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Abstract

In both the hardware and the software domains, non-canonical circuit-based state set
representations have recently been the subject of intensive investigations. One of the lim-
iting factors of these representations has been the difficulty to control their size during
key operations. For example, existentially and universally quantifying a variable implies
doubling the circuit size in the worst case.

In this paper, we present a probabilistic approach to keep under control the size of
circuit-based representations when manipulating them. Every time a formula is becoming
too cumbersome, we estimate it instead of building the exact result. The nature of the
estimate, i.e., under- or over-approximation, depends on the problem that is being com-
puted. The key idea of this process is to boost the expressiveness of the formula, delivering
a dense representation, i.e., a formula compact in size but more expressive for the given
verification problem.

Experimental results show decisive reductions in terms of circuit size, and an increase
in terms of density, i.e., the ratio between the cardinality of the on-set of a formula and
the size of its representation. We applied the strategy to Bounded Model Checkingm,
and circuit-based backward Unbounded Model Checking. We present experimental results
from applying the approach to hard-to-solve verification instances. We observed speedups
of more than one order of magnitude in some cases.

Keywords: and-inverter graph, Boolean satisfiability, SAT-solvers, model checking, den-
sity, controllability
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1. Introduction

Binary Decision Diagrams (BDDs) [5] have long been the key instrument for representing
and manipulating Boolean functions. Being a canonical structure, BDDs suffer from the so
called space-explosion problem, i.e., they often become too complex to be efficiently used.

Ravi et al. [13] addressed this problem proposing the “high-density” paradigm. Given
a BDD representing a set of states, density was defined as the ratio between the number
of minterms in the represented formula and the size of the corresponding BDD in terms of
nodes. The main idea of their procedure was to increase the density of the state set repre-
sentation, in order to obtain a better characterization of the state space. Their algorithm
performed a breadth-first visit of the state space [6] as long as the BDDs used in image
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computation were small. When they became too large, a dense subset was retained. This
set was generated trying to maintain the highest possible number of minterms (i.e., states)
represented with the smaller possible number of BDD nodes. Such a subset was used to
proceed in the traversal. Once a dead-end was reached, i.e., a stage where no new states
were added, the image of the entire set was computed to recover from previously lost states.

More recently, SAT-based verification techniques have been shown to be more robust and
scalable than symbolic model checking methods based on BDDs. SAT tools usually work on
a Conjunctive Normal Form (CNF) representation. It, in turn, is usually derived from non-
canonical circuit-based representations such as And–Inverter Graphs (AIGs) [10], Boolean
Expression Diagrams (BEDs) [15], and Reduced Boolean Circuits (RBCs) [1]. AIGs, for
instance, can be adopted as underlying structure in many verification methods. In Bounded
Model Checking (BMC), the formula under check is often represented through AIGs, and
then stored into CNF just before the satisfiability step. Similarly, pre-image computations,
involving the existential quantification of input and state variables, can be performed on an
AIG representation [8].

Albeit AIGs (as well as BEDs and RBCs) are a non-canonical structure, their size is
still a key problem in many common procedures. For example, existentially and universally
quantifying a variable implies doubling the circuit size in the worst case. Analogously, in
the BMC procedure the size of the formula grows linearly with the bound of the problem.

In this paper, we present a probabilistic approach to keep under control the size of
circuit-based state set representations. The core idea is to apply the high-density paradigm
on AIG-based state set representations. We define the representativity of an AIG as the
ratio between the number of minterms represented and the size of the AIG in terms of
gates. Whenever an AIG is too large, we try to increase its representativity. To do that, we
use a set of heuristic measures to decide how to simplify the AIG. While BDD heuristics
are essentially based on the BDD structure and its canonicity, we resort to probability and
testability measures. We first compute the probability to have any node equal to 1, or,
similarly, we compute the controllability value of any node to 1. These measures indicate
the difficulty of setting a line to a certain value. Then we cut-out all the nodes having a
small probability (or high controllability), as these nodes are considered to have a small
influence on the on-set of the characteristic function of our state set representation. When
cutting-out part of the AIG representation, we have to decide whether to produce a subset
or superset of the original state set. This choice depends on the given verification problem.

We apply our approximation technique to BMC and to the circuit-based property ver-
ification technique presented in [8]. Both sub-setting and super-setting may have a larger
variety of applications. For example, super-setting, i.e., producing over-approximations of
the exact representation, can be applied within abstraction-and-refinement techniques. In
this field, it can possibly deliver abstract models on which to prove the properties, while
the original (concrete) design is used to refute them. Moreover, super-setting can also
be applied in interpolant-based verification to produce a tighter estimate of the so-called
k-adequate over-approximate images.

Notice that in our backward verification procedure, as in the original paper [13], we
eventually have to recover from previously lost states. This problem is alleviated by the
observation that a complete traversal is not always required for property verification. This
mixed approach has two advantages:
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1. It typically reaches more states with smaller memory resources, since it is not con-
strained by a fixed sequence of states as in the breadth-first search.

2. Even when the number of states are comparable, it can reach farther away from the
initial states, thereby producing a more uniform sampling of the reachable space.

Notice that the two proposed methods, the probabilistic BMC and unbounded backward
verification, do not produce false results as they always end-up with an exact search. The
increased efficiency steams from mixing under-, over- and exact-searches in an accurate way.
While the second strategy is also complete, i.e., it is able to prove true properties, the first
one shares with standard BMC its debugging characteristic, i.e., it can only disprove false
properties.

To sum up, this paper makes the following contributions:

• The introduction of probability or controllability measures to estimate the influence of
the gates of a circuit on the output of the circuit itself. These measures are computed
with a complexity which is linear in the size (number of AIG gates) of the design.

• A procedure to compute both a subset and a superset of a given circuit, using the
previous measures. The complexity of such a procedure is again linear with respect
to the size of the circuit.

• The application of such an approximation routine to Bounded and Unbounded Model
Checking of standard and industrial benchmarks.

With respect to Ravi et al. [13], who applied high-density to BDD-based reachability anal-
ysis, we focus on AIG-based representations, we compute both under- and over-estimates,
and we concentrate on BMC and backward verification.

Experimental results prove the ability of our strategy to increase the density of circuit-
based state set representations, and to produce a subsequent performance gain. Moreover,
they show how under- and over-approximations may help to solve hard verification problems
from BMC and backward unbounded verification.

The paper is organized as follows. Section 2 introduces some preliminary information on
our notation, AIGs, and formal verification. Section 3 describes the theoretical framework
to extract high-density representations from an AIG. Section 4 introduces practical aspects
of the previously described operation. Section 5 shows how to apply the technique within
circuit-based BMC and unbounded backward verification. Finally, Section 6 discusses the
experiments we performed, and Section 7 concludes with a few summarizing remarks.

2. Background

Among the three main circuit-based representations, i.e., AIGs [10], BEDs [15], and RBCs [1],
we adopt the first one because of its simplicity. AIGs can conceptually be seen as a graph
structure containing operator nodes, variable nodes, and a mechanism for representing
terminals. They consist of two-input AND operators only, and represent negations with
markers on edges. Complex gates can always be expressed with this representation. Two
level-minimization [10] is done before node creation. When an operator node with two child
nodes must be created, the two level circuit formed by the node itself and its children is
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rewritten to a canonical two-level circuit, with as few nodes as possible. Given an AIG f ,
we indicate with nf its size in terms of number of gates.

In our notation, B indicates the Boolean space. Symbols ∧, ∨, ¬, ≡ and ⇒ are used
for Boolean conjunction (AND), disjunction (OR), negation (NOT), exclusive-nor (XNOR)
and implication, respectively. We indicate with s, x and y the sets of present state, input
and next state variables, respectively. Given a set α, we adopt the notation |α| to indicate
its cardinality.

The sequential systems we address are usually modeled as Finite State Machines (FSMs).
We indicate with δ(s, x) the set of next state functions as a function of present states and
input variables. Each FSM is then described by an initial state set S and a Transition
Relation which indicates the present-to-next state behavior of the design:

TR(s, x, y) =
∧

i(yi ≡ δi(s, x)) (1)

The positive and negative cofactors of f(v) with respect to a variable vi are

fvi
= f(v1, . . . , 1, . . . , vn)

and
f¬vi

= f(v1, . . . , 0, . . . , vn)

respectively.
Existential quantification of f(v) with respect to a variable vi is defined as:

∃vi
f = fvi

∨ f¬vi

A function f is positive unate in variable v iff:

fv ⇒ f¬v

It is negative unate in variable v iff:

f¬v ⇒ fv

An invariant property P can be checked by disproving the reachability of its complement,
the target set of states T (T = ¬P), from the initial state set S.

3. Probabilistic Circuit-Based Quantification

Let us suppose that a single-output Boolean circuit (i.e., an AIG) represents a function
f . Moreover, let us suppose that we have a circuit size threshold t, determined by the
memory and time resources available during the verification process. If the circuit size
exceeds the threshold, we explore approaches to reduce the size of f and thus increase its
representativity, by sub-setting or super-setting its representation. This problem can be
more formally posed in the following way.

Definition 1. Let f be a function represented by a single-output circuit with nf gates. Let
t be a threshold, such that nf > t. We define a proper under-estimate of f , the function
fs represented by a circuit with nfs

gates, such that fs ⇒ f , nfs
< nf , and such that the

number of minterms of fs is maximum, i.e., its on-set has the maximum cardinality.
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Over-estimates (fS of f) can be defined dually. The new circuit fs (fS) can be obtained
from f by simplification, i.e., by erasing or modifying part of the original circuit. This means
that we have to cut-out part of the AIG, trying to reduce (or increase, for fS) the number
of minterms as little as possible. As a result, we define the circuit density as follows.

Definition 2. Given a circuit-based representation f , we define its density as:

density (f) =
|on − set (f)|

nf

Our target is to maximize the density of the representation.
In [13], the authors proposed two main strategies to obtain dense subsets from a BDD.

The first one, called heavy branch sub-setting, is based on the simple observation that a
subset of a given BDD can be created by setting one cofactor of a node to the constant 0,
and retaining the other. The procedure creates a subset of the given BDD by discarding
(setting to the constant 0) the child at each node with the smaller number of minterms.
The second strategy, the short-path sub-setting, is based on the rationale that, among all
paths from the root of the BDD to the terminal constant 1, shorter paths represent more
minterms. Thus, the driving idea is to keep all the nodes on the shortest paths and to erase
the nodes in the longest paths.

Although the two techniques can be applied to our AIG structure, they do not deliver
the desired results. For instance, it is easy to rule-out longer paths on an AIG, but on this
structure there is no correlation between the length of a path and the number of minterms
represented by the path. In fact, while BDDs are a canonical representation, AIGs are not,
as several representations are possible for the same set of minterms.

To perform the same operation on an AIG, our algorithm proceeds in two steps. In the
first one, it evaluates which parts of the circuit have to be cut-out in order to increase the
circuit density. In the second one, it cuts them out to obtain a proper under- (or over-)
approximation of the original representation. We analyze the two phases in the following
two subsections.

3.1 Probabilistic High-Density Analysis on AIG

To simplify our AIG network representation, we resort to probability and testability mea-
sures. We first analyze these measures. Then, we apply them to decide which nodes to cut
in order to under- or over-approximate the circuit.

3.1.1 Probability Measures

Given a node n, we denote by P1(n) the probability of n to be equal to 1. Analogously,
P0(n) indicates the probability of n to be equal to 0. The probability formulas for AND
and NOT gates are given by:

o = i1 ∧ i2 P1(o) = P1(i1) · P1(i2)
o = ¬i P1(o) = 1 − P1(i)

Obviously, for a given node n, P0(n) can always be computed from P1(n) as

P0(n) = 1 − P1(n)
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By assigning a probability to the AIG variables, probability values can be derived for
the entire Boolean network proceeding from the primary inputs to the primary output.
Unfortunately, these expressions are correct only if the Boolean network is a tree structure,
as, because of signal re-convergence, gates are correlated and not independent. As we do
not have specific information on the value assumed by the inputs, we arbitrarily set the
probability of each variable equal to 0.5.

3.1.2 Controllability Measures

An alternative approach to the one outlined in Section 3.1.1 is allowed by controllability
measures. These measures indicate the relative difficulty of setting a line to a certain value.
For every node n we can compute two cost functions C0(n) and C1(n), to reflect the relative
difficulty of setting n to 0 and 1, respectively. In this approach, knowing the values of C0

and C1 for each input of a gate, we can compute controllability measures for each AND and
NOT gate following [7]:

o = i1 ∧ i2 C0(o) = min{C0(i1), C0(i2)} + 1
C1(o) = C1(i1) + C1(i2) + 1

o = ¬i C0(o) = C1(i) + 1
C1(o) = C0(i) + 1

where the term “+1” is added to keep into account the logic depth of a gate. The process
starts by setting the controllability values for variables equal to 0. As in the probabilistic
analysis, we have less accurate controllability values in the presence of non-independent
gate inputs, i.e., reconvergent fanout. In order to reduce this effect, it is possible to exploit
the so called fanout-based controllability measure [2], introducing a correction term which
depends on the fanout of the gate.

As a final remark, notice that, given its definition, the probability measure Pα(n) in-
creases if the probability to have n equal to α is higher. On the contrary, the controllability
measure Cα(n) increases when the difficulty to set n to α is higher, i.e., increases if the
probability to have n equal to α is lower. Moreover, the probability of a node to be equal
to 0 or 1 is always included in the range [0, 1], whereas the controllability values increase
from the inputs to the output. As a consequence, controllability has to be normalized with
respect to the level of the node in the network, if we want to obtain a steady and level-
independent measures. Finally, notice that a further alternative to probability measures
would be using observability on the output.

3.1.3 Selecting the Cut-Points

In the sequel we present our strategy for selecting the cut-points by using the probability
measures, although our reasoning can be applied to controllability (and observability) as
well. Let us consider Figure 1. Given the output function f , for each internal node n we
compute:

• The probabilities of that node to be equal to 1 and 0, i.e., P1(n) and P0(n) respectively.

• The numbers of paths from n to the output f containing an even and an odd number
of negations (i.e., edge inversions in the AIG structure). We denote the first set of
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paths by E, and its cardinality by |E|, and the second set of paths by O, and its
cardinality by |O|.

O

n |O|

|E|
f

E

Figure 1. Selecting a cut-point using probability measures.

To obtain a proper subset (superset) of the function, we replace some of the nodes n with
the constants 0 and 1, essentially propagating a value equal to 0 (1) on the E paths, and a
value equal to 1 (0) on the O paths. This procedure will be fully described and motivated
in Section 3.2, but the intuition behind it is that each complementation toggles a subset in
a superset and vice-versa1.. Hence, obtaining the right (under/over) estimate can be seen
as a function of the constant value (0/1) used to replace n, and the number of inversions
along the paths from n to the output. In any case, this procedure produces an error in the
circuit as the we propagate inconsistent 0/1 values different paths. To clarify this point, let
us concentrate on sub-setting. If the node n is set to 0 by the current variable assignment,
we do not have any error on the E paths (on which we propagate the right value 0), but
we generate an error on the O paths (on which we propagate the wrong value 1). The error
produced on the O paths is proportional to the probability of n being equal to 0. As this
error propagates on all |O| paths towards the output, the global error on these paths can
be evaluated as |O| ·P0(n). The same reasoning can be made when n is equal to 1. In that
case, we do not have any error on the O paths (on which we propagate the right value), but
we have an error on the E path (on which we propagate the wrong value). This error is
equal to |E| ·P1(n). As a consequence, the probability to have a wrong value on the output
is equal to:

PE(n) = |E| · P1(n) + |O| · P0(n) (2)

Unfortunately, the value of PE(n) in the previous expression is influenced by the position of
the node n in the AIG. In fact, nodes closer to the output tend to have fewer paths toward
the output (smaller |E| and |O| values). To have a probability distribution independent
from the position of n in the AIG, we normalize Equation (2) as follows:

PE(n) =
|E| · P1(n) + |O| · P0(n)

D · (|E| + |O|)
(3)

where D is the number of gates on the longest path from n to the output, i.e., the maximum
number of gates to traverse to reach the output from n. The denominator of the equation
is larger for nodes closer to the primary inputs.

1. The reason for this is that for any subset fs and superset fS of a Boolean function f , such that fs ⇒

f ⇒ fS , it is true that ¬fS
⇒ ¬f ⇒ ¬fs.
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Once we have the probability value for each node n, we perform our cuts on nodes n
with a small value of PE(n), in order to minimize the probability to have a wrong value on
the output. For each cut:

• The nodes in the transitive fanin of the selected node n, which do not have any fanout
outside the transitive fanin itself, may be erased.

• The injection of a constant (0 or 1) value on node n, and the subsequent Boolean
constraint propagation (BCP) usually produces a simplification in the AIG and a
reduction in terms of nodes.

• A certain number of new nodes must be generated to build the required under- or
over-approximation. This is due to the propagation of different constant values (0 or
1) on different paths (see Section 3.2).

The result in terms of nodes is the sum of the three previous contributions. To obtain
the desired reduction in terms of AIG nodes, we apply a technique derived from [4] and
described in the following section.

3.2 Computing Under- or Over-Approximations of an AIG

To produce an under- (over-) approximation of an AIG, we may replace each sub-net we
want to cut with:

• A constant value (0 or 1) expressing the under- or over-approximation.

• A simpler version of the sub-net we want to cut by re-synthesizing the sub-net.

In both cases, the main issue we have to solve is to understand how to obtain a strict under-
(or over-) approximation of the network by cutting or modifying a part of it. In this paper
we concentrate on the first strategy.

Note that replacing an AIG node with a constant 0 (1) does not necessarily produce
an under- (over-) estimation of the output function. For example, in Figure 2(a) we have
g = x∧y and f = ¬(x∧y). In this situation, setting x = 0 forces g = 0, under-approximating
it, but f = 1, over-approximating it.

f
g

y

x

(a)

y

x

f

(b)

Figure 2. Obtaining under- (over-) approximation.
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As a further example, consider Figure 2(b) where f = ¬(x ≡ y). Setting x = 0 gives
f = y, and setting x = 1 produces f = ¬y. These are neither an under- nor an over-
estimate of the original f = ¬(x ≡ y), which can always assume both the value of y and ¬y
depending on the value of x.

To avoid the above problems, we remember that if n is a positive (negative) unate node,
f can be replaced with fn (f¬n) to obtain an under-approximation of f (the reverse is
true to obtain an over-approximation). Moreover, a sufficient condition for a node n to be
positive (negative) unate in an AIG is that all paths from n to the output f contain an odd
(even) number of inversions.

In general, every node n will have paths with both polarities toward the output, and
different paths can also share sub-paths. Let us suppose to make a cut on the gate named
g1, and that there is more than one path connecting gate g1 to gate g2 (i.e., g2 is a re-
convergent gate for g1 and g1 is a re-convergent fanout for the network). The only feasible
strategy in this situation is to produce both an under- and an over-estimate for each node
of the network included from g1 and g2. In order to produce opposite estimates (under
versus over), we have to propagate different constant values on the E and O paths. Thus,
we have to duplicate the entire circuit between gates g1 and g2, re-synthesizing it during
BCP. Depending on how much we have to duplicate and how effective BCP is, the size of
the AIG can actually increase or decrease. To avoid an increase, we estimate the number of
nodes added during the procedure as a function of the node level difference between gates
g1 and g2. As a result, we actually perform the cut only when the number of erased nodes,
as computed in Section 3.1.3, is larger than the predicted number of added nodes.

As a final remark notice that contributions propagated along different paths are always
combined maintaining the proper estimate. In fact, with AIGs, reconvergent paths are com-
bined with two-input AND gates, and a conjunction of two under- (over-) approximations
is always an under- (over-) approximation.

4. Implementation Details

In this section, following Section 3, we first present the implementation details on how to
select the cutting points. Then, we show how to perform the cut.

4.1 Selecting the Cut-Points

Figure 3 shows the pseudo-code of the algorithm adopted to decide how to cut the AIG
network.

Function ProbabilisticCut receives as parameters the AIG f , and a node size thresh-
old which indicates the maximum size allowed for f . A depth first visit (DFSVisit, line 2)
is used to compute the probability measure described in Section 3.1 for every node of the
AIG. This procedure returns the probability measures array (prob[]) and the array of the
maximum distance of each node from the leaves (inputs) of the AIG (leafDist[]). Then, the
routine PFSVisit (line 3) performs a prioritized visit, using the value leafDist[] as priority.
The purpose of the prioritized visit is to find, for every node, its maximum distance from
the root (output) of the AIG (rootDist[]) and, at the same time, the number of disjoint
paths toward the AIG output (numPaths[]). These values can be computed with a single
pass on the AIG using the array leafDist[] as priority values for the prioritized visit. This is
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1 ProbabilisticCut (f , threshold)
2 (leafDist[], prob[]) = DFSVisit (f)

3 (rootDist[], numPaths[]) = PFSVisit (f , leafDist[])

4 errorMeasure[] = FindError (probability[], rootDist[], numPaths[])

5 cutNodes[] = FindCutNodes (errorMeasure[], threshold)

6 return (cutNodes[])

Figure 3. Pseudo-code for the probabilistic heuristics.

because, before visiting a particular node, we are sure that all the AIG nodes in its fanout
have been already visited.

After that, all these measures are combined together, by applying Equation 3, in order
to obtain an estimate of the error for each node (line 4). Eventually, the algorithm selects
which nodes n of the AIG have to be cut (line 5). This is done by choosing, among the
nodes for which PE(n) is minimum, the ones for which the net balance in terms of effectively
deleted nodes is positive.

Notice that function ProbabilisticCut has a linear time-cost, as it performs two
complete visits over the AIG structure. In particular, the number of paths of a node to
the AIG output can be exponential in the number of gates in the AIG itself, yet it can be
computed in linear time following an algorithm similar to the minterm count for BDDs.
The principle is simple. The gate that generates the output has only 1 path towards the
output itself. Every other gate of the network has a number of paths that is equal to the
sum of all paths throughout the gates in its fanout. As a consequence, a single linear visit
of the network, starting from the output and moving towards the inputs, is sufficient to
compute the number of paths of all gates towards the output.

4.2 Computing Under- or Over-Approximations of an AIG

Once we have decided how to prune the AIG network, we still have to build the estimate
of the output node. Figure 4 shows the pseudo-code to perform this step.

Function BuildSubset receives two parameters: f is the AIG network to approximate;
the cutNodes array, generated (as shown in Section 4.1) by routine ProbabilisticCut,
indicates where to make the cuts. The function performs a single recursive post-order visit
of f . This is guaranteed by procedure SetVisited (line 4), which marks all visited nodes,
and routine IsVisited (line 2) which checks this condition, avoiding further passages for the
same node. For each recursion step, procedure BuildSubset computes both an under- and
an over-approximation of the Boolean function represented by the current regular, i.e., non-
inverted, node. Such approximations are denoted, in Figure 4, with fs and fS , respectively.
Nevertheless, function BuildSubset always returns the right under-estimation of the node
f . If f is non-negated, then this value is really given by fs; otherwise, the subset is generated
as ¬fS . The reason for this is that for any Boolean function f , given a subset and a superset
of it such that fs ⇒ f ⇒ fS , it is also true that ¬fS ⇒ ¬f ⇒ ¬fs.

The critical steps of the algorithm are:
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1 BuildSubset (f , cutNodes[])

2 if (IsVisited (f)) then
3 return (IsInverted (f) ? ¬fS : fs)
4 SetVisited (f)
5 if (IsACutNode (f , cutNodes[])) then

6 fs = ZERO
7 fS = ONE
8 return (fs)
9 if (IsVariable (f)) then

10 fs = fS = Regular (f)
11 return (f)
12 // Compute regular Subset
13 lefts = BuildSubset (left, cutNodes[])

14 rigths = BuildSubset (right, cutNodes[])

15 fs = lefts ∧ rights
16 // Compute regular Superset
17 leftS = IsInverted (left) ? ¬lefts : leftS

18 rightS = IsInverted (right) ? ¬rights : rightS

19 fS = leftS ∧ rightS

20 // Return the true Under-Approximation
21 return (IsInverted (f) ? ¬fS : fs)

Figure 4. Pseudo-code for the under-approximation construction.

• If the current node f has already been visited (line 2), its under-estimate is directly
returned (line 3).

• If the current node f must be removed, i.e., it has to be cut (line 5), we follow the
procedure detailed in Section 3.2. The subset and superset of f are given by the
constants 0 (line 6) and 1 (line 7), respectively. The subset is returned on line 8.

• If the current node f must be kept in the final AIG, and it is a variable, then both
the subset and the superset coincide with the variable itself (lines 9 − 11).

• If the node f must be kept in the result, and it does not represent a variable, its subset
(superset) is computed as a conjunction of the under- (over-) estimates of its children
(the children of node f are indicated as left and right). This implies a recursion on
both children of the node (lines 13 and 14) and the operations on lines 15 − 19 to
evaluate the estimates of the current node given the estimates on the children.

Notice that the algorithm shown in Figure 4 replaces the selected nodes of the original AIG
with 0 and 1, and then propagates one of these two values on the E or O paths. During
this propagation, as analyzed in Section 3.2, parts of the AIG has to be duplicated, and
re-synthesize during BCP.

121



S. Nocco and S. Quer

Function BuildSuperset, which returns an over-estimate of f , can be obtained by
BuildSubset in the following way. We have already seen that function BuildSubset

computes both an under- and an over-estimate for each node f . To obtain function Build-

Superset it is sufficient to exchange fs and fS in lines 3 and 21, and to return fS instead
of fs in lines 8. These steps guaranteed the correctness of the result, given the correctness
of the under- and over-approximations computed by the original function BuildSubset.

5. Applications

This section shows how it is possible to use under- and over-estimates of an AIG, computed
in Section 4 by functions BuildSubset, and BuildSuperset, within formal verification.
We adapt BMC and backward breadth-first reachability in order to exploit the circuit-based
approximations obtained through the probabilistic analysis.

5.1 Bounded Model Checking

In BMC, a sequence of transitions from state s0 to state sl (through states s1, s2, . . . , sl−1)
is expressed by unrolling l times the transition relation TR. The process usually starts with
l equal to 1, and it proceeds with increasing the value of l until a counter-example is found
or all available resources are exhausted. At each iteration, the problem is expressed in CNF
form and solved with a state-of-the-art SAT-solver to prove (or disprove) the reachability
between the source S and the target T.

As our approximations will not guarantee to find the minimum-length path, we will
express, at each step, the so called bound l problem:

(s0 = S) ∧
[

TR(s0, s1) ∧ . . . ∧ TR(sl−1, sl)
]

∧
[

(s1 = T) ∨ . . . ∨ (sl = T)
]

(4)

which finds paths up to length l.
We modify standard BMC to use both under- and over-approximations of the com-

binational unrolling. Note that given a formula f , e.g., the combinational unrolling of
Equation 4, we know that:

unsat (fS) ⇒ unsat (f) ⇒ unsat (fs)
sat (fs) ⇒ sat (f) ⇒ sat (fS)

This means that we can conservatively deduce unsatisfiability from the over-estimates of
f , and satisfiability from its under-estimates. The idea is to reduce the size of f , i.e., the
BMC problem, whenever possible, and to resort to the exact formulation of f only when
necessary. To do this, we have two main approaches:

1. Make an estimate of TR, and use this estimate in all time-frames of Equation 4.

2. Obtain the entire unrolling of Equation 4 with the original TR, and produce a single
estimate of it.

Figure 5 shows the pseudo-code for this last possibility.
Function BMCApprox executes three different steps of BMC using, respectively, an

exact (lines 4 − 10), an over-approximate (lines 11 − 17), and an under-approximate (lines
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1 BMCApprox (δ, S, T, threshold, α)
2 TR = buildTR (δ)
3 l = 1
4 // Exact Section
5 do {
6 {size, result} = SatCheck (TR, S, T, l, threshold, exact)
7 if (result = sat)
8 return (Trace (TR, S, T))
9 l = l + 1

10 } while (size < threshold)
11 // Over-Approximate Section
12 while (True) {
13 {size, result} = SatCheck (TR, S, T, l, threshold, super)
14 if (result = sat)
15 break
16 l = l + 1
17 }
18 // Under-Approximate Section
19 while (True) {
20 {size, result} = SatCheck (TR, S, T, l, threshold, sub)
21 if (result = sat)
22 return (Trace (TR, S, T))
23 l = l + 1
24 threshold = threshold + |TR| · α
25 }

Figure 5. BMC with sub- and super-setting.

1 SatCheck (TR, S, T, l, threshold, dir)

2 f = (s0 = S) ∧
[
∏l

i=1 TR (si−1, si)
]

∧
[
∑l

i=1 (si = T)
]

3 g = BuildApprox (f, threshold, dir)
4 result = SAT (g)
5 return (|f |, result)

Figure 6. SAT on a BMC approximate instance.
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18 − 25) combinational unrolling. To generate such an unrolling, function BMCApprox

calls procedure SatCheck (Figure 6).

SatCheck first evaluates the exact unrolling f following Equation 4 (line 2). Then,
it calls procedure BuildApprox (line 3). This procedure returns an under-approximation
of f if the parameter dir is equal to the constant sub, an over-approximation of f if dir

is equal to the constant super, and the original AIG f otherwise. When BuildApprox

has to compute an estimate of f , it executes function ProbabilisticCut, Section 4.1,
followed by BuildSubset or BuildSuperset, Section 4.2, depending on the value of the
last parameter. As previously described, function ProbabilisticCut selects the nodes to
get rid of, whereas functions BuildSubset and BuildSuperset produce the under- and
the over-estimate, respectively. Finally, SatCheck runs the SAT solver on the generated
instance (line 4).

BMCApprox contains three main loops representing the three different BMC phases.
The first phase (lines 4−10) ends when a satisfying assignment is found (and then function
Trace, line 8, is called to compute a counter-example), or the combinational unrolling
has a size larger than the threshold (line 10). In the latter case, we proceed with an over-
estimation of the unrolling (lines 11 − 17). This is done because, over-estimated unrolling
are smaller than exact ones and their evaluation is supposed to be faster. When this
second phase ends with a sat result (line 14), we break the cycle and move to the under-
approximated section in order to avoid false negatives (lines 18− 25). In this last phase, at
each iteration we increase the threshold used to estimate the unrolling. We do that for two
reasons. First, as the combinational unrolling becomes longer, we need a larger threshold to
avoid too rough estimates. Second, as we increase the threshold of a value equal to |TR| ·α,
with α > 1, sooner or later the threshold becomes larger than the size of the unrolling.
When this happens function BuildApprox returns the exact result, instead of an under-
estimation, and the procedure BMCApprox starts to evaluate exact BMC unrolling. As
a result, the procedure is sound but not complete, i.e., it finds a counter-example if one
exists, even though it is not guaranteed to find the minimum-length counter-example. This
is proved by the following theorem.

Theorem 1. Function BMCApprox of Figure 5 is guaranteed to find a counter-example
if one exists.

Proof The key idea to obtain the final proof is to analyze the three main loops of the
procedure (line 4 − 10, 11 − 17, and 18 − 25), and to demonstrate that they will never end
computing a wrong result.

First, function BMCApprox performs exact BMC checks (lines 6) until a trace is
returned (line 8), or the threshold is reached (line 10). In the first case, the procedure ends
with a correct result, an exact minimum-length counter-example, since the BMC check of
line 6 is performed on an exact unrolling. Otherwise, sooner or later the threshold will be
reached, as the size of the combinational unrolling increases at each iteration. In this second
case, the procedure moves to the over-approximate section of lines 11 − 17.

In this second section a bounded check is performed on an over-approximated unrolling.
For that reason any unsatisfiable check is truly unsatisfiable, whereas any satisfiable check
can be a false negative. If a satisfiable check is never encountered, the procedure loops
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forever just like a standard BMC procedure. If a satisfiable check is eventually encountered,
the function proceeds to the next section to validate this check.

The under-approximated section, lines 18−25, consists of a loop in which the threshold,
used to approximate the combinational unrolling, is increased at each iteration by an amount
larger than |TR|. As a consequence, sooner or later, the threshold becomes larger than the
size of the combinational unrolling. Hence, we stop to approximate the unrolling, and the
BMC check becomes exact. If the procedure finds a SAT result before this condition happens,
the result is conservative, as the counter-example has been found on an under-estimate of
the problem. Otherwise, if the procedure finds a SAT result after this condition, the BMC
problem analyzed is the exact problem at that length. This guarantees the correctness of the
procedure. �

5.2 Backward Unbounded Verification

In the unbounded backward verification strategy presented in [8] all state sets are repre-
sented and manipulated by using AIGs instead of BDDs, as usually done within standard
symbolic breadth-first verification. Operations on AIGs, e.g., checking for equivalence, are
performed using a SAT engine. High-density under-estimations are applied to this method
as shown by the pseudo-code in Figure 7.

Given a target set of states T, we perform backward reachability from it and we terminate
as soon as no newly reached states are found (i.e., a fixed-point is reached), or the initial
state set is intersected. In the latter case, we have found a complete set of paths connecting
the two sets, and then a counter-example can be extracted in the forward direction, moving
from S to T within this set of paths.

At each step of the algorithm, we evaluate a pre-image of δ on the set of current states
(From), line 4, yielding the ones from which they can be reached in one step (To). The
Reached set accumulates reached states (line 16), and it is progressively used, by function
PreImg (lines 4 and 12), as a don’t-care set when computing newly reachable ones. Once
the To set is obtained, we first check its intersection with the initial state set S (line 6),
possibly returning a counter-example (line 7) if such an intersection is non-empty. Then
we evaluate the fixed-point, by running a satisfiability check on the newly reached states
(line 10). When, eventually, the New set is empty, we have to recover from previously
lost (cut) states. To do that, we compute the pre-image of the overall reachable state set
Reached (line 12). The From set for the next iteration is selected by function BestOf, line
18, as the smallest set (in size) between the New and Reached sets. Furthermore, it may
be under-approximated before the next iteration (lines 19 and 20) if its size exceeds the
threshold.

Function BackwardVerification calls routine PreImg in lines 4 and 12. Our pre-
image computation adopts quantification by substitution [15] (also called in-lining in [1]):

∃xg(x) ∧ (x ≡ f) = gx=f

The applicability of this transformation in our context relies on the fact that the formulas
occurring in backward reachability always have a structure that matches the previous rule.
In fact, the transition relation TR is a conjunction of next state functions defined in terms
of current state variables, as shown by Equation 1.
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1 BackwardVerification (δ, S, T, threshold)
2 Reached = From = T
3 while (True) {
4 To = PreImg (δ, From, Reached)
5 // Evaluate intersection for failures
6 if (SAT (To ∧ S))
7 return (Trace (TR, S, T))
8 // Evaluate fixed-point
9 New = To − Reached

10 if (¬ SAT (New)) {
11 // Recover lost states
12 To = PreImg (δ, Reached, Reached)
13 New = To − Reached
14 if (¬ SAT (New))
15 return (Pass)
16 }
17 Reached = Reached ∨ New
18 From = BestOf (New, Reached)
19 if (|From|) > threshold)
20 From = BuildApprox (From, threshold, SUB)
21 }

Figure 7. Backward verification with sub-setting.

1 PreImg (δ, Curr, DC)
2 // Function Composition
3 Next = Compose (Curr, δ)
4 // Weak quantifier elimination
5 forall xi ∈ (x ∧ Support (Next))
6 if (¬ SAT (¬ (Nextx ≡ Next¬x) ∧ ¬ DC))
7 Next = BestOf (Nextx, Next¬x)
8 // Strong quantifier elimination
9 forall xi ∈ (x ∧ Support (Next))

10 Next = CircuitExist (Next, x)
11 return (Next)

Figure 8. Pre-image computation.
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The pseudo-code for function PreImg is shown in Figure 8.

The pre-image computation is achieved in two passes. First of all, we compose the Curr
state set with the next state functions δ (line 3). Then, we perform two iterations targeting
quantification over primary input variables xi ∈ x. During the first iteration (lines 4 − 7),
we try a weak existential quantification, which consists of accepting quantification if the
two cofactors are equivalent (under don’t care conditions). During the second iteration
(lines 8 − 10), we quantify out all the remaining variables, through the CircuitExist

procedure, that includes some optimization steps as described in [8]. Notice that the double
iteration of pre-image computation is essentially a quantification order heuristic. The issue
of quantification order was already raised in [15] and [1], but the authors mainly adopted
a random order. The idea here is to initially quantify variables which produce the smallest
increase in circuit size. The quantification order is optimized by learning and adjusting the
order of previous quantification phases. For instance, unate variables, which are guaranteed
not to increase the circuit size, may be quantified out up-front. Furthermore, to fight the
circuit size explosion, we aggressively apply node merging driven by equivalence checks,
and SAT-based synthesis optimization techniques (such as re-synthesis, rewriting, etc.),
following [8, 12].

To conclude our analysis of the BackwardVerification procedure, we prove the
following theorem.

Theorem 2. Procedure BackwardVerification is both sound and complete, i.e., it does
eventually visit all reachable states and it does not produce false results.

Proof The proof can be reached in two steps.

Procedure BackwardVerification computes pre-images of the target set of states
until a fixed-point is reached, or the initial set of states is intersected. False negatives can
be obtained only when unreachable states are considered to be reachable. As the PreImg

function computes only exact pre-images, and function BuildApprox is called to generate
only under-approximations of the reachable state set, false negatives cannot be produced.
¡ The procedure is also complete, because it eventually visits all reachable states. In fact,
when no newly reached states are found (line 10), it recover from previously lost states by
computing pre-images of the entire reachable state set (line 12). �

6. Experimental Results

We present results obtained with our BMC and backward verification routines described in
Sections 5.1 and 5.2, respectively.

We provide data on ISCAS benchmarks and some industrial circuits from STMicro-
electronics. On ISCAS designs, our properties are automatically generated invariants. We
generated target state sets T with increasing Hamming distance from the initial state set S.
The invariant property requires the T states to be unreachable. On industrial benchmarks,
properties come with the circuits.

Our experiments ran on a Pentium IV 1700-MHz Workstation with 1 GB main memory,
running Debian GNU/Linux 4.0. Our tool uses the Minisat [9] tool (version p v1.14) as
underlying SAT solver. We used a time limit of 1 hour.
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Tables 1 and 2 provide our results on property verification. Table 1 compares standard
BMC [3] with the strategy presented in Section 5.1. Table 2 contrasts backward unbounded
verification as presented in [8] with the method introduced in Section 5.2.

In both tables, models are sorted by the original (before the cone of influence extraction)
number of state variables (column #FF). Column #PIs indicates the number of primary
inputs of the circuit. Properties are named as Pi and numbered sequentially within the
same circuit to indicate increasing verification difficulty. Within this column, the number
of memory elements in the cone of influence of the property (COI) is reported between
parentheses. The CPU time and memory used are reported for both the exact and the
approximate technique. For all the approaches, all contributions to the CPU time are
included, i.e., symbolic AIG manipulations and SAT run times are both taken into account.

Table 1 compares standard exact and our approximate BMC. Given the debugging
nature of BMC, all presented properties are false. The number of memory elements, after
the cone of influence reduction, varies from 37 to 922. On average our algorithm spends
about 30% of the time in the first (exact) section, 10% of the time in the second (over-
approximation) part, and the remaining 60% in the third (under-approximation) bounded
model checking loop (see Figure 5). Memory results are not impressive, as we obtained
memory reduction varying from 10 to 20%. Anyway, the numbers reported do not take
into account the memory used directly by the SAT solver, which is run as an external
process. Time measures, however, are more interesting. In all the reported experiments, our
approximate BMC approach performed better than the exact (original) BMC formulation.
Furthermore, our method was able to solve even the largest instance (s38584), whereas the
original technique ran out of time. Overall, we obtained an average speedup of about 2.

Table 2 provides results on backward unbounded verification, considering both true and
false properties.

Table 1. Debugging false properties with approximate BMC on ISCAS benchmarks. Comparison

between the original and the proposed algorithms. A dash (−) means data not available due to time

overflow (ovf ).

Model #FF #PIs Property Exact Subset Speedup
(COI) Time Mem Time Mem

[s] [MB] [s] [MB]

s1269 37 18 P1 (37) 14 15.6 10 14.1 1.4×
s1512 57 29 P1 (57) 79 13.2 41 12.5 1.9×
s3271 116 26 P1 (95) 118 25.4 65 19.6 1.8×
s5378-164 164 35 P1 (164) 221 17.7 204 17.0 1.1×
s3384 183 43 P1 (125) 338 26.6 245 24.7 1.4×
s9234 228 19 P1 (187) 869 31.7 476 27.3 1.8×

P2 (228) 1374 34.2 938 31.2 1.5×
s15850.1 534 77 P1 (534) 1945 42.1 1037 38.9 1.8×
s13207.1 638 62 P1 (621) 2693 59.8 1745 53.4 1.5×
s38584 1452 12 P1 (922) ovf − 2238 71.8 > 1.6×
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Table 2. Verifying false and true properties, with circuit-based backward unbounded verifica-

tion, on some ISCAS and industrial circuits. Comparison between the original and the proposed

algorithms. A dash (−) means data not available due to time overflow (ovf ).

Model #FF #PIs Property Exact Subset Speedup
(COI) Pass/Fail Time Mem Time Mem

[s] [MB] [s] [MB]

s1423 74 17 P1 (68) Pass 126 17.6 55 16.8 2.3×
P2 (68) Fail 248 17.9 16 16.4 15.5×

s4863 104 49 P1 (104) Pass 1428 23.8 1025 21.1 1.4×
s3330 132 40 P1 (67) Fail 729 17.9 342 17.6 2.1×

P2 (131) Pass ovf − 1752 19.8 > 2.0×
s5378-179 179 35 P1 (160) Fail 31 17.7 11 17.0 2.8×
s3384 183 43 P1 (125) Fail 1206 22.4 543 19.8 2.2×

P2 (183) Pass ovf − 1356 21.2 > 2.6×
industrial1 377 48 P1 (377) Pass ovf − 1165 55.4 > 3.1×
industrial2 673 74 P1 (545) Pass ovf − 2124 78.5 > 1.6×

Properties are denoted by Pass when proved to be correct, and with Fail, otherwise.
Passing properties are usually harder to verify as they need a complete visit of the backward
reachable state space. The cone of influence of the properties varies from 67 to 545. The
advantage of sub-setting lies in keeping the overall size and memory occupation low at all
stages of the traversal. The threshold is chosen heuristically, trying to achieve fast image
computation and small intermediate results, while not excessively increasing the number of
iterations. The proposed method was able to complete verification instances on which the
original technique run out of time. On the other cases, we observe speedups up to more
than 15, and memory savings in the order of 10 − 20% .

Finally, Table 3 reports data on our estimation procedure. We used two different mech-
anisms to count the number of minterms in an AIG. The first one is based on a SAT-count,
by adopting the blocking-clause strategy presented in [11]. In this case, we try to find a
satisfying assignment for the formula. If such an assignment exists, we count the number
of minterms represented by it, and we add a blocking clause, i.e., the negation of the as-
signment, to the formula itself in order to avoid running into the same assignment again.
The process goes on until no more satisfying assignment exists. The second one consists
of converting the AIG to a BDD and counting the number of minterms in this structure.
This can be easily done by using standard routines on BDD (see [14] for further details).
While our implementation of the first technique relies on a quite inefficient blocking clause
generation routine, the second approach shows an evident limit as BDDs can be built only
for small AIG instances. This is the motivation to present only some small state sets ex-
periments in Table 3. For each set we present the initial size and minterm count (columns
Exact), and the ones obtained after the estimate (columns Subset). We concentrate on
under-estimations, since such state sets have been obtained while running the experiments
in Table 2, where only sub-setting was used. Column Ds/DE shows the ratio between the
density of the under-estimated (Ds) and the original set (DE). Results are encouraging as
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Table 3. Results from the under-estimation procedure presented in Sections 3 and 4.

Model Property Exact Subset
|AIG| #Minterms |AIG| #Minterms Ds/DE

[Nodes] [Nodes]

s1423 P1 224 3.40e+21 32 3.39e+21 14.2
366 7.05e+21 86 6.71e+21 4.1

P2 276 4.18e+21 114 4.16e+21 2.4
s3330 P1 145 3.01e+38 73 2.48e+38 1.6

1794 4.15e+39 1065 3.12e+39 1.3
P2 4541 2.05e+39 1019 1.80e+39 3.9

s5378-179 P1 187 3.59e+53 50 1.20e+53 1.2
s3384 P2 468 3.82e+54 230 3.34e+54 1.8

2283 7.29e+55 496 6.02e+55 3.8

there are cases in which we are able to reduce the AIG size by about one order of magnitude
maintaining almost the same number of minterms (see for example the numbers for circuit
s1423 and s5378-179). The increase in terms of density ranges from a factor of a few unity
to more a than 10.

7. Conclusions

Circuit-based techniques, and more specifically And–Inverter Graph structures, have been
adopted in numerous applications in formal verification. Nevertheless, one of the limiting
factors has been the difficulty to control their sizes during key operations. For example,
existentially and universally quantifying a variable implies doubling the circuit size in the
worst case.

In this paper, we presented a probabilistic approach to keep under control the size of
circuit-based representations while manipulating them. The idea was to build an under- or
an over-approximation of the exact result whenever necessary, i.e., whenever AIGs become
too complex. The goal of this approximation was to build dense circuit representations, i.e.,
compact in size but expressive for the given verification problem.

We applied the technique to circuit-based Bounded and backward Unbounded Model
Checking. We presented experimental results showing our ability to produce denser esti-
mates, and to use these estimates within the two approaches on large verification instances.
We obtained estimates of more than one order denser in several cases, speedups of more
than one order of magnitude in some cases, and a slight reduction in terms of memory
usage. Among the possible future developments, we envisage the application/integration
of the method within alternative verification strategies, such as abstraction and refinement
and interpolant-based verification.
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