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Abstract

Scheduling, or planning, is widely recognized as a very important step in several do-
mains such as high level synthesis, real-time systems, and every-day applications. Given a
problem described by a number of actions and their relationships, finding a schedule, or a
plan, means to find a way to perform all the actions minimizing a specific cost function.

The goal of this paper is to develop, analyze and compare different scheduling tech-
niques on a new scheduling/planning problem. The new application domain is aircraft
maintenance. It shares with previous ones the underlying problem definition, but it also
unveils brand new challenging characteristics, and a different optimization target. We show
how to model the problem in a suitable way, and how to solve it with different methodolo-
gies going from Satisfiability solvers and Binary Decision Diagrams, to Timed Automata
and Coloured Petri Nets. New ideas are put forward in the different domains having effi-
ciency and scalability as main targets. Experimental results stress the different techniques,
showing their application range and limits, and defining advantages and disadvantages of
the underlying models. Overall, general-purpose tools have been easily applied to our prob-
lem, but failed as far as efficiency was concerned. The satisfiability-based approach proved
to be faster and more scalable, being able to solve instances 3− 4 times larger.

To sum up, our contributions range from modeling the aircraft maintenance problem as
a scheduling instance, to coding this problem with home-made and general-purpose tools,
to dovetailing exact and heuristic techniques, and comparing these techniques in terms of
efficiency and scalability.

Keywords: Boolean satisfiability, SAT-solvers, timed automata, Petri nets, scheduling,
planning
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1. Introduction

Scheduling is one of the key tasks in high-level synthesis, and it has gained broad recognition
in real-time systems and in alternative application domains. Given a set of operations
with data dependency relations, the scheduling problem associates a control step to each
operation such that certain constraints are satisfied. Many of the practical scheduling
problem instances are known to be NP–Complete [18].
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There exist a plethora of heuristic scheduling techniques in the literature, e.g., [29,
13], aiming to provide solutions for practical problem instances. Although many of these
heuristics can deal with large problems, they usually fail to find high quality solutions,
especially in tightly constrained formulations, where early pruning decisions may exclude
candidates eventually leading to superior results. For example, Dain et al. [13] presented
ARGOS, i.e., a heuristic search-based optimization tool to find ship construction scheduling.
The tool works by heuristically constructing a schedule, and then looking for changes in the
schedule able to reduce the scheduling cost. Solutions are sub-optimal, but the tool is able to
deal with huge problems obtained from commercial shipyards, which, for a single hull, may
consist in several thousands activities spanning some working years. Moreover, in these cases
a scheduling must be evaluated also for its ability to overcome environmental problems such
as task delays, labor shortages, etc. For that reason, heuristic tasks are sometimes combined
with simulation activities, see for example [14], where a stochastic shipyard simulator is
designed to evaluate the performance of a scheduling given environmental problems.

Integer Linear Programming (ILP) methods (e.g., [24]) can solve scheduling exactly.
However, the ILP complexity significantly increases by considering control constraints, and
thus it can lead to unacceptable execution times.

More recently, symbolic methods [22, 23, 27, 11] have been proved effective in finding
exact solutions in highly constrained problem formulations. In these cases scheduling con-
straints are represented as Boolean functions, and all solutions are implicitly enumerated by
means of Binary Decision Diagrams (BDDs). Post-process pruning is used to apply addi-
tional constraints which may not have an efficient formulation within heuristic approaches
and ILP. Moreover, symbolic methods yield a very efficient formulation of control depen-
dencies and environmental timing constraints.

The goal of this paper is to analyze a particular scheduling problem within the field of
aircraft maintenance. Maintenance is a very important phase of an aircraft life-cycle as, to
grant safety and reliability, it has become more and more detailed and refined. An aircraft
maintenance consists of a large number of tasks, often recursively expressed in terms of sub-
tasks, that have to be executed respecting specific temporal constraints. These constraints
are usually expressed as precedences and mutual-exclusions between main tasks or even
sub-tasks. Each operation is executed by personnel with specific skills (and then different
hourly salaries) and with suitable tools and materials (with different costs). The target
of the problem is not simply to minimize the total time necessary to complete the task,
but to optimize the maintenance cost, i.e., the amount of money necessary to maintain the
aircraft. This, in turn, is usually computed as a function of the time spent by each group
of employees to do their job on the plane and their hourly salaries.

The above problem is somehow considerably different, and more complex, than other
scheduling puzzles available in the literature:

• Tasks are usually defined in terms of other tasks or sub-tasks. On the contrary, in
other fields, i.e., in hardware scheduling, each task, e.g., computing the sum of two
values, is considered as an atomic operation. This feature implies a pre-processing of
the problem, in order to decompose each task into atomic operations, and to define
their relationships in terms of time, mutual exclusion, etc. Similarly, a final post-
processing manipulation is necessary to obtain the task scheduling starting from the
plan of atomic operations.
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• Operations may require a wide range of time to be completed, i.e., from minutes to
hours, whereas other scheduling models often consider tasks lasting just one or a few
clock cycles. This characteristic makes the problem harder, as keeping track of large
elapsed time is a major hurdle.

• Tasks often require more than one resource at the same time, whereas in hardware
scheduling one resource is usually sufficient to complete a certain operation. This
feature increases the number of constraints that have to be considered to solve the
problem.

• In certain occasions, tasks that have already been done do not need to be repeated,
unless the complementary operation has been executed in the meantime. This implies
that certain operations can be factorized, i.e., performed just once, among different
similar activities, whereas they have to be repeated in other occasions. For example,
we can empty-out the hydraulic system and perform several fixing operations on tubes
and connectors of the hydraulic system itself. This means that the operation “empty-
out the hydraulic system” has been factorized among all fixing operations. On the
contrary, if we want to fully check the hydraulic system, we have to store its pressure
back, and in case of a failure we have to empty-it-out again. This implies that the
operation “empty-out the hydraulic system” cannot be factorized among different
complete checks of the system.

• Employees are paid even if they stand in the airfield doing nothing, whereas hardware
functional units may be idle without increasing the cost of the problem. This would
require a different optimization target similar to the one used to reduce the power
consumption on multi-processor systems [6].

These considerations motivate further investigation to evaluate the efficiency and scalability
of formal techniques on maintenance activities.

Our strategy can be divided into two main phases. In the first phase, we translate
the airplane maintenance model into a Data Flow Graph (DFG) including all required
information on the original problem. A DFG is a directed graph describing the set of
tasks to be performed and their temporal relationships. This transformation takes into
account all constraints and costs. In the second phase, we solve the problem by adopting
different techniques. First, we describe the problem using a symbolic approach based on
breadth-first reachability and Binary Decision Diagrams. Second, we solve the problem
adopting Bounded Model Checking (BMC) and a satisfiability (SAT) solver as underlying
engine. Novel solutions are used to deal with the new features of the problem. We aim at
optimizing long operations and analyze different coding methodologies for the SAT tool.
Given the specific issues of our application, we also modify the standard BMC technique in
order to increase its capacity. Third, we use Timed Automata as the way to appropriately
describe functional units with a wide range of execution times. This model is implemented
within the UPPAAL and UPPAAL-CORA [5, 4] tools. Finally, we model the problem using
Petri Nets. More specifically, to appropriately describe times, precedences, and mutual-
exclusions, we adopt Colored Petri Nets, and the CPN-tools [25]. We use different running
examples, throughout the text, to clarify our models and methods.

Overall, our contributions are the following:
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• Modeling the aircraft maintenance problem as a scheduling instance, appropriately
coding the avionic data base describing the process.

• Expressing the scheduling instance with BDD- and SAT-based techniques, and with
general-purpose tools based on Timed Automata and Coloured Petri Net.

• Contrasting SAT-based BMC and heuristic techniques, to trade-off capacity for accu-
racy.

• Comparing, on the BMC problem, different coding techniques and several state-of-
the-art SAT solvers.

Our experimental results concentrate on comparing advantages and disadvantages of
the different models and strategies adopted, finding strengths and weaknesses for each of
them. Real problems, coming from the avionic industry, are used to stress the methods.

The paper is organized as follows. Section 2 introduces some preliminary notions on
scheduling. Section 3 describes the avionic maintenance problem we deal with. Section 4
introduces the first phase of our algorithm, in which we convert our aircraft model into
a Data Flow Graph. Section 5 describes the second step, the one in which we model the
problem adopting different techniques. Finally, Section 6 discusses the experiments we
performed, and Section 7 concludes with a few summarizing remarks.

2. Background

We assume that the reader is familiar with BDDs, and SAT. Timed Automata and Coloured
Petri Nets are defined in Section 5.2 and 5.3, respectively. As a consequence we briefly review
only the basic concepts that are relevant for our application framework.

In our notation, B indicates the Boolean space. Symbols ∧, ∨, ¬, ⇒, and ⇔ are
used for Boolean conjunction (AND), disjunction (OR), negation (NOT), implication, and
co-implication, respectively.

The automata we address are usually represented implicitly by Boolean formulas. For
our purposes, an automaton is a triple A = (I, TR, T), where I is the set of initial states,
TR is the transition relation between the states, and T is the target set of states.

The (present) state space of the automaton is defined by an indexed set of m Boolean
variables P = {p1, . . . , pm}. We also indicate next state variables with N = {n1, . . . , nm},
disjoint from P .

TR is the transition relation containing all couples (present state P , next state N) such
that there is at least one input value that lets the system go from state P to state N .

A scheduling, or planning, problem may be understood in terms of a certain number
of objects, each one associated with various distinguishing attributes. Standard attributes
are object resources, operand dependencies, and control decisions. The possible schedules,
or plans, solving the problem are described by a number of actions, the execution of which
may depend on and affect the values of (some of) the objects attributes. We are interested
in finite scheduling, i.e., in a finite sequence of actions that takes the system from an initial
to a final configuration.
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The following example describes a traditional hardware scheduling problem involving
only data operations (and no decisions) which last one single time unit. Our real problem,
and the main differences with this one, will be introduced in Section 3.

Example 1. Let us suppose to have 5 tasks, namely A, B, C, D, and E, such that A and
B have to be executed before D, and C and D have to be executed before E. Moreover, let
us suppose that all tasks can be executed in a single time unit and that they require different
operators/resources, i.e., tasks A, B and C are performed by the operator op1, D by op2
and E by op3. Given this sequence of tasks, we characterize the problem by the Data Flow
Graph (DFG) of Figure 1.

A B C

D

E

Figure 1. A Data Flow Graph (DFG) example.

As mentioned in the introduction, a DFG is a directed graph describing the set of tasks
to be performed (represented as the nodes of the graph), and their temporal relationships
(indicated by the edges of the graph). Given the DFG, several scheduling solutions can be
found depending on:

• The number of operators/resources allocated for each type of operation, namely op1,
op2 and op3.

• The type of resources that are possible to adopt for each operation, e.g., we can suppose
to use a particular tool (or employee), namely op, able to complete more than one kind
of operation.

Figure 2 shows some of the possible scheduling instances, with different set of resources
(op1, op2, op3) available:

• In Figure 2(a) there is no resource limit. All operations needing op1 can run in the
first time step as there are enough resources to execute them in parallel. The total
time necessary to complete all operations, usually called latency, is equal to 3 time
units.

• In Figure 2(b) two resources are available for operator op1. As a consequence the
third task needing the operator op1 has to be delayed until the second time unit. The
latency is again equal to 3 time units.

• In Figure 2(c) one single resource is available for each operation. Then, just a single
op1 operator can be used in each single time unit. The latency increases to 4 time
units.
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Figure 2. Scheduling solutions for the DFG of Figure 1.

• In Figure 2(d) only one resource op is available, but that resource is able to complete
all possible tasks. In this case, the latency is equal to 5 time units.

Notice that in our analysis we will have to increment the above model in different
directions. Not only each operation will require a certain number of resources (not just a
single one), but we also will have mutual exclusions among operations. Moreover, operations
will require different times (and costs) to be completed, thus complicating the planning
solution.

3. Problem Description

Our scheduling problem is coded in a data base coming from the avionic industry and
containing the following information. Each maintenance operation takes the name of Data

Module (DM). Each DM may be recursively defined in terms of other DMs. An atomic DM
is a DM that represents an atomic operation. Such a DM is also called Reference (R). A
DM is completely executed when all atomic references defining it are executed in the precise
order in which they are defined within the DM.

Each elementary operation, i.e., a reference, requires a specific time to be completed,
must be performed by definite personnel, and needs particular tools. Operation times
have a wide range of values (from minutes to several hours), and this characteristic greatly
differentiates the problem from standard hardware scheduling, where operations usually
require a single or few time units. A limited number of resources can be used by each DM,
such as materials, tools, work benches, skilled staff, etc.

Before a given DM can be executed, its prerequisites, that are the conditions necessary
to start the task, need to be satisfied. These prerequisites are called Required Conditions

(RC) and usually are other DMs.

To complicate the overall task, two DMs may be incompatible, i.e., they cannot be
executed at the same time and have to be executed in mutual exclusion.
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Example 2. The following example describes a simple scheduling problem. For the sake of
readability, we consider only data operations, precedence relations, and mutual exclusions
without representing any resource limitation.

Figure 3 reports a simple initial configuration.

A

B

FE

C

D

G

H

I

y

x

me

Figure 3. The input model: DM structure and dependency.

In this schema A, D, E and H are non-atomic DMs, whereas B, C, F, G and I are
references. DM A has to be completed before D and I (see the precedence edges named x and
y). The references G and I must be executed in mutual exclusion (see the incompatibility
edge named me). Moreover, DM A is made up of references B and C, DM D is composed
of data module E (which in turn contains reference F) and reference G, and H contains I.

4. Creating a DFG Model

The first step of our algorithm is to create a DFG starting from the original data base. The
core idea is to recursively decompose each data module into references, i.e., atomic oper-
ations, and, at the same time, appropriately keep into consideration precedences, resource
constraints, and mutual exclusions. The pseudo-code of this step is presented in Figure 4.

createDFG(DB)
ADB ← φ

for each m ∈ DB
ADB ← ADB ∪ createADB(m)

for each a ∈ ADB
expandExplicitRC(a)

for each a ∈ ADB
expandImplicitRC(a)

return (ADB)

Figure 4. Modeling recursively defined tasks.

DB is the original data base. ADB is the atomic data base (the DFG with only atomic
operations involved) we want to create. Initially, ADB is empty. Then, for each DM m in
the original data base DB, function createADB recursively expands m in the sequence of
its references. Renaming is performed to maintain the unicity of references at the level of
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the atomic data base ADB. After that, we have to take care of all required conditions. This
in done in two separate steps:

• Function expandExplicitRC expands each required condition explicitly contained
in the original non-expanded data base. It generates a new set of required conditions
for each single required condition (i.e., a precedence edge) present in the original data
base DB.

• Function expandImplicitRC generates all the required conditions due to the expan-
sion of the original data base into atomic operations.

Notice that these two functions also take into consideration all resource constraints and
mutual exclusions among data modules and references.

Example 3. Figure 5 shows the DFG corresponding to the original aircraft maintenance
problem represented in Figure 3.

H

me

ABA AC

Dx

y
HI

DE DEF DG

Figure 5. Modeling recursively defined tasks: A first step.

The sequence of operations A, AB, and AC, for instance, derives from the single DM
A of Figure 3. Notice that it is necessary to specify A in the DFG, beyond AB and AC, as
every DM in the original data base always includes some atomic operations even when it is
defined in terms of other DMs and/or references.

Function expandExplicitRC recreates precedences named x and y and the incompati-
bility edge me. Function expandImplicitRC generates all the other precedences (implicitly
present in the original data base).

Notice that at this stage we do not factorize any common operation, because the in-
dustrial source data base does not code the necessary information, i.e., when a DM may or
may not be executed just once. In other words (see Figure 6) if two DMs A and B have C
as common reference (Figure 6(a)) we generate the ADB represented in Figure 6(b).

Nevertheless, it would be possible, at least in some occasions, to factorize C and generate
the ADB represented in Figure 6(c). We do not perform such an optimization because at
the moment the original data base does not report enough information about factorisable
operations and their counterpart (e.g., turning-off an electronic device can be factorized,
i.e., it can be done only once, at least until it is turned-back-on).
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Figure 6. Factorize common operations.

5. Scheduling Methodologies

Scheduling of tasks in real-time systems has traditionally been conducted using purely
algorithmic approaches [9]. Heuristic approaches have been adopted for their simplicity
and efficacy on lightly constrained problems [33, 34, 10].

In this section, we analyze the application of several symbolic techniques to this domain.
Model Checking, based on both Binary Decision Diagrams and SAT solvers, is definitely
interesting and has been increasingly adopted for scheduling problems. Timed Automata [2]
(or even Priced Timed Automata [6]) are another possible modeling approach. Finally, Petri
Nets have been selected for their capability to model and analyze real-time systems.

5.1 BDD and SAT Based Scheduling

In [22, 23, 30] the authors proposed a BDD-based symbolic technique, able to produce the
optimal latency for resource-constrained scheduling. The key idea was to model the input
DFG as a non-deterministic automaton, so that symbolic model checking methodologies
could be applied.

SAT-based model checking was independently formulated in [27] and [11]. In the first
work, given a target latency, a complete 1-hot encoding [28] was used. In this encoding
a Boolean variable xijk was introduced to indicate (when xijk = 1) that operation i is
scheduled in time frame j on resource k. A set of constraints was imposed over these
variables in order to obtain valid scheduling traces. In [11], the authors adapted to SAT
the automaton encoding introduced for BDDs in [22]. In the sequel, we will show how the
automaton is constructed following this approach.

5.1.1 Expressing atomic operations of the DFG

Each DFG operation is modeled through a non-deterministic automaton. For every single-
time-step operation of the given DFG, the automaton provides information about the ex-
ecution of the associated operation. If we indicate with 0 the state in which an operation
has not yet been scheduled, and with 1 the state in which the operation has been scheduled,
the automaton may be represented as in Figure 7.

More formally, as the automaton has only two states, its transition relation may be
encoded with exactly two Boolean variables, i.e., P = {p1} for the present state and N =
{n1} for the next state. The meaning of the possible automaton transitions is hence the
following:
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0 1

Figure 7. Basic scheduling automaton.

• p1 = 0 and n1 = 0: The operation has not been scheduled in previous steps and will
not be scheduled in the next one.

• p1 = 0 and n1 = 1: The operation has not been scheduled in previous steps but it is
going to be scheduled in the next one.

• p1 = 1 and n1 = 1: The operation has been previously scheduled.

The automaton transition relation is encoded as:

TRop(P, N) = ( (p1 = 0)⇒ ((n1 = 0 ∨ n1 = 1) ) ∧
( (p1 = 1)⇒ (n1 = 1) )

which may be simplified to:

TRop(P, N) = ( (p1 = 1)⇒ (n1 = 1) )

When it is necessary to work with operations requiring more than one time step to be
performed (this is one of the specific issues of our application), the previous representation
must be extended to the automaton shown in Figure 8, where l is the given operation
latency.

0 1 2 l

Figure 8. Basic scheduling automaton for latency l.

Notice that the automaton may start its execution non-deterministically, but then it
must proceed to the next state at every time step. The physical meaning for this behavior
is that an operation, once started, cannot be stopped and resumed sometimes later. The
overall behavior of TRop is the conjunction of all transitions between each couple of states.
Although it is not formally correct (as P and N are sets of variables), we will model the
fact that the automaton is in a present (next) state numbered i as P = i (N = i). For
instance, the behavior of the automaton starting from state 0 (see Figure 8) is represented
as (P = 0)⇒ (N = 0 ∨N = 1), meaning that from the state 0 it is possible to progress to
state 0 or state 1.
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The complete expression of TRop is hence the following one:

TRop(P, N) = ((P = 0)⇒ (N = 0 ∨N = 1)) ∧
((P = 1)⇒ (N = 2)) ∧
((P = 2)⇒ (N = 3)) ∧
. . .

((P = l − 1)⇒ (N = l)) ∧
((P = l)⇒ (N = l))

(1)

A scheduling activity occurs whenever the value of the next state is different from the
current one. This condition can be also expressed as (P 6= l) ∧ (N 6= 0). For a single time
step operation, l = 1, there are only two states (0 and 1), and one present and one next
state variables are sufficient. Then the previous relation is reduced to (p1 6= 1) ∧ (n1 6= 0),
that is just (p1 = 0) ∧ (n1 = 1).

The Boolean meaning of the notations P = 0, N = 0, etc., as well as the number of
Boolean variables necessary to express these equations, depends on the strategy adopted
to encode the problem. In this paper, we analyze two different encodings, showing the
advantages and disadvantages for both of them.

Logarithmic Encoding The logarithmic encoding emulates the encoding used for binary
counters. Given a positive value l, a number m = ⌈log2(l)⌉ of Boolean variables is used,
and all the values in the range [0, l] are represented as binary numbers over them. As a
consequence, the term ((P = 0)⇒ (N = 0 ∨N = 1)), in Equation 1 becomes:

((pm = 0) ∧ . . . ∧ (p2 = 0) ∧ (p1 = 0)) ⇒ ((nm = 0) ∧ . . . ∧ (n2 = 0) ∧ (n1 = 0)) ∨
((nm = 0) ∧ . . . ∧ (n2 = 0) ∧ (n1 = 1))

All the other terms of TRop can be expressed following the same principles.
This type of encoding requires the minimum possible number of state variables, and

hence it is very beneficial when the scheduling problem is fully solved adopting BDDs [21].
However, when a SAT-solver is used, this type of encoding has several drawbacks. First
of all, unit propagation under this encoding is not effective [32]. Moreover, each of the
implications appearing in TRop, as defined by Equation 1, requires the generation of m

clauses, each of which is made up of 1 + m literals. The total number of clauses we need
to express in TRop is hence, approximatively, l ·m. Even more importantly, the logarithmic
encoding severely impacts the Boolean expression of the other constraints imposed among
different operations (see Section 5.1.2), making them much more complex to be translated
into the CNF representation. This is because, in principle, any automaton state is identified
by a specific Boolean value over all the state variables.

Thermometric Encoding The drawbacks of the logarithmic encoding are overcome with
the second encoding strategy which adopts more state variables. This new encoding is often
called thermometric [20]1.. In this strategy, both the P and N sets are represented with
a number of Boolean variables equal to the operation latency l. Then, for every state i,

1. The term thermometric comes from old mercury thermometers, where one side is always filled with
mercury and the other one is empty. Notice that the thermometric encoding is called “Full Regular”
in [3], where it is used to translate a CSP problem into a SAT instance.
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exactly the initial i consecutive state variables take the 1 value, whereas all the others are
set to 0.

For instance, in Equation 1, writing P = 2 (respectively P = 3) actually means
{pl, . . . , p1} = {0, . . . , 0, 0, 1, 1} (respectively {pl, . . . , p1} = {0, . . . , 0, 1, 1, 1}), up to the
final state l for which the encoding is a sequence of all ones {1, . . . , 1, 1, 1, 1}. The behavior
is the same as that of a shift register with l bits, all initialized with 0, and accepting a value
equal to 0 for a certain number of time steps and then a value equal to 1.

The advantages of the thermometric encoding are two fold. First, given the previous
considerations, TR can be represented in a very concise way:

TRop(P, N) = ((p1 = 1)⇒ (n1 = 1)) ∧
((n2 = 1)⇔ (p1 = 1)) ∧
((n3 = 1)⇔ (p2 = 1)) ∧
. . .

((nl = 1)⇔ (pl−1 = 1))

The implication described on the first line indicates that, once the first bit is set to 1,
it remains at 1 forever. This corresponds to the fact that from state 0 it is possible to
stay in the same state or to reach state 1, as shown in Equation 1. The following co-
implications represent the shift-register-like behavior previously described: The value of
the bit in position i in the next clock cycle is given by the value of the bit in position i− 1
in the current clock cycle. As a consequence, expressing TRop into CNF format requires
a number of clauses which is only linear with l. Furthermore, each clause is made up of
exactly two literals.

The second advantage of the thermometric encoding derives from the fact that, for the
given automaton, the invariant (pi = 1) ⇒ (pj = 1) is true for all j < i, i.e., if the bit in
position i is equal to 1, then all bits in previous positions are also equal to 1. Dually, the
invariant (pi = 0) ⇒ (pj = 0) is true for all j > i. This means that the automaton initial
and final states can be identified through the condition p1 = 0 and pl = 1, respectively. The
consequence is that the expression of the constraints discussed in Section 5.1.2 can be kept
compact even when translated into clauses, with the length of each clause being independent
from the operation latencies. We will show its effectiveness with respect to the logarithmic
encoding in the experimental results section. Moreover, let us remark here that, compared
to the 1-hot encoding, it allows to express implications between different bit configurations,
i.e., states, in a more compact way.

5.1.2 Expressing the entire system

Once the single automata are represented, the complete DFG scheduling automaton is the
Cartesian product of all automata, restricted by several constraints, each of which represents
a particular allowed behavior. The overall formulation is the following:

TR(P, N) = [
∧

i TRopi
(P, N) ] ∧ TRdd(P, N) ∧ TRme(P, N) ∧ TRrc(P, N) (2)

where:

• TR is the Transition Relation of the entire system, involving the original basic au-
tomata, refined by constraints for data dependencies, resource limits, and mutual
exclusions.
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• TRopi
describes the single automata behavior, following Equation 1.

• TRdd represents data dependencies (dd) or required conditions. It is illegal to schedule
an operation j (Nj 6= 0) with a predecessor i that has not yet been completed (Pi 6= li).
In other words, for any data dependency i → j between operations i and j, the
expression (Pi 6= li)∧ (Nj 6= 0) represents an illegal condition. TRdd can be expressed
as the conjunction of all legal conditions:

TRdd(P, N) =
∧

(i→j)∈dd

(

(Pi = li) ∨ (Nj = 0)
)

The number of clauses generated by TRdd is linear with the number E of edges repre-
senting dependencies in the given DFG. When using the thermometric encoding, such
a number is exactly E, and each clause contains exactly 2 literals.

• TRme represents the mutual exclusions (me). Given two operations i and j in mutual
exclusion, it is illegal to have any schedule activity involving them simultaneously. In
other words, when operations i and j are in mutual exclusion it is not possible to have
operation i active ((Pi 6= li)∧ (Ni 6= 0), as described in Section 5.1.1) when operation
j is active ((Pj 6= lj) ∧ (Nj 6= 0)). TRme can be expressed as the conjunction of all
legal conditions:

TRme(P, N) =
∧

(i,j)∈me ¬
[(

(Pi 6= li) ∧ (Ni 6= 0)
)

∧
(

(Pj 6= lj) ∧ (Nj 6= 0)
)]

=
∧

(i,j)∈me
[(

(Pi = li) ∨ (Ni = 0)
)

∨
(

(Pj = lj) ∨ (Nj = 0)
)]

The number of clauses necessary to translate TRme in CNF depends on the number M

of mutual exclusions specified in the problem. When using the thermometric encoding,
each mutual exclusion can be expressed as a single clause with exactly 4 literals.

• TRrc represents resource constraints (rc). Let bR be the number of instances available
of a given resource class R ∈ rc, and ρR the set of operations competing for such a
resource set. It is illegal to schedule more than bR concurrent operations from ρR.
In other words, for any subset αR ⊆ ρR such that |αR| > bR, it is illegal to have all
operations in αR active at the same time. As in the previous cases, TRrc is expressed
as the conjunction of all the legal terms:

TRrc(P, N) =
∧

R∈rc ¬
[
∧

αR⊆ρR, |αR|>bR

∧

i∈αR

(

(Pi 6= li) ∧ (Ni 6= 0)
)]

The number of clauses generated by TRrc depends on how such a constraint is ex-
pressed. In [21], it was proved that each illegal term making TRrc, when represented
as a BDD instead of a two level form, has a size (in terms of BDD nodes) propor-
tional to bR · |ρR|, i.e., to the number of resource units available for the class times
the number of operations competing for that resource class. By adopting the transla-
tion methodology from BDDs to CNF proposed in [12], the CNF representation can
be easily obtained with similar complexity (in terms of generated clauses and added
auxiliary variables).

Notice that, in traditional hardware scheduling, each operation is definitely mapped onto
a single resource class, i.e., executed by a functional unit of that class. In our application,
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instead, any DM may require several resource instances belonging to different classes. The
given formulation, however, naturally covers this case. Given a DM requiring one resource
unit of R different classes, any scheduling activity on that DM will be accounted for by
the expression of TRrc for each of the involved R resource classes. In this case, however,
some specific optimizations, aiming at reducing the BDD size of TRrc, are possible2.. These
optimizations have been performed through the use of the BDD restrict operator.

The modeling automaton described by TR encapsulates all legal execution sequences
of the system. Once TR is computed, the description of the complete automaton is fully
specified with the definition of its initial and final states:

• The initial state I is the state in which no operation has been scheduled.

• The final, or target, state T is the one in which all the operations have been scheduled.

In practice, I and T are the Cartesian products of the basic automata initial and final states.
Given this information, we want to find the shortest possible path connecting I and T.

This can be done with both a BDD-based and a SAT-based approach. We analyze these
two methodologies in the following two subsections.

5.1.3 BDD-based Model Checking Formulation

To solve our problem, the first possibility is to perform BDD-based symbolic breadth-first
reachability analysis starting from I and ending as soon as T is reached.

The set of states reachable at the i-th clock cycle may be computed by a standard
iterative image computation:

Si(P ) = Img (TR, Si−1)
= ∃P

[

TR (P, N) ∧ Si−1(P )
]

starting with S0 = I. Valid schedules are represented by state paths that reach the final set
of states T, in which all terminal operations have been scheduled. If the target is minimum
execution latency, the search may stop as soon as T is reached.

As we will show, adopting BDDs gives rise to the state explosion problem, even when
the logarithmic encoding is used.

5.1.4 SAT-based Bounded Model Checking Formulation

The second possibility is to solve the related Bounded Model Checking (BMC) problem
with the target of finding the smallest possible bound (representing the optimal schedule
latency) for which the generated propositional formula is satisfiable.

Standard BMC would imply the following steps. First of all, to describe a sequence of
transitions from s0 to sl (through s1, s2, . . . , sl−1), the transition relation TR (see Equa-
tion 2) has to be unrolled l times:

path(s0, . . . , sl) = TR(s0, s1) ∧ . . . ∧ TR(sl−1, sl)

2. When two DMs compete for a common subset of the total resource classes, the scheduling activity for
both of them will be accounted for within all the shared resource classes. It is possible to demonstrate
that such a repetition can be avoided, by considering a simultaneous transition of the related automata
only once.
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After that, the so-called exact l problem, which looks for paths of length exactly equal to
l, has to be generated:

(s0 = I) ∧ path(s0, . . . , sl) ∧ (sl = T)

Finally, the problem is expressed in CNF form and solved with a state-of-the-art SAT-solver
to prove (or disprove) the reachability between the initial and final states in l steps. Notice
that in standard BMC l usually starts from 1, and it is increased until the problem is solved
or computation resources are exceeded.

This approach showed scalability problems on our benchmarks. To make it more scal-
able, the following considerations are possible. First of all, our scheduling problems always
have a solution. As a consequence, our BMC problems sooner or later will deliver a SAT
result. An upper bound on the total scheduling latency can be quickly found by using
any heuristic technique (ASAP, ALAP, force-directed, path-based, etc.). Thus, a second
strategy is to start from the highest bound, for which a scheduling solution has been al-
ready found, and to decrease it in order to find the first unsatisfiable instance. A third
strategy, as proposed in [11], is to perform a binary search of the optimal latency. Although
the number of analyzed CNF problems is minimum, the drawback of the binary search
is that some of the generated problems are hard-to-solve unsatisfiable problems. For this
reason Cabodi et al. [11] exploited a SAT run with abort, i.e., they gave the SAT solver was
given a (small) time limit to perform the search. This limitation, however, could lead to
sub-optimal results, since each time overflow was interpreted like an unsatisfiable instance,
thus possibly missing some shorter solutions. In this paper, we follow the second strategy,
but we incorporate in the SAT instances also some further information obtained with the
heuristic solution. The heuristic scheduling is used not only for the initial estimate of the
total latency, but also to predict a complete scheduling with shorter latency. The prediction
is made by adapting the scheduling time in the previous schedule solution, without taking
into account any of the scheduling constraints. We then use the SAT solver to validate the
predicted scheduling. The overall approach is represented in Figure 9.

The procedure receives the original data base DB and the system resource limits, i.e.,
time and memory, that the verification process has to satisfy. Initially (line 3) , function
createDFG creates the atomic data base ADB (see Section 4). This data base is used
by function createAutomata, which builds the automaton model of the DFG, returning
its transition relation TR, as well as its initial and final state sets, following Sections 5.1.1
and 5.1.2. Function heuristicScheduling provides the initial heuristic scheduling S and
the upper bound of the global latency l. Then, a loop (lines 9 − 23) is entered. At each
iteration, a CNF problem is built, expressing the mutual reachability between I and T along
a path made up of l steps, which is then checked through a SAT solver. More precisely,
the CNF expression we construct is generated by simplifying the exact problem with the
information coming from the predicted scheduling (line 11). In practice, we allow the SAT
solver to trigger an operation only in a window of time steps, centered in the operation
predicted scheduling time, with width 2 · ∆. This is done by function simplify. For
each operation i, this function computes the predicted scheduling time ti starting from the
heuristic scheduling, and then it forces the operation automaton to be in the initial state
for all time steps t < ti −∆, and in the final state for all time steps t > ti + li + ∆. This
is done in the following way. First, we add to the problem a set of unit clauses, expressing
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1 BMCScheduling(DB, limits)
2 // Initial setting
3 ADB = createDFG(DB)
4 (TR, I, T) = createAutomata(ADB)
5 (S, l) ← HeuristicScheduling(ADB)
6 l ← l − 1
7 ∆ ← 1
8 // Main loop
9 while (TRUE)

10 unroll ← (s0 = I) ∧ path(s0, . . . , sl) ∧ (sl = T)
11 cnf ← simplify(unroll, S, ∆)
12 result ← sat(cnf, limits)
13 if (result = OVERFLOW)
14 return (S, l + 1)
15 if (result = SAT)
16 S ← trace(cnf)
17 l ← l − 1
18 ∆ ← 1
19 if (result = UNSAT)
20 if (∆ > l)
21 return (S, l + 1)
22 else
23 ∆ ← 2 ·∆

Figure 9. The top-level BMC procedure.

Pi = 0 (Pi = li) for time step t = ti −∆ − 1 (t = ti + li + ∆ + 1). Then, we generate the
CNF problem by simplifying the expression of the unrolling, i.e., by propagating the added
unit clauses, and then removing all satisfied clauses.

The SAT run may end up with three possible results:

• If the SAT solver is not able to determine the instance satisfiability due to time/memory
constraints, the process stops and the last valid schedule is returned.

• If the problem is proved to be satisfiable, a new (shorter) schedule has been found.
Thus, the original heuristic schedule is replaced by the newer one (computed by func-
tion trace from the SAT counter-example), and a new value for the latency is tried.

• If the problem is unsatisfiable, there are two sub-cases. If we are analyzing the exact
problem (∆ > l, no simplification is performed), then no schedule shorter than the
last one can be found, so that the process stops. Otherwise, the unsatisfiability may
be due to the simplification introduced by the prediction. In this case, we increase
the value of ∆, and we re-run the SAT analysis.

As a final remark, notice that, in the real implementation, the algorithm in Figure 9 is made
effective by applying the incremental SAT paradigm. The CNF problem corresponding to
the initial (highest) bound is loaded once and for-all within the SAT solver structure. After
that, when a valid scheduling for bound l is found and a shorter one (with latency l − 1)
has to be looked-for, only a set of unit clauses, asserting sl−1 = T, is added to the previous
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problem. The effect of these assignments is causing the SAT solver to remove all the
clauses generated for the last time frame, i.e., the ones expressing TR(sl−1, sl), as they are
immediately satisfied.

We adopt the same paradigm within the window based simplification of function sim-

plify. The job performed by this function is actually to provide the SAT solver with a
set of unit assumptions [17]. Although the clauses satisfied by these assumptions are not
deleted from the solver database, they do not participate in the SAT search, thus obtaining
the same simplification effect.

5.2 Timed Automata

Since their introduction [2], timed automata have established themselves as a modeling
formalism for describing real-time system behavior. More recently they have been adapted
to target time-optimal scheduling and planning problems [6, 1].

A timed automaton is a finite-state machine extended with clock variables. It uses a
dense-time model where a clock variable evaluates to a real number. All the clocks progress
synchronously. Clocks can be reset at certain transitions, and their value can be used as
conditions to enable or disable transitions.

Systems are modeled as networks of timed automata, i.e., by representing each compo-
nent of the system as a timed automata and adopting parallel composition to simulate the
overall behavior. Handshake is used to synchronize the components. When two automata
have to synchronize, one of them will generate a signal and the other one will wait for it.
More specifically, if an automaton has one transition labelled s!, it generates the signal s

and waits on that transition till the signal is received by another automaton. If an au-
tomaton has one transition labelled s?, it waits on that transition the signal s generated by
another automaton. If there is more than one possible choice for communication channels,
the selection is made non-deterministically. To force transitions without delay, the concept
of committed locations [5] can be adopted.

In this framework, an optimal schedule corresponds to a shortest path in the result-
ing timed automata. Current timed automata tools are able to deliver both optimal and
pseudo-optimal results. Optimal methods are often implemented as standard model check-
ing procedures [5]. Pseudo-optimal methods are often implemented as branch and bound
algorithm for optimal reachability analysis. In UPPAAL CORA [6], for instance, branching
is based on various search strategies such as breadth-first, depth-first, best-first, random,
random-restart, etc. Bound is based on a user-supplied, lower-bound estimate of the re-
maining cost to reach the goal.

Example 4. Let us suppose to have the scheduling problem presented in Figure 10, where the
references (Rs) A, B, and C require TA, TB, and TC time units to be completed, respectively.

Figure 11 shows a possible representation of the problem through timed automata.

For each reference (A, B, and C), one automaton (Figure 11 (a), (b) and (c), respec-
tively) is created. For each automaton the variable t is the local clock. The local clock is
initially set to 0. The invariant t ≤ T makes the automaton stay in the Exe state for T

time units. On the contrary, the guard t > T allows it to move to the next state when
this condition is triggered. The S labels identify synchronization channels; two channels
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A

B

C

Figure 10. DM dependency: An example.
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Figure 11. An example: The Timed Automata model.

(AB and AC with signals SAB and SAC) allow a complete synchronization among the three
processes.

The evolution of the three automata can be described in the following way (we do not
represent the composed automaton for sake of simplicity). The reference A can be executed
without delay, as it does not need any synchronization to start its execution (see Figure 10).
When it starts, the local time t is set to 0. The automaton stays for TA time units in
the Exe state, and it moves to the state following Exe afterward (through the edge labelled
t > TA). On the following two transitions, this automaton enables the other two automata,
i.e., the ones for the references B and C, with the two synchronization commands SAB! and
SAC !, respectively. When B and C receive their own synchronization signals (SAB? and
SAC?, respectively), they start their execution for TB and TC time units. The goal state
of the composed behavior is represented by the condition in which the three automata A,
B and C are all in their final state End. A breadth-first visit of the composed automaton
starting with all references in their initial Wait states, and ending in their End states,
gives the smallest latency scheduling, minimizing the time required to perform the entire
planning problem. To express this visit, it is possible to adopt model checking by expressing
the following property:

E (A.End ∧ B.End ∧ C.End)
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which requires that a path leading to the End state of each automaton exists. A breadth-first
analysis of the system gives the exact solution. A branch-and-bound analysis estimates it.

5.3 Coloured Petri Nets

Coloured Petri Nets (CPNs) are a modeling language developed for systems in which com-
munication, synchronization and resource sharing play an important role. Typical examples
of application areas are communication protocols, distributed and embedded systems, auto-
mated production systems, and work flow analysis. CPNs combine the strengths of ordinary
Petri Nets with the strengths of a high-level programming language. Petri Nets provide the
primitives for process interaction, while the programming language supplies the primitives
for the definition of data types and the manipulations of data values.

A CPN model consists of a set of modules containing a network of places (represented
by circles), transitions (represented by rectangles), and edges. Each place contains a set of
markers called tokens. In contrast to low-level Petri Nets (such as place/transition nets)
each token carries a data value which belongs to a given type. Therefore, they can be
distinguished from each other. To be able to occur, a transition must have enough tokens
on its input places, and these tokens must have values that match the corresponding edge
expressions.

The modules interact with each other through a set of well-defined interfaces, in a similar
way as known from many modern programming languages. The graphical representation
makes it easy to see the basic structure of a complex CPN model, i.e., understand how the
individual processes interact with each other.

Simulation of CPN models is often used for early investigation of the design, while more
formal analysis methods are used for validation. In an automatic simulation the steps are
selected by the random CPN simulator which enables and fires the selected transitions.
Formal analysis is usually based on occurrence or reachability graphs, in which a node of
the graph is built for each reachable marking.

Example 5. Figure 12 reports the CPN model corresponding to Figure 10. As the differ-
ent automata are represented by tokens with different characteristics, one single module is
sufficient to represent the overall behavior.

Wait End

Next

Prec

Add

check

Exe

B, C

A,B,C

A

TimeStart

Figure 12. An example: The CPN model.

At the beginning of the process, the places:
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• Wait contains one token for each reference, i.e., tokens A, B and C.

• Next contains one token for each reference which does not have any required condi-
tions, i.e., A.

• Add contains one token for each reference with at least one required condition, i.e., B

and C.

At the beginning only DM A is enabled (fired) by the transition Start. As a consequence, it
executes in the Exe place while transition Time evaluates its running time (i.e., it evaluates
TA, TB and TC for each passing token A, B and C). After the transition Time the tokens
head to their final place End, but while doing that their passage is checked by place Prec.
This place checks for all required conditions of all references and enables the right token to
move from the place Add to the place Next where it enables a new token to move from the
initial Wait place.

6. Experimental Results

In this section we present our results on real cases of aircraft maintenance obtained from Ale-
nia Aerospace. We compare the SAT-based tool with the BDD-based one and with Timed
Automata and Petri Nets. The comparison involves both formal methods and pseudo-
optimal strategies.

To fully grade the previously described techniques, we evaluate them on different main-
tenance processes. These are obtained considering two different airplanes (denoted as A and
B in the sequel), accounting for several maintenance activities. In both cases, the original
data bases are made up of several hundreds of DMs and we extract from them two scalable
families of experiments with increasing size and complexity. Maintenance activities of model
B are more constrained than the ones for model A. Table 1 gives some meaningful data on
a selected subset of the benchmarks we generated. It reports the number of DMs appear-

Table 1. Details on a few problems from aircraft maintenance. # DM: Number of DMs; La-

tency: Average latency time; # RC: Average number of required condition; # ME: Total number

of mutual exclusions; # Res: Number of resource classes.

# DM DB A DB B

Latency # RC # ME # Res Latency # RC # ME # Res

20 15.8 1.2 14 5 20.6 1.8 32 6
60 16.0 1.3 40 8 21.7 1.8 122 8

100 16.2 1.4 106 10 22.1 1.9 180 12
200 16.1 1.5 142 14 21.4 2.0 387 18
300 16.2 1.4 190 21 21.8 1.9 522 26

ing in the problem (column # DM), the average latency time for DMs (column Latency),
the average number of required conditions for DMs (# RC), the total number of mutual
exclusions (# ME), and the number of resource classes involved in the problem (# Res).
As the resource availability is known only when the maintenance activities are performed,
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we handle the worst possible situation. For each resource class, only one functional unit
is assumed to be available, resulting in harder scheduling problems, i.e., with the highest
solution latency.

Table 2 shows the advantages of the thermometric encoding with respect to the logarith-
mic one when a SAT approach is applied (see Section 5.1.1). For each encoding, we provide
the size of the transition relation in terms of total number of CNF variables (# Variable),
clauses (# Clause), and average clauses’ length (Length). The given data clearly show that
the thermometric encoding represents the constraints introduced in Sections 5.1.1 and 5.1.2
in a much more compact way. The logarithmic encoding reduces the number of state vari-
ables3., but this advantage is paid through a much larger amount of long clauses when the
transition relation is represented in CNF format.

Table 2. Statistics for the logarithmic and the thermometric encoding for TR. # DM: Number

of DMs; # Variable: Total number of CNF variables; # Clause: Total number of clauses; Length:

Average clauses’ length.

# DM Logarithmic Thermometric

# Variable # Clause Length # Variable # Clause Length

20 636 2591 4.1 758 892 2.0
60 1899 8659 4.1 2684 2912 2.1

A 100 3161 13807 4.2 4502 4856 2.1
200 6605 30076 4.2 8462 9778 2.1
300 9539 43400 4.2 13291 14478 2.1
20 725 3784 4.2 902 1084 2.1
60 2322 14497 4.3 2744 3573 2.2

B 100 3903 25042 4.3 4783 5918 2.2
200 8991 65226 4.4 9286 12834 2.3
300 13348 98337 4.4 14569 19309 2.3

To implement the timed automata model, we used the UPPAAL and UPPAAL CORA

tools [6, 5, 4]. UPPAAL [5] is a tool box for modeling, simulation and verification of real-
time systems, based on constraint-solving and on-the-fly techniques, developed jointly by the
Uppsala and the Aalbor University. It is appropriate for systems that can be modeled as a
collection of non-deterministic processes with finite control structure and real-valued clocks,
communicating through channels and shared variables. The model is further extended with
bounded discrete variables that are part of the state and are used as in programming
languages. A state of the system is defined by the locations of all automata, the clock
constraints, and the values of the discrete variables. Every automaton may fire an edge
separately or synchronize with another automaton, which leads to a new state. UPPAAL

uses a continuous time model. The model-checker is based on the theory of timed automata
and its modeling language offers additional features such as bounded integer variables and
urgency. The query language of UPPAAL, used to specify properties to be checked, is

3. Notice that, the numbers reported in the table include the auxiliary variables introduced by the conversion
process from BDDs to CNF, see Section 5.1.2.
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a subset of CTL (Computation Tree Logic) and it is sufficient to implement the check
described in Section 5.2.

For the Coloured Petri Nets approach we used the CPN-tools [25, 26]. It has been
developed at the University of Aarhus, Denmark. The tools combine the strength of Petri
Nets with the strength of programming languages. Petri Nets provide the primitives for the
description of the synchronization of concurrent processes, while programming languages
provide the primitives for the definition of data types and the manipulation of data values.
This representation is the foundation for the definition of the different behavioral properties
and the analysis methods. CPN models can be made with or without explicit reference to
time. Un-timed CPN models are usually used to validate the functional/logical correctness
of a system, while timed CPN models are used to evaluate the performance of the system.
CPN also offers formal verification methods, such as state space analysis and invariant
analysis, to prove that a system has a certain set of behavioral properties.

For the BDD-based and SAT-based approaches we implemented a home-made symbolic
scheduling tool. The BDD-based approach is built on top of the Colorado University De-
cision Diagram (CUDD, version 2.4.1) package [31]. The SAT-based approach uses the
Minisat [16] tool (version p v1.14) as default (linked) SAT solver.

Our experiments were run on a Pentium IV 1.7 GHz Workstation with 1 GByte of
main memory. Notice that while UPPAAL, UPPAAL CORA and CPN-tools run under Win-

Table 3. Results (in seconds) on aircraft maintenance provided by exact engines. A dash (−)
means overflow on time (1800 s) or memory (1 GB). When the time limit is reached, the latency

time of the last solution found is reported between parenthesis.

# DM Latency UPPAAL CPN-tools BDDs SAT

Log Therm Log Therm

20 78 1 1 12 1070 37 1
40 95 22 5 368 − 832 11
60 128 134 37 − − 1800 (151) 47
80 163 581 183 − − 1800 (239) 115

A 100 188 − 1279 − − − 276
150 231 − − − − − 611
200 267 − − − − − 1229
250 302 − − − − − 1800 (304)
300 329 − − − − − 1800 (345)
20 104 3 2 84 − 168 5
40 152 73 44 955 − 1800 (207) 59
60 187 419 248 − − − 174
80 219 1452 1021 − − − 392

B 100 253 − − − − − 668
150 296 − − − − − 1105
200 334 − − − − − 1748
250 389 − − − − − 1800 (407)
300 413 − − − − − 1800 (458)
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dows, the home-made BDD and SAT-based package run under the Debian GNU/Linux 4.0
operating system.

The first comparison we perform concerns the results given by the symbolic optimal
methods. Table 3 presents data collected by applying the different exact strategies we have
analyzed, in terms of CPU time, with a time limit of 1800 seconds. The table is divided in
two parts, as it shows data for both the aircraft processes (A and B). More specifically, it
provides the number of DMs appearing in each instance, the value for the optimal latency,
and then the CPU time (in seconds) required by each tool to find the solution of the problem.
For the BDD and SAT approaches, we report results for both the logarithmic (column Log)
and the thermometric (column Therm) encoding.

The following observations can be made. Though all the engines are able to solve the easy
instances, the problems become very soon infeasible for BDDs, due to the state explosion
problem, even when the number of state variables is controlled through the logarithmic
encoding. The methodologies offered by CPN-tools and UPPAAL behave better, but they
give up when the number of DMs is more than one hundred. The SAT technique exploiting
the thermometric encoding seems to be the only able to go beyond this threshold, delivering
the exact solution even with 200 DMs. For larger instances (i.e., 250 and 300 DMs), the SAT
method is not able to find the optimal solution within the given time limit, thus we report
this time (1800 seconds) and the latency (between parenthesis) of the last solution found by
the algorithm in Figure 9. On the other side, the SAT approach is absolutely not effective
when the logarithmic encoding is used. This fact definitely proves that the thermometric
encoding is better than the logarithmic one when solving this kind of problems through
SAT.

The previous results can be partially explained, however, by considering that both the
CPN-tools and UPPAAL software are all-purpose tools which have been designed to model
generic behaviors, whereas our tool, with the underlying SAT formulation, is dedicated to
face exactly this problem.

In the second set of experiments performed, we compare on our benchmarks a few SAT
tools. Results are reported in Table 4, where we compare the solvers in terms of CPU time
and memory efficiency, on the same set of experiments reported in Table 3 for the data base
B.

Table 4. SAT solver comparison on the harder of the two data bases (B). A dash (−) means

overflow on time (3 hours) or memory (1 GB).

# DM Minisat PicoSAT RSat March KS

Mem Time Mem Time Mem Time Mem Time

20 16.3 22 15.3 20 17.6 24 100.4 172
40 32.5 206 30.3 132 36.2 97 219.4 524
60 93.7 696 110.9 1188 119.1 414 332.9 1480
80 117.7 1566 117.3 1668 133.2 1820 559.3 8852

100 186.4 3430 214.7 3301 211.4 2935 784.7 −
150 394.1 6630 440.7 5568 457.7 4944 − −
200 489.4 10236 493.1 8908 620.2 7754 − −
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Given the very bad performance obtained with the logarithmic encoding, we concentrate
with the thermometric encoding. We used the best ranking solvers [7], namely Minisat [16]
(version 2.0), PicoSAT [8] (version 535), RSat [19] (version 2.01) and March KS [15] (ver-
sion 06.03.2007). All SAT solvers are exploited as external tools, throughout a file-based
interface. This implies that we could not adopt the incremental SAT paradigm, which
explains the worse performance of the SAT tools compared to the ones given in Table 3.
Therefore, we increased the time limit to 3 hours to perform these experiments. Overall,
the generated experiments seem hard-to-solve even for modern optimized SAT tools. RSat
seems to behave slightly better. Between Minisat and PicoSAT there is no clear winner.
March KS is the slower of the group and it runs out of time already with 100 DMs.

The third set of experiments done (presented in Figure 13) focuses on the pseudo-
optimal (heuristic) techniques coming with all the previous tools. It is well known [29, 13]
that heuristic approaches are able to cover even very large instances, usually quickly finding
a good solution for lightly constrained problems. Here, we provide the results obtained with
the branch and bound scheme of UPPAAL, with the simulative mode of CPN-tools, with the
As Soon As Possible (ASAP) heuristic strategy, and with a pseudo-optimal SAT-based
method exploiting the thermometric encoding. More precisely, for the SAT approach we
present data obtained by running the algorithm introduced in [11], instead of the one given
in Section 5.1.4. As previously mentioned, in this case a binary search for the optimal
latency is performed. However, every SAT run is executed under a (small) time limit,
interpreting an overflow result just like unsatisfiability. Thus, a possible solution for a given
bound may be missed (due to the time limit for the search), forcing the algorithm to return
a sub-optimal result. For this work, we have set the time limit for each SAT search to 1
minute.

Figure 13. Results on aircraft maintenance provided by pseudo-optimal engines.
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Figure 13 plots the obtained values for the latency time (for model A and B) with respect
to the number of data module in a range up to 500. Again, the graphs show the advantages
of the SAT method, even in its original formulation, in terms of the accuracy of the results.
This is paid in terms of the CPU time and memory necessary to find the solution. In fact,
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while the heuristic procedures required only a few seconds (at most) and a few MBytes of
memory in all cases, the SAT scheduling technique needed several hundred MBytes for the
largest instances, with total run-times up to 10 minutes.

Finally, we provide an experimental evaluation of the simplification effect obtained with
the method introduced in Section 5.1.4. As described in that section, function simplify

enables each operation in a window centered in the operation predicted scheduling time, and
of width 2 ·∆. Table 5 shows, for problems with an increasing number of DMs, the number
of clauses alive, i.e., not immediately satisfied, after the initial propagation of unit clauses
and assumptions. The total number of clauses of the exact case is drastically reduced for
the window-based search even when adopting quite large windows. For example, for the
last experiment of the data base B, with a window of width 128 the number of clauses of the
problem is reduced from about 9 millions to about 1.9 million. As the bound in that case
is equal to 460 and 2 ·∆ = 256, this means that we reduce the number of problem clauses
by a factor of almost 5 by allowing each operation to be scheduled in more than 50% of the
time steps. In general, the number of clauses may be easily reduced by 5–10 times.

Table 5. Simplification effect due to the window search.

# DM DB A DB B

Bound Exact Window Bound Exact Window

# Clauses ∆ # Clauses # Clauses ∆ # Clauses

20 80 53412 4 9828 110 96207 4 23523
60 150 436948 16 68269 200 714826 16 121680

100 210 1012074 32 188913 270 1598102 32 298814
200 280 2159540 64 342758 350 3664972 64 588636
300 370 5357568 128 1398236 460 9076272 128 1890672

7. Conclusions

In this paper, we presented a new application of standard scheduling and planning algo-
rithms to the field of aircraft maintenance.

We modeled the problem adopting different techniques, varying from heuristic schedul-
ing, symbolic BDD-based and SAT-based scheduling, Priced Timed Automata and Petri
Nets. We specifically concentrate on SAT-based scheduling, presenting an algorithm that
combines exact and heuristic approaches, trading-off scalability and optimality of the re-
sults. We used the tools to target both optimal and sub-optimal (approximated) responses
to our problems, depending on their size, total latency, and overall complexity. We com-
pared the different models, in terms of description power, efficiency, and accuracy of the
results. We also compared different state-of-the-art SAT solvers in terms of CPU time and
memory.

Experiments on real, very large, and highly constrained problems enabled the following
considerations. General purpose tools, albeit easy to apply to the problem, proved to have a
low scalability. On the contrary, ad-hoc SAT-based solutions were in general more efficient
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and scalable. Our technique was able to solve instances 3 − 4 times larger in terms of
operations to be scheduled.

Some interesting results have also been put forward regarding the performances of the
adopted SAT solvers on the specific verification instances generated by our problem. As far
as SAT solvers are concerned, on our benchmarks we showed that RSat has a small edge
on all other SAT tools.
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