products of Boolean variables and αi’s are positive. Then DGF2(ι) = c, but
the minimum of the left-hand side of ι over all its variables is obviously non-negative and
may be even positive; in example above,

DGF1(xy+xz−xyz ≥ 2) = DGF1(xy+xz+(1−xyz) ≥ 3) = 3−min
x,y,z

{xy+xz+(1−xyz)} = 2 .

Thus, DGF1(ι) = c − minx1,...,xn{left-hand side} ≤ c. �

Therefore, for nonlinear inequalities DGF1 is stronger. However, we use DGF2 in this paper
since only DGF2 remains invariant under linearization (we need this fact in Theorem 4.1).
In what follows, we use DGF as DGF2. The explicit definition is as follows.

Definition 2.7 A literal form of a polynomial inequality is its representation in the form

s
∑

i=1

αimi +
s′
∑

i=s+1

αi(1 − mi) ≥ c ,

where αi’s are positive constants, mi’s are monomials (i.e. products of variables). For an
inequality ι, DGF(ι) is the free coefficient of the literal form of ι. The degree of falsity of an
LSk+CPk proof is the maximal degree of falsity of all inequalities in this proof.

2.4 Boolean Representations of Linear Inequalities

By a Boolean representation of a linear inequality we mean a CNF formula that is equivalent
to this inequality. Of course, such a formula is not unique. However, for the simulation we
select one specific Boolean representation, and below we describe formally our construction
of this representation.

Let ι be a linear inequality of the form
∑s

i=1 αixi +
∑s′

i=s+1 αi(1−xi) ≥ c, where αi > 0,
for 1 ≤ i ≤ s′. By satisfying a literal of ι we mean assigning either the value 1 to xi, where
1 ≤ i ≤ s, or the value 0 to xi, where s+1 ≤ i ≤ s′. Let ι0 be an inequality obtained from ι
by satisfying some literals, such that no literal of ι0 can be satisfied without trivializing ι0.
In what follows, we call an inequality trivial if it is satisfied for all values of input variables.
Note that an inequality ι is trivial if and only if DGF(ι) ≤ 0.

It is easy to see that ι0 is equivalent to a clause (since it is falsified by exactly one
assignment to its variables). By B(ι) we denote the set of all such clauses, and in the rest
of the paper by the Boolean representation of an inequality ι we mean exactly the set B(ι).
The following lemma shows that this construction is correct and provides an upper bound
on the size of the constructed set.
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Lemma 2.8 For any linear inequality ι, B(ι) is equivalent to ι. Moreover, the number of
clauses in B(ι) is at most

(

n
d−1

)

, where d < n/2 is the degree of falsity of ι.

Proof. Consider all inequalities obtained by satisfying literals occurring in the literal form
of ι with sum of coefficients up to DGF(ι) − 1. That is, we satisfy literals one by one and
stop just before the inequality trivializes whatever coefficient we would choose next (every
coefficient is greater or equal to the degree of falsity); we consider all inequalities that can
be obtained from ι in this way (dropping duplicates, of course). It is easy to see that these
inequalities are equivalent to Boolean clauses. Indeed, consider an inequality

n
∑

i=1

aili ≥ c, where ∀i ai ≥ c.

This inequality holds iff any one of li is true, which is equivalent to l1 ∨ l2 ∨ . . . ∨ ln.

The number of clauses is as claimed, because we cannot satisfy more than DGF(ι) − 1
literals without making ι trivial, and if an assignment results in a clause, its sub-assignments
do not.

We have so far established a set of clauses that follows from the initial inequality. To
prove the converse (that the inequality follows from the clauses), consider an assignment
π that falsifies ι. Substitute its part that satisfies literals of (the literal representation of)
ι. The obtained inequality

∑

j∈J ajlj ≥ c′ > 0 is still non-trivial, because the original
assignment falsifies ι. Then continue satisfying the remaining lj ’s similarly to the construc-
tion above until the inequality becomes a clause. Clearly, this clause is falsified by (the
remaining part of) π. �

Lemma 2.9 If ι is derived from {ιj}j∈S in CP then, for each C ∈ B(ι), there is a Resolution
proof of C from

⋃

j∈S B(ιj) that only contains literals occurring in {C} ∪⋃j∈S B(ιj).

Proof. By Lemma 2.8, ι and B(ι) have the same set of 0/1 solutions. Since the Cutting
Plane proof system is sound and the Resolution proof system is implicationally complete,
the lemma follows (it is easy to see that one can get rid of the literals that do not occur in
{C}∪⋃j∈S B(ιj): it suffices to eliminate the applications of the weakening rule introducing
such literals). �

We also use the following simple property of B(ι) that follows immediately from the
construction.

Lemma 2.10 Let ι be a linear inequality of the form

s
∑

i=1

αixi +
s′
∑

i=s+1

αi(1 − xi) ≥ c ,

where αi > 0. Then the set of clauses of B(ι) that do not contain a literal xi for 1 ≤ i ≤ s
(or a literal ¬xi for s + 1 ≤ i ≤ s′) is exactly the set B(ι|xi=1) (respectively, B(ι|xi=0)).
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3. Lower Bounds for CP Proofs with Restricted Degree of Falsity

3.1 Translating CP Proofs into Resolution Proofs

In this section we present the first main result of this paper. We use the Boolean represen-
tation as described in the previous section to prove lower bounds on CP proof size for CP
with restricted degree of falsity. Our reasoning is as follows: we translate the CP proof into
a Resolution proof via these Boolean representations and show that the size does not grow
too much. This means that if a formula has only long Resolution proofs then it cannot have
short CP proofs.

To make this reasoning precise, we begin with lemmas showing that applications of CP
rules do not hurt the Boolean representation much.

Lemma 3.1 The rounding and multiplication rules do not change the Boolean representa-
tion.

Proof. Suppose that ι′ is obtained from ι by the rounding rule

ι :
∑

i∈I

cili ≥ A

ι′ :
∑

i∈I

ci

c
li ≥

⌈

A

c

⌉ ,

where c|ci for all i ∈ I. For each clause C ∈ B(ι), there is a (partial) assignment π that
produced C from ι:

ι|π :
∑

i∈J

cili ≥ A −
∑

i∈I\J

ci .

Substitute this assignment into ι′:

ι′|π :
∑

i∈J

ci

c
li ≥

⌈

A

c

⌉

−
∑

i∈I\J

ci

c
.

Then ι′|π is also equivalent to a clause, because ⌈A
c ⌉ −

∑

i∈I\J
ci
c ≥ 1

c · (A −∑i∈I\J ci) > 0
and (since c|ck for all k) ∀j ∈ J

cj

c
−





⌈

A

c

⌉

−
∑

i∈I\J

ci

c



 =









cj

c
−





A

c
−
∑

i∈I\J

ci

c













=









1

c
·



cj −



A −
∑

i∈I\J

ci















 ≥ 0 .

Similarly, every assignment that produces a clause from ι′ also produces a clause from ι.
The same holds for the multiplication rule; the argument is easier yet very similar. �

Lemma 3.2 Let integer inequality ι be an integer linear combination of integer inequalities
ι1 and ι2, let DGF(ι1), DGF(ι2) ≤ A. Then every clause C of the Boolean representation
B(ι) (given by Lemma 2.8) can be derived from B(ι1) ∪ B(ι2) in at most 26A−2 Resolution
steps.
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Proof. We may rewrite our inequalities as follows (here xi, yi, zi denote literals):

ι1 :
N
∑

1

e′izi +
K
∑

1

aixi +
L
∑

1

diyi ≥ A1 ,

ι2 :
N
∑

1

e′′i zi +
K
∑

1

bi(1 − xi) +
L
∑

1

di(1 − yi) ≥ A2 ,

ι :
N
∑

1

eizi +
K
∑

1

(ai − bi)xi ≥ A1 + A2 −
K
∑

1

bi −
L
∑

1

di .

Here all coefficients are strictly positive, possibly except for some of the e′i’s and e′′j ’s, which
are nonnegative. In other words, Z contains literals that are not canceled by the applica-
tion of the addition rule, X contains literals that are partially canceled, and Y contains
literals that are canceled completely. We denote X = {x1, . . . , xK}, Y = {y1, . . . , yL},
Z = {z1, . . . , zN}. Let us also denote S = {s | s ∈ S} for any set S.

By Lemma 2.9, there exists a Resolution proof Π of C from the clauses of B(ι1)∪B(ι2).
Note that Z∩C = ∅ and Z∩D = ∅ for every D ∈ B(ι1)∪B(ι2). Hence, Lemma 2.9 provides
Π that does not contain any negative occurrences of zi’s. Let π be the assignment that turns
ι into C; we denote Zπ = {z ∈ Z |π(z) = 1} and Z ′ = Z \Zπ. Note that Z ′ ⊆ C. Therefore,
if one adds Z ′ to each clause in Π, the proof will remain a valid proof of C from the clauses
D∗

i = Di ∪ Z ′, where Di ∈ B(ι1) ∪ B(ι2). Note that |X| + |Y | + |Zπ| < 2A; otherwise
DGF(ι|π) would be non-positive, and the clause C would be a constant True. There are at
most 23|X∪Y ∪Zπ | ≤ 26A−3 possible clauses of the form Z ′∪T , where T ⊆ X∪X∪Y ∪Y ∪Zπ,
hence the modified (dag-like) version of the proof Π cannot contain more than 26A−3 clauses.
It remains to add at most 26A−3 steps needed to obtain D∗

i ’s from Di’s by the weakening
rule. �

3.2 Exponential Lower Bounds for CP Proofs with Restricted Degree of Falsity

We now have all we need to prove the following theorem.

Theorem 3.3 A Cutting Plane proof Π with maxι∈Π DGF(ι) ≤ d ≤ n/2 of a formula in
CNF with n variables can be transformed into a Resolution proof of size at most

(

n
d−1

)

|Π|26d.

Proof. Each step
ι1, ι2

ι
or

ι1
ι

of Π can be replaced by at most
(

n
d−1

)

26d−2 Resolution steps

inferring the
(

n
d−1

)

(see Lemma 2.8) possible clauses of B(ι) from
⋃

i B(ιi), by a 26d−2-length
Resolution proof each. (For addition steps such a Resolution proof is given by Lemma 3.2,
for other steps it is not needed by Lemma 3.1.) �

Remark. The restriction d ≤ n/2 is purely technical: if d exceeds n/2, the binomial
coefficient

(

n
d−1

)

begins to drop, while the condition on DGF weakens further.

Corollary 3.4 If formulas Fn (where Fn contains n variables) have no Resolution proofs
containing less than 2cresn clauses (cres > 0 being a constant), then these formulas do not
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have Cutting Plane proofs of size less than 2cCPn and degree of falsity bounded by cDGFn for
every choice of positive constants cCP < cres and cDGF ≤ 1

2 such that

cCP + 6cDGF − cDGF log2 cDGF − (1 − cDGF) log2(1 − cDGF) ≤ cres . (3.1)

In particular, formulas Fn have only exponential-size Cutting Plane proofs of degree of falsity
bounded by an appropriate linear function of n.

Proof. By Theorem 3.3, Cutting Plane proofs of size less than 2cDGFn can be converted into
Resolution proofs of size less than

(

n
cDGFn−1

)

2cCPn+6cDGFn = o(2(cCP+6cDGF−cDGF log2 cDGF−(1−cDGF) log2(1−cDGF))n) = o(2cresn)

(the first equality uses Stirling’s formula).
Finally, note that f(c) = 6c − c log2 c − (1 − c) log2(1 − c) decreases to 0 as c decreases

from 1
2 to 0. Therefore, for every cCP < cres there is cDGF that satisfies (3.1). �

We now recollect Urquhart’s theorem. In the following proposition, Sm is a certain set
of formulas based on Tseitin tautologies.

Proposition 3.5 ([19], Theorem 5.7) There is a constant c > 1 such that for sufficiently
large m, any Resolution refutation of Sm contains cn distinct clauses, where Sm is of length
O(n), n = m2.

Corollary 3.4 and Proposition 3.5 immediately yield the following corollary.

Corollary 3.6 There exists a positive constant δ such that Tseitin-Urquhart formulas of n
variables (described in [19]) have only 2Ω(n)-size Cutting Plane proofs with degree of falsity
bounded by δn.

4. Lower Bounds for LSk+CPk with Restricted Degree of Falsity

4.1 Transforming LSk+CPk Proofs with Restricted Degree of Falsity into
Res(k) Proofs

In Section 3 we proved new lower bounds on restricted CP proofs via their translations into
Resolution proofs. The rest of the paper is devoted to applying the same basic technique to
a more complicated case of the LSk+CPk proof system. Here we translate LSk+CPk proofs
with restricted degree of falsity into Res(k) proofs.

Theorem 4.1 For any LSk+CPk proof Π of a CNF formula F , there exists a Res(k) proof

of F of size O
(

(

n
d−1

)

|Π|(nk + 26d)
)

, where n is the number of variables of F and d ≤ n/2

is the degree of falsity of Π.

Proof. We show that for any step ι1 ι2
ι or ι1

ι of the proof Π, it is possible to derive
all clauses of B(lin(ι)) from clauses of B(lin(ι1)) (and B(lin(ι2))) and clauses of F (k) in

at most O
(

(

n
d−1

)

(nk + 26d)
)

Resolution steps, where lin(ι) is the linearization introduced

in Definition 2.2 (recall that DGF(lin(ι)) = DGF(ι), so the degree of falsity of all linearized
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inequalities of the proof is also bounded by d). Note that, by Definition 2.2, if an inequality ι0
is an axiom of the proof Π, then B(lin(ι0)) is a clause of F . Observe also that B(lin(0 ≥ 1))
consists of the empty clause. Thus, the constructed proof is a Resolution proof of F .

The Addition and Rounding rules are covered by Lemmas 3.1 and 3.2. Therefore, it
remains to consider the Multiplication by literal rule.

Let ιp be a premise of the Multiplication by literal rule, ιc be its conclusion, and x be a
literal of this rule (so that ιc is obtained from ιp by multiplying by x). Note that since we are
rewriting the original LSk+CPk proof, this literal cannot be one of the z variables introduced
in Definition 2.2. Let also the literal form of lin(ιp) be

∑s
i=1 αizi +

∑s′

i=s+1 αi(1 − zi) ≥ c,

where αi > 0, for 1 ≤ i ≤ s′. The literal form of ιc depends on the sign of (
∑s′

i=s+1 αi − c).
Consider two cases.

1.
(

∑s′

i=s+1 αi − c
)

≥ 0. In this case, the literal form of lin(ιc) is

s
∑

i=1

αiz(zi, x) +
s′
∑

i=s+1

αi

(

1 − z(zi, x)
)

+

(

s′
∑

i=s+1

αi − c

)

x ≥
s′
∑

i=s+1

αi .

Note that each clause of B(lin(ιc)) contains a literal ¬z(zi, x) for some s + 1 ≤ i ≤ s′

(since lin(ιc) becomes trivial when all these literals are assigned the value 0). Each
clause of B(lin(ιc)) containing x can be obtained by the Weakening rule from the
clause (¬z(zi, x) ∨ x).

Now consider all clauses of B(lin(ιc)) that do not contain x, that is, the Boolean
representation of lin(ιc)|x=1. Observe that lin(ιc)|x=1 can be obtained from lin(ιp)
just by replacing each variable zi by z(zi, x), thus, we can apply Lemma 2.3.

2.
(

∑s′

i=s+1 αi − c
)

< 0. In this case, the literal form of lin(ιc) is

s
∑

i=1

αiz(zi, x) +
s′
∑

i=s+1

αi

(

1 − z(zi, x)
)

+

(

c −
s′
∑

i=s+1

αi

)

(1 − x) ≥ c .

Consider all clauses of B(lin(ιc)) that do not contain ¬x. By Lemma 2.10, these
clauses form a Boolean representation of lin(ιc)|x=0. As in the previous case, all these
clauses contain a literal ¬z(zi, x) for some s+1 ≤ i ≤ s′. Note that lin(ιc)|x=0 can be
obtained from lin(ιp) by replacing each variable zi by z(zi, x) and reducing the free

coefficient from c to
∑s′

i=s+1 αi. Thus, B(lin(ιc)|x=0) can be derived from B(lin(ιp))
by applying the steps described in Lemma 2.3 and the Weakening rule.

Each clause C of B(lin(ιc)) containing ¬x corresponds to a clause C0 of B(lin(ιp))
resulting from C by removing ¬x and replacing each variable z(zi, x) of C by zi. All
these clauses can be derived by Lemma 2.3.

The Boolean representation of lin(ιc) contains at most
(

n
d−1

)

clauses, so the number of
steps is as required. �
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4.2 An Exponential Lower Bound for LSk+CPk with Bounded Degree of Falsity

Lemma 4.2 If a formula F with n variables has no Res(k) proof containing less then 2cn,
c > 0, clauses, then for sufficiently large n this formula does not have an LSk+CPk proof
of size less than exp(ǫn) and degree of falsity bounded by dn for every choice of positive
constants ǫ < c/2 and d < 1/2 such that

2ǫ + 6d − d log2 d − (1 − d) log2(1 − d) ≤ c . (4.1)

Moreover, for every ǫ < 1/2 there exists a positive d satisfying this inequality.

Proof. By Theorem 4.1, any LSk+CPk proof of size 2ǫn can be transformed into a Res(k)
proof of size

(

n

dn − 1

)

2ǫn+6dn+k log2 n = o(2(ǫ+6d+k log2 n/n−d log2 d−(1−d) log2(1−d))n)

(as in Theorem 3.4, we use Stirling’s formula). This is o(2cn) since for sufficiently large n,
k log2(n)/n < ǫ. Note that f(x) = 6x − x log2 x − (1 − x) log2(1 − x) decreases to 0 as x
decreases from 1/2 to 0. Thus, for every ǫ < c/2 there exists a d satisfying (4.1). �

Below we show that this lemma implies an exponential lower bound on the size of
LSk+CPk proofs with bounded degree of falsity for a class of formulas that encode a linear
system Ax = b that has no solution over GF2, where A is a matrix of a “good” expander.

Recall the definition of hard formulas based on expander matrices [2] which basically
generalize Tseitin-Urquhart tautologies. For a set of rows I of a matrix A ∈ {0, 1}m×n, we
define its boundary ∂I as the set of all columns J of A such that there is exactly one row
i ∈ I such that:

• aij = 1 for some j ∈ J ;

• for all other i′ ∈ I, i′ 6= i, ai′,j = 0.

Definition 4.3 A is an (r, s, c)-boundary expander if the following conditions hold.

1. Each row contains at most s ones.

2. For a set of rows I, if |I| ≤ r, then |∂I| ≥ c · |I| .

Let b be a vector from {0, 1}n. Then Φ(A, b) is a formula expressing the equality Ax = b
modulo 2, namely, every equation ⊕s

l=1aijl
xjl

= bi is transformed into the 2s clauses on
xj1 , . . . , xjs satisfying all its solutions.

We need the following result that was proven in [1].

Theorem 4.4 Any Res(k) proof of a formula Φ(A, b) with respect to an (r, 3, c)-boundary
expander A ∈ {0, 1}m×n in which every column contains at most ∆ ones, r = Ω(n/∆), has
size exp(Ω(n/2O(k2))).

Theorem 4.5 There exists a positive constant δ such that formulas Φ(A, b) with respect to
an (Ω(n/∆), 3, c)-expander A in which every column contains at most ∆ ones, have only
exp(Ω(n))-size CP and LSk+CPk proofs with degree of falsity bounded by δn.

Proof. The proof follows from Lemma 4.2 and Proposition 4.4. �
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5. Upper Bounds for LSk+CPk with Restricted Degree of Falsity

In this section we give lower and upper bounds for LSk+CPk with restricted degree of
falsity. Namely, we give short proofs of the Pigeon-Hole Principle (which was proven in [18]
to be hard for Res(k) when k ≤

√

log n/ log log n, later improved to k ≤ ǫ log n/ log log n in
[16]) and the Weak Clique-Coloring tautologies (which are known to be hard for CP [15]).
This gives exponential separation of the new system from Res(k) and CP. We also show
how exponential lower bounds for the LSk+CPk with DGF bounded by cn for some constant
c follow from strongly exponential lower bounds for Res(k).

5.1 Short Proof of the Pigeon-Hole Principle

In this subsection we briefly describe the Pigeon-Hole Principle formulas and reprove Go-
erdt’s result in the form we need in the next subsection for the polynomial upper bound for
clique-coloring formulas.

The M to N pigeon-hole principle (PHPM
N ) is coded by the following set of clauses:

∨

1≤ℓ≤N

xk,ℓ , 1 ≤ k ≤ M , (5.1)

¬xk,ℓ ∨ ¬xk′,ℓ , 1 ≤ k 6= k′ ≤ M, 1 ≤ ℓ ≤ N . (5.2)

This set of clauses is translated into the following set of inequalities:

∑

1≤ℓ≤N

xk,ℓ ≥ 1 , 1 ≤ k ≤ M , (5.3)

(1 − xk,ℓ) + (1 − xk′,ℓ) ≥ 1 , 1 ≤ k 6= k′ ≤ M , 1 ≤ ℓ ≤ N . (5.4)

By an argument similar to Goerdt’s [6], we give a short proof of this contradiction in CP
(and hence in LSk+CPk) with the degree of falsity bounded by

√
n. The following lemma

will be of use for us later since Weak Clique-Coloring tautologies generalize the pigeon-hole
principle.

Lemma 5.1 Given a set of inequalities xi +xj ≤ 1 for all 1 ≤ i 6= j ≤ M and an inequality
∑M

i=1 xi + A ≥ 0, where A is a polynomial not containing variables xi, 1 ≤ i ≤ M , we can
deduce an inequality A+1 ≥ 0 in O(M2) steps with DGF not exceeding the DGF of the initial
inequalities.

Proof. We prove by induction on M that A +
∑s

i=1 xi − xs′ + 1 ≥ 0 for all 1 ≤ s′ ≤ s can
be deduced.

Base: an inequality A +
∑M−1

i=1 xi − xj + 1 ≥ 0 is the sum of initial inequalities A +
∑M

i=1 xi ≥ 0 and 1 − xM − xj ≥ 0.

Induction step: for all 1 ≤ s′ ≤ s − 1 sum the following three inequalities:

A +
∑s

i=1 xi − xs + 1 ≥ 0,
A +

∑s
i=1 xi − xs′ + 1 ≥ 0,

1 − xs − xs′ ≥ 0
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and apply the Rounding rule to the result. This will yield the following:

A +
s−1
∑

i=1

xi − xs′ + 1 ≥ 0 .

This completes the proof. �

Now, summing up all inequalities (5.3) we have

N
∑

j=1

M
∑

i=1

xi,j ≥ M . (5.5)

Then apply Lemma 5.1 step by step (for i = M, . . . , 1) to obtain Ai−1 from Ai, where Ai is

i
∑

j=1

M
∑

i=1

xi,j + (N − i) ≥ M .

It is easy to see that A0 is a contradiction.

5.2 Short Proof of the Weak Clique-Coloring Tautologies

First, we recall the definition of the Weak Clique-Coloring tautologies. Given a graph G
with N vertices, we try to color it with M − 1 colors, while assuming the existence of a
clique of size M in G. The set of variables of this tautology consists of the following three
groups:

• for 1 ≤ i, j ≤ N , pij = 1 iff there is an edge between i-th and j-th vertices of G,

• for 1 ≤ i ≤ N , 1 ≤ k ≤ M , qki = 1 iff the i-th vertex of G is the k-th vertex of the
clique,

• for 1 ≤ i ≤ N , 1 ≤ ℓ ≤ M − 1, riℓ = 1 iff the i-th vertex of G is colored by the color ℓ.

Thus, the number of variables n is equal to N2 + NM + N(M − 1). The contradiction is
given by the following set of inequalities:

(1 − pij) + (1 − riℓ) + (1 − rjℓ) ≥ 1 , 1 ≤ i < j ≤ N , 1 ≤ ℓ ≤ M − 1 , (5.6)

M−1
∑

ℓ=1

riℓ ≥ 1 , 1 ≤ i ≤ N , (5.7)

N
∑

i=1

qki ≥ 1 , 1 ≤ k ≤ M , (5.8)

(1 − qki) + (1 − qk′,i) ≥ 1 , 1 ≤ k 6= k′ ≤ M , (5.9)

pij + (1 − qki) + (1 − qk′,j) ≥ 1 , 1 ≤ i < j ≤ N , 1 ≤ k 6= k′ ≤ M . (5.10)

Grigoriev et al. [8] added one more family of inequalities to the list above:

(1 − qkj) + (1 − qki) ≥ 1 , 1 ≤ k ≤ M , 1 ≤ i 6= j ≤ N . (5.11)
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However, any CP refutation of the new system still requires at least 2Ω((n/ log n)1/3) steps.
Now let us give a short proof of this contradiction with degree of falsity bounded by

√
n.

Theorem 5.2 The set of inequalities (5.6)–(5.11) has a polynomial-size proof with degree
of falsity bounded by

√
n.

Proof. We rewrite the proof of [8] and put each inequality into its literal form in order to
show that the degree of falsity is as required. First, for each i, we multiply (5.7) by qki and
then sum the resulting inequalities to obtain

N
∑

i=1

M−1
∑

ℓ=1

qkiriℓ +

N
∑

i=1

(1 − qki) ≥ N ,

Adding (5.8) to this inequality yields

N
∑

i=1

M−1
∑

ℓ=1

qkiriℓ ≥ 1 . (5.12)

Next, we eliminate pij from (5.6) and (5.10) and obtain

(1 − qki) + (1 − qk′,j) + (1 − riℓ) + (1 − rjℓ) ≥ 1 , (5.13)

for 1 ≤ i < j ≤ N , ≤ k 6= k′ ≤ M .
Then, we sum (5.13) with axioms (1− qki)riℓ ≥ 0, qki(1− riℓ) ≥ 0, qk′,j(1− rjℓ) ≥ 0 and

(1 − qk′,j)rjℓ ≥ 0 and apply the Rounding rule:

(1 − qkiriℓ) + (1 − qk′,jrjℓ) ≥ 1 , 1 ≤ i < j ≤ N , 1 ≤ k 6= k′ ≤ M . (5.14)

Using qki(1 − riℓ) ≥ 0, qkj(1 − rjℓ) ≥ 0 and (5.11), we obtain

(1 − qkiriℓ) + (1 − qkjrjℓ) ≥ 1 , 1 ≤ ℓ ≤ M − 1 , 1 ≤ k ≤ M . (5.15)

Multiplying every (5.9) by riℓ and adding (1 − riℓ) ≥ 0 to the result, we obtain

(1 − qkiriℓ) + (1 − qk′,iriℓ) ≥ 1 . (5.16)

Inequalities (5.14)–(5.16) imply that any length 2 sub-sum of monomials in the the sum

M
∑

k=1

N
∑

i=1

qkiriℓ , 1 ≤ ℓ ≤ M − 1 ,

is bounded by 1.
The proof of the Weak Clique-Coloring tautologies is then as follows. Sum (5.12) for all

1 ≤ k ≤ M to obtain
M
∑

k=1

N
∑

i=1

M−1
∑

ℓ=1

qkiriℓ ≥ M . (5.17)

Then, apply Lemma 5.1 to (5.14)–(5.16) and (5.17) for s = M − 1, . . . , 1 to obtain

M
∑

k=1

N
∑

i=1

s−1
∑

ℓ=1

qkiriℓ + M − 1 − s ≥ M . (5.18)

For s = 1 this is a clear contradiction: −2 ≥ 0. �
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6. Further Work

It is clear that the power of proof system diminishes as the degree of falsity decreases.
However, we were unable to prove it formally, i.e., to demonstrate an exponential separation
between proof systems with different restrictions on the degree of falsity even for CP (except
for the separation between very severe restrictions that yield Resolution and very vague
restrictions that allow to prove the pigeon-hole principle). It would be interesting to devise
a family of formulas that produce a fine hierarchy of systems with different DGF’s.
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