
Journal on Satisfiability, Boolean Modeling and Computation 4 (2008) 251-278

The First and Second Max-SAT Evaluations

Josep Argelich josep@sat.inesc-id.pt

INESC-ID Lisboa
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

Chu-Min Li chu-min.li@u-picardie.fr

Université de Picardie
33 Rue St. Leu, 80039 Amiens Cedex 1, France

Felip Manyà felip@iiia.csic.es

Artificial Intelligence Research Institute (IIIA, CSIC)
Campus UAB, 08193 Bellaterra, Spain

Jordi Planes jp3@ecs.soton.ac.uk

University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom

Abstract

We describe the organization and report on the results of the First and Second Max-SAT
Evaluations, which were organized as affiliated events of the 2006 and 2007 editions of the
International Conference on Theory and Applications of Satisfiability Testing (SAT-2006
and SAT-2007), discuss the insights gained and point out new directions for forthcoming
evaluations. The main objectives of both evaluations were assessing the advancements
in the field of Max-SAT solvers through a comparison of their performances, identifying
successful solving techniques and encouraging researchers to develop new ones, and creating
a publicly available collection of challenging Max-SAT benchmarks.

Keywords: Max-SAT, Weighted Max-SAT, Partial Max-SAT, Weighted Partial Max-
SAT, empirical evaluation, solvers, benchmarks

Submitted October 2007; revised March 2008; published September 2008

1. Introduction

Satisfiability testing is a well-established research field that focus on the propositional sat-
isfiability problem of Boolean CNF formulas (SAT), as well as in related problems such as
Pseudo-Boolean Solving and Optimization, Satisfiability of Quantified Boolean formulas,
Satisfiability of Many-Valued formulas, and Max-SAT.

Taking into account the growing interest of the SAT community in developing fast exact
Max-SAT solvers, the lack of a good collection of benchmarks, and the good experiences
gathered from the SAT competitions [8], we decided to organize the First Max-SAT Eval-
uation [3] as an affiliated event of the SAT-2006 conference with the following objectives:
assess the advancements in the field of Max-SAT solvers through a comparison of their per-
formances, identify successful solving techniques and encourage researchers to develop new
ones, and create a publicly available collection of challenging Max-SAT benchmarks. In the
2006 Max-SAT Evaluation participated 6 solvers and there were two categories: Unweighted

c©2008 Delft University of Technology and the authors.

Argelich et al.

Max-SAT and Weighted Max-SAT. Due to the success of that event, we organized the 2007
Max-SAT Evaluation [4] as an affiliated event of the SAT-2007 conference, which counted
with the participation of 12 solvers and two additional categories: Partial Max-SAT and
Weighted Partial Max-SAT.

We concentrated on exact solvers because, for the time being, there is a big gap between
the size and type of instances that can be solved with exact solvers and the instances that
can be solved with approximation and heuristic solvers. On the other hand, there is no
guarantee that the solutions computed by the latter solvers are optimal.

In our opinion, the first Max-SAT evaluations have provided a quite accurate snapshot
of the current state-of-the-art of exact Max-SAT solvers, have contributed to increase the
interest and activity of the research community on Max-SAT, have allowed to identify a
number of good performing solving techniques, and have promoted the creation of a publicly
available collection of challenging Max-SAT benchmarks.

Most of the benchmarks used in the first two evaluations were contributed by F. Heras,
J. Larrosa, S. de Givry and T. Schiex, who have written a paper for this special issue
containing a description of the encodings used for solving problems such as max-cut, max-
clique and combinatorial auctions, as well as a description of how they have translated
benchmarks from the Pseudo-Boolean and CSP communities into Max-SAT. In the sequel,
we omit details about benchmarks and refer the reader to [14]. Besides, the organizers added
random Max-2-SAT and Max-3-SAT instances, changing the clause–to–variable ratio, for
each category in order to test more instances. In future evaluations, it is not planned
to add instances by the organizers because the number of submitted instances has grown
significantly.

The present paper is structured as follows: In Section 2 we recall some basic definitions
and define the problems solved in the evaluations (Max-SAT, Weighted Max-SAT, Partial
Max-SAT, and Weighted Partial Max-SAT). In Section 3 we describe the input and output
formats that the solvers should, respectively, read and write. In Section 4 we describe the
main features of all the solvers that participated in the evaluations. In Section 5 we report
on and discuss the experimental results of both evaluations. In Section 6 we present the
conclusions and point out new directions for forthcoming evaluations.

2. Preliminaries

In propositional logic, a variable xi may take values 0 (for false) or 1 (for true). A literal li
is a variable xi or its negation x̄i. A clause is a disjunction of literals, and a CNF formula
is a multiset of clauses. A weighted clause is a pair (Ci, wi), where Ci is a disjunction of
literals and wi, its weight, is a positive number, and a weighted CNF formula is a multiset
of weighted clauses. Note that we define CNF formulas as multisets of clauses because, in
contrast to SAT, duplicated clauses cannot be collapsed into one clause in Max-SAT. For
instance, the multiset {a,¬a,¬a, a ∨ b,¬b}, where a clause is repeated, has a minimum of
two unsatisfied clauses. In Weighted Max-SAT, two clauses of the form (C, wi), (C, wj) can
be replaced with (C, wi + wj).

An assignment of truth values to the propositional variables satisfies a literal xi if xi

takes the value 1 and satisfies a literal x̄i if xi takes the value 0, satisfies a clause if it satisfies
at least one literal of the clause, and satisfies a CNF formula if it satisfies all the clauses

252

The First and Second Max-SAT Evaluations

of the formula. Given a CNF formula φ, an assignment is said to be complete with respect
to φ if every variable in φ is assigned a truth value, otherwise the assignment is said to be
partial.

The (Unweighted) Max-SAT problem for a CNF formula φ is the problem of finding
an assignment of values to propositional variables that maximizes the number of satisfied
clauses. Max-SAT is called Max-k-SAT when all the clauses have k literals per clause.
In the sequel we often use the term of Max-SAT meaning Min-UNSAT. This is because,
with respect to exact computations, finding an assignment that minimizes the number of
unsatisfied clauses is equivalent to finding an assignment that maximizes the number of
satisfied clauses.

Max-SAT instances φ1 and φ2 are equivalent if φ1 and φ2 have the same number of
unsatisfied clauses for every complete assignment of φ1 and φ2.

We also consider three extensions of (Unweighted) Max-SAT which are more well-suited
for representing and solving over-constrained problems: Weighted Max-SAT, Partial Max-
SAT, and Weighted Partial Max-SAT.

The Weighted Max-SAT problem for a weighted CNF formula φ is the problem of finding
an assignment of values to propositional variables that minimizes the sum of weights of
unsatisfied clauses (or equivalently, that maximizes the sum of weights of satisfied clauses).

A Partial Max-SAT instance is a CNF formula in which some clauses are relaxable or
soft and the rest are non-relaxable or hard. Solving a Partial Max-SAT instance amounts
to find an assignment that satisfies all the hard clauses and the maximum number of soft
clauses.

The Weighted Partial Max-SAT problem is the combination of Weighted Max-SAT and
Partial Max-SAT: Every soft clause in a Weighted Partial Max-SAT instance has a weight,
and solving this instance amounts to find an assignment that satisfies all the hard clauses
and minimizes the sum of weights of unsatisfied soft clauses.

Notice that Max-SAT can also be defined as Weighted Max-SAT restricted to formulas
whose clauses have weight 1, and as Partial Max-SAT in the case that all the clauses are
declared to be soft.

3. Input and Output Formats

We define the input and output file formats that solvers should, respectively, read and write.
The input formats of each category are adaptations of the DIMACS format, and the output
format, which is common for all the categories, is inspired by the output specification of
the 2006 Pseudo Boolean Evaluation [24] and the SAT Competitions [8].

3.1 Input Format

The input file format for Unweighted Max-SAT instances is the standard DIMACS format.
The file may start with comments; i.e., lines beginning with the character ”c”. Right after
the comments, there is the parameters line ”p cnf nbvar nbclauses”, where cnf indicates
that the instance is in CNF format; nbvar is the number of variables appearing in the file,
and nbclauses is the exact number of clauses contained in the file. Then, the clauses follow.
Each clause is a sequence of distinct non-null numbers between −nbvar and nbvar ending
with a 0 on the same line; 0 is a terminator of clauses. Positive numbers denote positive

253

Argelich et al.

literals of the corresponding variables, and negative numbers denote negative literals of the
corresponding variables.

The following example corresponds to an Unweighted Max-SAT instance, the left hand
side corresponds to the instance in the common notation, and the right hand side to the
same instance in DIMACS format.

x1 ∨ x̄2

x̄1 ∨ x2 ∨ x̄3

x̄3 ∨ x2

x1 ∨ x3

c

c Unweighted Max-SAT instance

c

p cnf 3 4

1 -2 0

-1 2 -3 0

-3 2 0

1 3 0

In Weighted Max-SAT, the parameters line is ”p wcnf nbvar nbclauses”. The weights
of each clause will be identified by the first integer in each clause line. The weight of each
clause is an integer greater than or equal to 1, and smaller than 220. Big integers have not
been considered so far in Weighted Max-SAT, but they are necessary to solve certain types
of real-world problems. This is an open question that has to be discussed in the near future
with the participants of the forthcoming evaluations.

The following example corresponds to a Weighted Max-SAT instance, the left hand side
corresponds to the instance in the common notation, and the right hand side to the same
instance in the evaluation file format.

(x1 ∨ x̄2, 10)
(x̄1 ∨ x2 ∨ x̄3, 3)
(x̄3 ∨ x2, 8)
(x1 ∨ x3, 5)

c

c Weighted Max-SAT instance

c

p wcnf 3 4

10 1 -2 0

3 -1 2 -3 0

8 -3 2 0

5 1 3 0

In Weigthed Partial Max-SAT, the parameters line is ”p wcnf nbvar nbclauses top”,
where top is an integer that should be greater than any solution of the input instance. We
associate a weight with each clause, which is the first integer in the clause. Weights must
be greater than or equal to 1, and smaller than 220. Hard clauses have weight top and soft
clauses have a weight smaller than top. The weight of top is an upper bound. Initially,
top, which was of common use in the Weighted CSP (WCSP) community but not in the
Max-SAT community, was introduced to facilitate the participation of WCSP solvers in the
evaluation. It may not be useful for certain Partial Max-SAT solvers; in this case, they
just have to treat the clauses having a top weight as hard clauses. However, nowadays,
there exist Partial Max-SAT solvers that use the top to transform soft clauses into hard
clauses [18].

The following example corresponds to a Weighted Partial Max-SAT instance, the left
hand side corresponds to the instance in the common notation, and the right hand side to

254

The First and Second Max-SAT Evaluations

the same instance in the evaluation file format. Note that the hard clauses are represented
between square brackets.

[x1 ∨ x̄2 ∨ x4]
[x̄1 ∨ x̄2 ∨ x3]
(x̄2 ∨ x̄4, 8)
(x̄3 ∨ x2, 4)
(x1 ∨ x3, 3)

c

c Weighted Partial Max-SAT instance

c

p wcnf 4 5 16

16 1 -2 4 0

16 -1 -2 3 0

8 -2 -4 0

4 -3 2 0

3 1 3 0

Partial Max-SAT instances are represented as Weighted Partial Max-SAT instances in
which soft clauses have weight 1.

Finally, we would like to emphasize that we have described the current input formats,
but we believe that these formats will be probably modified in the future.

3.2 Output Format

Solvers must output messages on the standard output that are used to check the results.
Solvers cannot write to any files other than standard output and standard error (only
standard output will be parsed for results, but both output and error will be memorized
during the whole evaluation process, for all executions). The messages of the output format
are:

• Comments (”c ” lines): These lines start by the lower case ’c’ followed by a space.
They are optional and may appear anywhere in the solver output, and contain any
information that authors want to register.

• Current optimal solution (”o ” lines): These lines, which are mandatory, start by
lower case ”o” followed by a space and then by an integer which represents the lowest
number of clauses falsified so far by an assignment. The evaluation environment will
take as optimal number of unsatisfied clauses the last ”o ” line in the output stream.

• Solution (”s ” line): This line, which is mandatory, starts by lower case ’s’ followed by
a space. It gives the answer of the solver, which must be one of the following answers:

– OPTIMUM FOUND. This line must be output when the solver has traversed all
the search space and checked that the last ”o ” line is the optimal solution.

– UNKNOWN. This line must be output in any other case; i.e., when the solver is
not able to give the optimal solution for any reason.

If the solver does not display a solution line (or if the solution line is not valid), then
UNKNOWN will be assumed.

• Values (”v ” lines): These lines start by lower case ’v’ followed by a space. If the solver
finds an optimal solution (it outputs ”s OPTIMUM FOUND”), it must provide the

255

Argelich et al.

minimum number of unsatisfied clauses as well as an optimal truth assignment that is
used to check the correctness of the answer. The truth assignment is represented by
a list of literals, where each literal containts a distinct variable, and the value that it
assigns to the variable of a literal is 1 if the literal is positive and is 0 if the literal is
negative. If the solver does not output a value line, or if the value line is misspelled,
then UNKNOWN will be assumed.

An example of output format is the following file:

c --------------------------

c My Weighted Max-SAT Solver

c --------------------------

o 481

o 245

o 146

o 145

o 144

o 143

s OPTIMUM FOUND

v -1 2 3 -4 -5 6 -7 8 9 10 -11 -12 13 -14 -15 16 -17 18 19 20

A solver is considered buggy in the following cases:

• It outputs OPTIMUM FOUND but provides an assignment that falsifies a number
of clauses different from the number of clauses in the last ”o ” line (or the sum of
weights of unsatisfied clauses in the case of Weighted Max-SAT).

• It outputs OPTIMUM FOUND but the obtained assignment is not optimal.

As for the input formats, we would like to emphasize that we have described the current
output formats, but we believe that in future evaluations new rules have to be defined
to validate the optimal solutions provided by the solvers. We decide the correct optimal
solution by consensus. In the definitive experiments of both evaluations, we did not detect
two solvers that answered OPTIMUM FOUND and provided a different minimum number
of unsatisfied clauses.

4. Solvers

We now give a description of the main features of the solvers that participated in the
evaluations. Such descriptions were provided by their authors. For each solver, we also
give the existing publications in which the reader can find more detailed descriptions of the
solvers and their solving techniques.

4.1 Solvers of the 2006 Max-SAT Evaluation

ChaffBS and ChaffLS (Zhaohui Fu and Sharad Malik): Both ChaffBS and ChaffLS
are implemented on top of the SAT solver zChaff [25]. In order to translate a Max-SAT

256

The First and Second Max-SAT Evaluations

instance into a SAT one, it appends a distinct selector variable to every Max-SAT clause. A
true selector variable essentially means that the corresponding Max-SAT clause can be left
unsatisfied. It then constructs a hierarchical tree adder using three-at-a-time adders (i.e.,
full adders). The hierarchical tree adder sums up the number of true selector variables and
presents the summation in binary format to a logic comparator, which returns true if and
only if the binary number is less than or equal to any given number k. At this point, the
Max-SAT instance can be translated into a SAT instance, which consists of the Max-SAT
clauses with selector variables and the SAT clauses correspond to the hierarchical tree adder
and the logic comparator for a given k value. Obviously, k is greater than or equal to 0 and
less than or equal to the total number of selector variables. In order to find the minimum
k, i.e., the minimum number of true selector variables, one can either do Binary Search
(ChaffBS) or Linear Search (ChaffLS) within the possible range of k. For ChaffLS, it starts
with k = 0 and increase k by one until it finds the translated SAT instance satisfiable. As
a side effect, ChaffLS is not able to produce any sub-optimal solution as the first solution
it finds is the optimal solution. For further details see [13].

Lazy (Teresa Alsinet, Felip Manyà and Jordi Planes): It is a branch and bound
solver for both Unweighted Max-SAT and Weighted Max-SAT that uses very simple lazy
data structures and a static variable selection heuristic. It applies, as preprocessing, the
almost common clause rule: x∨D and ¬x∨D is replaced with D. The initial upper bound
is computed with a local search algorithm. Lazy applies the complementary unit clause
rule at each node of the proof tree, and applies unit propagation whenever the difference
between the lower bound and the upper bound is one. It implements the star rule as lower
bound computation method: The lower bound is incremented by one for every detected
disjoint subset either of the form x,¬x or of the form x, y,¬x ∨ ¬y. For further details
see [1, 2].

Maxsatz (Chu Min Li, Felip Manyà and Jordi Planes): It is a branch and bound
solver for Unweighted Max-SAT that incorporates into a Max-SAT solver some of the tech-
nology developed for Satz [19]. At each node of the proof tree, it transforms the formula
into an equivalent formula that preserves the number of unsatisfied clauses by applying
some efficient refinements of unit resolution that the authors have defined for Max-SAT
(e.g., it replaces x, y,¬x ∨ ¬y with �, x ∨ y, it replaces x,¬x ∨ y,¬x ∨ z,¬y ∨ ¬z with
�,¬x ∨ y ∨ z, x ∨ ¬y ∨ ¬z). MaxSatz implements a lower bound computation method
that increments the lower bound by one for every disjoint inconsistent subset that can be
detected by applying unit propagation, or unit propagation enhanced with failed literal
detection. The variable selection heuristics takes into account the number of positive and
negative occurrences in binary and ternary clauses. For further details see [20, 21, 22].

SAT4Jmaxsat (Daniel Le Berre): SAT4Jmaxsat translates a Max-SAT instance S =
{C1, C2, . . . , Cm} with n variables into the following optimization problem: For each clause
Ci in the original problem, a new variable Vi is created and added. Some people call
those variables selector variables because satisfying such a variable disables a clause. So
solving Max-SAT on the original problem is equivalent to solve the optimization problem:
Minimize the number of Vi’s satisfied in S′ = {C1 ∨ V1, C2 ∨ V2, . . . , Cm ∨ Vm}. Since
SAT4Jmaxsat supports cardinality constraints, it simply asks a SAT solver to solve S′,
and each time a model M is found, it tries to find a better one, by adding a cardinality
constraints SUM(Vi) < number of Vi satisfied in M . Once S′ and all the cardinality

257

Argelich et al.

constraints are inconsistent, the latest model is the optimal solution. For further details see
[7].

ToolBar (Simon de Givry, Federico Heras, Javier Larrosa, and Thomas Schiex):
A DPLL-like algorithm is used to find a better solutions or proving optimality. After
each assignment the current subproblem is transformed to an equivalent (and simpler)
one. The transformations are based on the resolution rule for Max-SAT [17]. Note that
these transformations can be explained as different levels of local consistency for WCSP.
It is easy to see that a Max-SAT instance can be represented as a WCSP problem where
all variables have two values (Boolean variables) and forbidden tuples represent weighted
clauses. Examples of such transformations are (and its related WCSP local consistencies):
- clauses (x ∨ y, 2), (¬x ∨ y, 1) are replaced by (x ∨ y, 1), (y, 1) (This is detected by AC* in
WCSP). - clauses (x, 1), (¬x∨y, 2), (¬y∨z, 1), (¬z, 1) are replaced by (�, 1), (¬x∨y, 1), (x∨
¬y, 1), (y ∨¬z, 1) where (�, 1) represents an increment of the lower bound (this is detected
by EDAC* in WCSP [11]). For further details see [18].

4.2 Solvers of the 2007 Max-SAT Evaluation

The solvers from the 2006 Max-SAT Evaluation that also participated in the 2007 Max-
SAT Evaluation are: ChaffBS & ChaffLS , MaxSatz, SAT4Jmaxsat and ToolBar. We show
below the description of all the new solvers and only the description of the solvers from the
2006 edition that have been changed by their authors in the 2007 edition.

Clone (Knot Pipatsrisawat, Mark Chavira, Arthur Choi, and Adnan Darwiche):
Clone is an exact Max-SAT solver that uses branch-and-bound search to find optimal so-
lutions. The method for computing bounds used by Clone is rather different from those of
contemporary Max-SAT solvers. Clone relaxes some constraints in the original CNF and
turns it into an approximate formula, which is then compiled into a d-DNNF (Determinis-
tic Decomposable Negation Normal Form). The approximate formula’s Max-SAT solution,
which can be computed very efficiently, can be used as a bound on the solution of the
original problem. Once every variable involved in the relaxation is assigned a value, the
solution of the conditioned approximate formula is no longer a bound -it becomes exact.
Thus, Clone only needs to perform branch-and-bound search on the search space of those
variables involved in the relaxation of constraints, resulting in a smaller search space. For
further details see [26, 27].

LB-SAT and LB-PSAT (Han Lin, and Kaile Su): LB-SAT is a two-stage solver for
MAX-SAT. At the first stage, it invokes a local search procedure to calculate an approximate
optimal solution. At the second stage, taking the approximate value as an initial upper
bound, a branch and bound routine is called to find the exact solution. At each search
node, like UP [20] and Maxsatz [22], LB-SAT exploits unit propagation to compute a lower
bound. The lower bound is computed in an incremental style, i.e., at each node, instead of
computing the lower bound from scratch, LB-SAT reuses the information from the previous
search nodes to boost the computation and improve the lower bound. Other techniques
incorporated into LB-SAT can be found in [23]. LB-PSAT is LB-SAT for Weighted and
Partial Max-SAT.

MaxSatz14 (Sylvain Darras, Gilles Dequen, Laure Devendeville, and Chu Min
Li): This solver is based on the last release of Maxsatz [22], built and improved by Chu

258

The First and Second Max-SAT Evaluations

Min Li, Felip Manyà and Jordi Planes. The main contribution has been to speed up the
two look-ahead functions by selecting and storing useful conflictual subformulas in order to
avoid their recomputation at each node of the search tree. For further details see [9].

MiniMaxSat (Federico Heras, Javier Larrosa, Albert Oliveras, and Simon de
Givry): MiniMaxSat incorporates the best current SAT and Max-SAT techniques. It
can handle hard clauses (clauses of mandatory satisfaction as in SAT), soft clauses (clauses
whose falsification is penalized by a cost as in Max-SAT) as well as pseudo-boolean objective
functions and constraints. Its main features are: learning and backjumping on hard clauses;
resolution-based and subtraction-based lower bounding; and lazy propagation with the two-
watched literals scheme. For further details see [15, 16].

PMS (Josep Argelich, and Felip Manyà): PMS is a branch and bound solver which
incorporates efficient data structures, a dynamic variable selection heuristic, inference rules
and a good quality lower bound based on unit propagation. PMS exploits the fact that
some clauses are hard to increase the efficiency of its heuristics and its techniques. PMS
also incorporates a clause learning schema for hard clauses; this learning is similar to the
learning incorporated into modern SAT solvers. For further details see [6].

SR(w) (Miquel Ramı́rez, and Héctor Geffner): SR(w) is a MinCostSAT solver which
uses explicit structural relaxation to derive lower bounding functions that allow a Branch
& Bound DLL-style search procedure to potentially prune vast tracts of the search space.
SR(w) is built on top of two off-the-shelf tools: the d-SDNNF compiler by Darwiche [10]
and the state-of-the-art SAT solver MiniSAT 2.0 [12]. For further details see [28].

W-MaxSatz (Josep Argelich, Chu Min Li, and Felip Manyà): W-MaxSatz is the
weighted version of MaxSatz. It is a branch and bound Weighted Max-SAT solver that
incorporates all the features of MaxSatz adapted to deal with weights. This implies the
modification of the data structures to dynamically add and remove clauses without a signif-
icant overhead in CPU time. W-MaxSatz implements a dynamic variable selection heuristic,
advanced inference rules, and a lower bound computation method based on unit propagation
and failed literals detection.

5. Empirical Evaluation

The empirical evaluation of both the 2006 Max-SAT Evaluation and the 2007 Max-SAT
Evaluation started with the submission of benchmarks and solvers. After a few days of the
submission, a representative sample of benchmark instances were provided to the authors of
solvers with the aim of allowing them to correct possible bugs and tune their solvers. After
that, authors had the opportunity of submitting a new version of their solver. Only one
version per solver was allowed. In parallel, the organizers programmed the scripts needed
to perform the evaluation.

The evaluations were conducted on a cluster with machines with the following specifi-
cation:

• Operating System: Rocks Cluster 4.0.0 Linux 2.6.9

• Processor: AMD Opteron 248 Processor, 2 GHz

• Memory: 1 GB

259

Argelich et al.

Table 1. Results in the Unweighted Max-SAT category of the 2006 Max-SAT Evaluation. Mean

time in seconds.

Set Name #Ins. MaxSatz ToolBar Lazy ChaffBS ChaffLS SAT4J
maxsat

Max-Cut (brock) 12 13.35(12) 57.50(12) 178.48(12) — (0) — (0) — (0)
Max-Cut (c-fat) 7 0.07(5) 21.05(5) 151.13(5) 0.01(2) 0.01(2) 0.85(2)

Max-Cut (hamming) 6 180.12(3) 575.52(3) 42.06(2) — (0) — (0) — (0)
Max-Cut (johnson) 4 45.39(3) 134.68(3) 2.45(2) — (0) — (0) — (0)
Max-Cut (keller) 2 6.12(2) 17.25(2) 69.86(2) — (0) — (0) — (0)
Max-Cut (p hat) 12 15.84(12) 61.86(12) 192.05(12) — (0) — (0) — (0)
Max-Cut (san) 11 275.05(11) 65.02(7) 249.83(7) — (0) — (0) — (0)
Max-Cut (sanr) 4 71.98(4) 266.86(4) 80.78(3) — (0) — (0) — (0)

Max-Cut (random) 40 5.58(40) 34.67(40) 752.34(25) — (0) — (0) — (0)
Max-Cut (spinglass) 5 44.92(3) 4.96(2) 48.21(2) 9.97(1) 6.19(1) — (0)

Max-One 45 0.02(45) 5.44(45) 81.34(40) 1.00(45) 0.20(45) 2.31(41)
Ramsey 48 8.99(34) 53.14(33) 81.70(28) 53.39(34) 7.36(33) 2.86(32)

Max-2-SAT (60 vars) 50 0.03(50) 0.62(50) 3.27(50) 13.74(10) 25.69(10) — (0)
Max-2-SAT (100 vars) 50 1.40(50) 17.57(50) 235.83(31) 0.70(10) 1.08(10) 24.37(10)
Max-2-SAT (140 vars) 50 7.02(50) 105.61(49) 204.10(23) 272.77(12) 99.86(11) 47.26(11)
Max-2-SAT(discarded) 180 16.79(180) 99.34(175) 141.39(107) 262.04(18) 172.67(14) 59.87(4)
Max-3-SAT (40 vars) 50 1.50(50) 8.09(50) 6.94(50) 0.31(10) 0.28(10) 50.05(11)
Max-3-SAT (60 vars) 50 23.31(50) 264.98(50) 266.70(43) 84.76(11) 68.55(11) 1.96(10)

Solved instances 604 (626) 592 (626) 444 (626) 153 (626) 147 (626) 121 (626)

• Cache: 1024 KB

• Compilers: GCC 3.4.3, javac JDK 1.5.0

The time limit was set to 1800 seconds for each instance and solver. No memory limit
was imposed to solvers and no swap problem was detected. Assessment of solvers was based
on the number of successfully solved instances and the time needed to solve them.

5.1 Empirical Results in the 2006 Max-SAT Evaluation

Table 1 and Table 2 show the experimental results of the two categories of the 2006 Max-
SAT Evaluation. The instances were grouped into sets. The instances in each set were
decided by the authors of the instances. There were 18 sets of instances in the Unweighted
Max-SAT category and 31 sets of instances in the Weighted Max-SAT category. We display
the number of instances in each set (#Ins.) and then, for each solver and for each set of
instances, the mean time needed to solve an instance and the number of solved instances
(in brackets) using a cutoff of 1800 seconds. The last line of each table displays the total
number of instances that were solved by each solver. The best results are displayed in bold.
There are instances (e.g. instances in spinglass) that were not solved by any solver with
the current cutoff.

Figure 1 and Figure 2 globally compare the performance of the solvers in the two cate-
gories of the 2006 Max-SAT Evaluation on the instances in Table 1 and Table 2, respectively.
Each point (x, y) of a curve shows the number x of instances that the corresponding solver
is able to solve within y seconds. In other words, each of the x instances is solved within
y seconds (the total run time for these x instances may be larger than y seconds), y be-
ing limited to 1800 seconds. In the Unweighted Max-SAT category, MaxSatz and ToolBar
are the best performing solvers, followed by Lazy. In the Unweighted Max-SAT category,
ToolBar is the best performing solvers, followed by Lazy.

260

The First and Second Max-SAT Evaluations

Table 2. Results in the Weighted Max-SAT category of the 2006 Max-SAT Evaluation. Mean time

in seconds.

Set Name #Ins. ToolBar Lazy SAT4Jmaxsat

Auction (paths) 30 249.77(26) 81.24(20) — (0)

Auction (regions) 30 8.16(30) 2.03(28) 926.99(6)

Auction (scheduling) 30 132.15(30) 63.33(30) 518.41(8)

Max-Clique (brock) 12 96.76(4) 104.69(4) — (0)

Max-Clique (c-fat) 7 25.19(7) 17.36(7) 346.68(4)

Max-Clique (hamming) 6 134.04(5) 195.05(5) 6.32(2)

Max-Clique (johnson) 4 53.91(3) 38.64(3) 61.73(2)

Max-Clique (keller) 2 34.12(1) 43.38(1) — (0)

Max-Clique (mann a) 4 45.62(3) 0.31(1) 726.50(2)

Max-Clique (p hat) 12 325.70(8) 254.14(6) — (0)

Max-Clique (san) 11 25.01(3) 10.88(1) — (0)

Max-Clique (sanr) 4 821.98(3) 790.55(2) — (0)

Weighted Max-Cut (brock) 12 12.37(12) 18.01(12) — (0)

Weighted Max-Cut (c-fat) 7 7.80(7) 25.99(7) 1.07(2)

Weighted Max-Cut (hamming) 6 105.22(4) 88.93(4) — (0)

Weighted Max-Cut (johnson) 4 71.39(3) 74.29(3) — (0)

Weighted Max-Cut (keller) 2 13.46(2) 17.43(2) — (0)

Weighted Max-Cut (mann a) 4 1155.02(2) 1015.62(4) — (0)

Weighted Max-Cut (p hat) 12 11.42(12) 10.92(12) — (0)

Weighted Max-Cut (san) 11 82.66(11) 57.33(11) — (0)

Weighted Max-Cut (sanr) 4 42.26(4) 25.90(4) — (0)

Weighted Max-Cut (random) 40 11.57(40) 246.96(40) — (0)

Weighted Max-Cut (spinglass) 5 40.50(3) 0.26(2) — (0)

Max-One 45 122.37(45) 343.82(27) 472.66(9)

Quasigroup Completion 25 112.33(10) 94.58(6) 22.04(24)

Ramsey 48 19.04(35) 54.79(29) 32.54(33)

Weighted CSP (dense-loose) 40 236.81(34) 527.02(32) — (0)

Weighted CSP (dense-tight) 60 30.68(30) — (0) — (0)

Weighted CSP (sparse-loose) 40 94.13(32) 392.13(27) 299.68(25)

Weighted CSP (sparse-tight) 40 40.96(20) — (0) — (0)

Weighted CSP (spot) 42 75.77(12) 15.37(5) 35.34(4)

Solved instances 441 (599) 335 (599) 121 (599)

261

Argelich et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds

number of instances

Number x of instances solved in y seconds (unweighted category)

MaxsatZ
Toolbar

Lazy
chaffBS
chaffLS

Sat4Jmaxsat

Figure 1. Comparison of the solvers in the Unweighted Max-SAT category of the 2006 Max-SAT

Evaluation. A point (x, y) means number x of instances solved in y seconds.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400 450

C
P

U
 ti

m
e

in
 s

ec
on

ds

number of instances

Number x of instances solved in y seconds (weighted category)

Toolbar
Lazy

Sat4Jmaxsat

Figure 2. Comparison of the solvers in the Weighted Max-SAT category of the 2006 Max-SAT

Evaluation. A point (x, y) means number x of instances solved in y seconds.

Figure 3 and Figure 4 show the scalability of the three fastest solvers on random un-
weighted Max-2-SAT instances with 100 variables and a number of clauses ranging from 200
to 1200, and on random unweighted Max-3-SAT instances with 70 variables and a number
of clauses ranging from 300 to 1000. A point (x, y) in a curve represents the mean time
y, in seconds, needed to solve an instance with x clauses by the corresponding solver. 100
instances are solved at each point of the plot. These instances were randomly generated
using the generator mwff developed by Bart Selman, which allows for duplicated clauses.
We observe that MaxSatz outperforms significantly the rest of solvers. We notice that we

262

The First and Second Max-SAT Evaluations

consider the three fastest solvers for these instances, independently of the results shown in
Table 1.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 400 600 800 1000 1200

m
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

number of clauses

Random Max-2-SAT (100 variables)

Lazy
Toolbar

Maxsatz

Figure 3. Scalability of the three fastest solvers in the Unweighted Max-SAT category of the 2006

Max-SAT Evaluation on random Max-2-SAT instances with 100 variables and a number of clauses

ranging from 200 to 1200.

 0

 500

 1000

 1500

 2000

 2500

 3000

 300 400 500 600 700 800 900 1000

m
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

number of clauses

Random Max-3-SAT (70 variables)

Lazy
Toolbar

Maxsatz

Figure 4. Scalability of the three fastest solvers in the Unweighted Max-SAT category of the 2006

Max-SAT Evaluation on random Max-3-SAT instances with 70 variables and a number of clauses

ranging from 300 to 1000.

Figure 5 and Figure 6 show the scalability of the three Weighted Max-SAT solvers of the
2006 Max-SAT Evaluation on weighted random Max-2-SAT instances with 100 variables and
number of clauses ranging from 200 to 1000, and on weighted random Max-3-SAT instances

263

Argelich et al.

with 70 variables and number of clauses ranging from 300 to 1000. The displayed mean
time is computed by solving 100 instances at each point of the plot. These instances were
generated using a modified version of the generator mwff. The generator associates to
each clause, randomly, a weight between 1 and 10. We observe that Toolbar outperforms
significantly the rest of solvers on Max-2-SAT, and Toolbar and Lazy are the best performing
solvers on Max-3-SAT.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 300 400 500 600 700 800 900 1000

m
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

number of clauses

Random Weighted Max-2-SAT (100 variables)

Sat4Jmaxsat
Lazy

Toolbar

Figure 5. Scalability of the solvers in the Weighted Max-SAT category of the 2006 Max-SAT

Evaluation on random Max-2-SAT instances with 100 variables and a number of clauses ranging

from 200 to 1000.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 300 400 500 600 700 800 900 1000

m
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

number of clauses

Random Weighted Max-3-SAT (70 variables)

Sat4Jmaxsat
Lazy

Toolbar

Figure 6. Scalability of the solvers in the Weighted Max-SAT category of the 2006 Max-SAT

Evaluation on random Max-3-SAT instances with 70 variables and a number of clauses ranging

from 300 to 1000.

264

The First and Second Max-SAT Evaluations

5.2 Empirical Results in the 2007 Max-SAT Evaluation

The 2007 Max-SAT Evaluation was organized with the same rules and conditions of the
2006 Max-SAT Evaluation, but there were two additional categories: Partial Max-SAT and
Weighted Partial Max-SAT. The instances were also grouped into sets by their authors.
There were 15 sets of instances in the Unweighted Max-SAT category, 6 sets of instances in
the Weighted Max-SAT category, 15 sets of instances in the Partial Max-SAT category, and
11 sets of instances in the Weighted Partial Max-SAT category. Table 3, Table 4, Table 5,
and Table 6 show the results of the four categories of the 2007 Max-SAT Evaluation. We
first display the number of instances in each set (#Ins.) and then, for each solver and for
each set of instances, the mean time needed to solve an instance and the number of solved
instances (in brackets) using a cutoff of 1800 seconds. The last line of each table displays
the total number of instances that were solved by each solver. The best results are displayed
in bold.

Figure 7, Figure 8, Figure 9, and Figure 10 globally compare the performance of the
solvers in the four categories on the instances in Table 3, Table 4, Table 5, and Table
6, respectively. Each point (x, y) of a curve shows the number x of instances that the
corresponding solver is able to solve within y seconds. In other words, each of the x instances
is solved within y seconds (the total run time for these x instances may be larger than y

seconds), y being limited to 1800 seconds (30 minutes) to solve an instance. The best
performing solvers of the 2007 Max-SAT Evaluation are MiniMaxSat and the differents
variants of MaxSatz. The solvers Clone, LB-SAT, LB-PSAT, PMS, SR(w), Toolbar are
competitive on some classes of benchmarks. Solvers ChaffBS, ChaffLS and SAT4Jmaxsat
are just competitive on a reduced number of benchmarks.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

SAT4jmaxsat
SR(w)
Clone

ToolBar
PMS

MiniMaxSat
LB-SAT

MaxSatz14
W-MaxSatz

MaxSatz

Figure 7. Comparison of the solvers in the Unweighted Max-SAT category of the 2007 Max-SAT

Evaluation. A point (x, y) means number x of instances solved in y seconds.

Figure 11 and Figure 12 show the scalability of the three fastest Unweighted Max-SAT
solvers of the 2007 evaluation on random Max-2-SAT instances with 100 variables and a
number of clauses ranging from 500 to 1000, and on random Max-3-SAT instances with

265

A
r
g
e
l
ic

h
e
t

a
l
.

Table 3. Results in the Unweighted Max-SAT category of the 2007 Max-SAT Evaluation. Mean time in seconds.

Set Name #Ins. Clone LB-SAT MaxSatz14 MaxSatz MiniMaxSat PMS SAT4J SR(w) ToolBar W-MaxSatz
maxsat

Max-3-SAT 40 376.02(28) 1.23(40) 1.02(40) 1.05(40) 3.34(40) 9.48(40) 1462.17(2) 629.93(9) 7.20(40) 1.48(40)
(40 Vars)

Max-3-SAT 40 492.35(16) 7.84(40) 6.04(40) 5.90(40) 25.79(40) 58.25(40) 480.68(3) 1287.91(2) 57.64(40) 8.60(40)
(50 Vars)

Max-3-SAT 40 356.90(13) 24.13(40) 15.61(40) 14.24(40) 77.53(38) 128.38(40) 68.05(9) 650.58(4) 272.90(40) 21.63(40)
(60 Vars)

Max-3-SAT 40 7.79(10) 124.68(40) 57.85(40) 48.82(40) 207.90(35) 191.93(37) 2.24(10) 891.70(8) 334.33(29) 77.88(40)
(70 Vars)
Spinglass 20 6.19(10) 11.83(20) 43.01(20) 69.40(20) 4.56(20) 3.29(10) — (0) 24.51(10) 24.02(10) 80.76(20)
Ramsey 48 103.20(33) 21.15(35) 12.27(29) 8.99(34) 29.81(34) 29.99(35) 2.88(33) 55.88(23) 20.40(35) 16.57(34)

Max-2-SAT 110 138.34(31) 10.53(110) 1.84(110) 1.78(110) 9.62(110) 40.82(110) 17.83(10) 97.45(20) 29.02(110) 2.54(110)
(100 Vars)
Max-2-SAT 110 112.22(31) 156.54(103) 26.83(110) 29.57(110) 121.54(99) 155.06(93) 37.74(15) 4.77(20) 235.40(96) 39.48(110)
(140 Vars)
Max-2-SAT 110 329.83(51) 0.11(110) 0.03(110) 0.03(110) 0.19(110) 0.23(110) — (0) 140.84(21) 0.69(110) 0.04(110)
(60 Vars)

Max-3-SAT 50 373.87(34) 1.74(50) 1.43(50) 1.50(50) 5.53(46) 15.09(50) 5.40(10) 17.02(10) 9.54(50) 2.13(50)
(40 Vars)

Max-3-SAT 50 134.16(20) 36.05(50) 25.22(50) 23.33(50) 111.81(50) 214.28(50) 1.61(10) 5.48(10) 339.96(48) 35.40(50)
(60 Vars)

Max-3-SAT 50 151.15(20) 170.41(42) 210.89(48) 197.58(49) 230.82(37) 253.57(41) 111.81(18) 0.45(10) 241.94(28) 245.23(47)
(80 Vars)
Max-Cut 62 123.42(21) 156.01(52) 83.66(52) 83.86(52) 100.06(48) 333.28(44) 0.93(2) 305.10(16) 127.82(48) 145.06(52)

(dimacs mod)
Max-Cut 40 — (0) 10.66(40) 5.43(40) 5.58(40) 15.88(40) 683.22(34) — (0) — (0) 55.54(40) 8.43(40)
(random)
Max-Cut 5 2.67(2) 7.60(3) 25.99(3) 44.96(3) 1.62(3) 0.41(2) — (0) 9.96(2) 4.75(2) 54.07(3)

(spinglass)

Solved instances 320 (815) 775 (815) 782 (815) 788 (815) 750 (815) 736 (815) 122 (815) 165 (815) 726 (815) 786 (815)

26
6

The First and Second Max-SAT Evaluations

Table 4. Results in the Weighted Max-SAT category of the 2007 Max-SAT Evaluation. Mean time

in seconds.

Set Name #Ins. Clone LB-PSAT MiniMaxSat SAT4J SR(w) ToolBar W-MaxSatz
maxsat

Ramsey 48 98.37(35) 3.59(36) 7.08(36) 3.60(32) 82.89(25) 5.48(35) 44.85(36)
Weighted 90 197.41(34) 18.79(90) 10.59(90) 156.50(10) 95.18(20) 34.70(90) 7.95(90)

Max-2-SAT
Weighted 80 248.65(23) 207.84(80) 280.49(70) 6.52(9) 414.35(9) 242.76(51) 191.40(80)

Max-3-SAT
Weighted 62 325.43(25) 75.77(55) 77.46(55) 1.32(2) 200.11(16) 81.48(57) 93.79(55)
Max-Cut

(dimacs mod)
Weighted 40 — (0) 16.39(40) 5.42(40) — (0) — (0) 15.91(40) 19.22(40)
Max-Cut
(random)
Weighted 5 2.57(2) 2.50(3) 45.50(4) — (0) 7.83(2) 89.23(3) 35.77(2)
Max-Cut

(spinglass)

Solved instances 119 (325) 304 (325) 295 (325) 53 (325) 72 (325) 276 (325) 303 (325)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

SAT4jmaxsat
SR(w)
Clone

ToolBar
MiniMaxSat
W-MaxSatz

LB-PSAT

Figure 8. Comparison of the solvers in the Weighted Max-SAT category of the 2007 Max-SAT

Evaluation. A point (x, y) means number x of instances solved in y seconds.

70 variables and number of clauses ranging from 500 to 1000. A point (x, y) in a curve
represents the mean time y, in seconds, needed to solve an instance with x clauses by the
corresponding solver. 100 instances are solved at each point of the plot. The best performing
solvers are MaxSatz and MaxSatz14. The same generator was used in both evaluations.
We notice that we consider the three fastest solvers for these instances, independently of
the results shown in Table 3.

Figure 13 and Figure 14 show the scalability of the three fastest Weighted Max-SAT
solvers of the 2007 Max-SAT Evaluation on random Max-2-SAT instances with 100 variables
and a number of clauses ranging from 200 to 1000, and on random Max-3-SAT instances
with 70 variables and number of clauses ranging from 300 to 1000. A point (x, y) in a curve
represents the mean time y, in seconds, needed to solve an instance with x clauses by the
corresponding solver. 100 instances are solved at each point to compute the displayed mean

267

A
r
g
e
l
ic

h
e
t

a
l
.

Table 5. Results in the Partial Max-SAT category of the 2007 Max-SAT Evaluation. Mean time in seconds.

Set Name #Ins. Chaff BS Chaff LS Clone LB-PSAT MiniMaxSat PMS SAT4J SR(w) ToolBar W-MaxSatz
maxsat

Partial 90 — (0) — (0) 8.20(1) 305.93(59) 221.57(83) 220.27(44) — (0) — (0) 149.86(89) 40.42(90)
Max-2-SAT

Partial 60 40.25(24) 22.44(22) 251.62(19) 52.42(59) 156.47(58) 80.83(59) 4.57(20) 327.62(16) 172.31(47) 59.01(60)
Max-3-SAT
Max-Clique 96 146.24(54) — (0) 189.65(79) 9.89(96) 2.39(96) 68.19(96) — (0) 225.38(55) 11.39(96) 49.34(80)
(random)

Max-Clique 62 282.83(19) 54.44(9) 308.72(16) 128.34(32) 85.26(36) 171.13(27) 13.16(1) 19.35(9) 202.68(33) 153.30(22)
(structured)
Max-One 80 402.14(23) 11.67(41) 420.67(54) 62.18(76) 1.30(80) 4.23(80) 1013.93(5) 273.87(70) 102.34(80) 199.16(77)
(3-SAT)
Max-One 60 52.98(57) 81.21(2) 258.19(32) 2.29(2) 31.04(60) 176.71(37) 412.66(3) 443.59(22) 221.31(44) 385.89(54)

(structured)
Pseudo 7 1.34(5) 0.78(5) 2.59(5) 0.47(5) 7.13(5) 0.55(5) 1.42(3) 2.55(5) 1.82(4) 2.16(4)
(garden)
Pseudo 17 39.42(2) 32.16(4) — (0) 865.73(3) 216.28(2) 2.55(1) — (0) — (0) — (0) — (0)

(logic-synthesis)
Pseudo 148 72.92(99) 41.25(46) 89.72(99) 82.68(35) 88.15(107) 124.09(88) 82.11(45) 67.03(77) 68.71(60) 129.97(85)

(primes-dimacs-cnf)
Pseudo 15 180.33(15) 0.22(14) 19.08(5) — (0) 93.88(14) 25.98(5) — (0) — (0) — (0) 143.94(5)

(routing)
Weighted CSP 20 324.93(14) 143.86(6) 831.09(1) 1.16(20) 0.65(20) 2.03(20) — (0) 588.37(1) 336.71(15) 7.19(20)
(dense-loose)
Weighted CSP 20 65.83(20) 106.81(18) 25.90(20) 2.87(20) 0.68(20) 2.25(20) — (0) 199.93(18) 461.84(20) 10.53(20)
(dense-tight)

Weighted CSP 20 19.16(20) 41.80(19) 122.28(13) 1.86(20) 0.35(20) 1.42(20) 222.86(10) 264.08(16) 4.18(10) 25.55(20)
(sparse-loose)
Weighted CSP 20 28.87(20) 16.23(19) 29.58(20) 7.14(20) 0.85(20) 2.19(20) — (0) 219.99(19) 20.36(10) 26.04(20)
(sparse-tight)
Weighted CSP 7 13.94(7) 18.94(5) 80.49(4) 5.26(7) 0.52(6) 12.95(7) 11.17(2) 45.17(6) 12.73(5) 85.10(6)

(wqueens)

Solved instances 379 (722) 210 (722) 368 (722) 454 (722) 627 (722) 529 (722) 89 (722) 314 (722) 513 (722) 563 (722)

26
8

The First and Second Max-SAT Evaluations

Table 6. Results in the Weighted Partial Max-SAT category of the 2007 Max-SAT Evaluation.

Mean time in seconds.

Set Name #Ins. Clone MiniMaxSat SAT4J SR(w) ToolBar W-MaxSatz
maxsat

Weighted Partial 90 — (0) 246.28(81) — (0) — (0) 213.24(88) 196.30(88)
Max-2-SAT

Weighted Partial 60 136.28(21) 186.63(58) 6.41(20) 275.44(17) 188.75(47) 91.81(60)
Max-3-SAT
Auctions 88 50.78(88) 31.55(88) — (0) 163.45(77) 48.68(88) 243.98(70)
(paths)

Auctions 84 30.51(84) 1.61(84) — (0) 130.20(82) 6.45(84) 6.70(84)
(region)
Auctions 84 228.16(74) 46.22(84) — (0) 231.83(55) 74.11(82) 103.85(82)

(scheduling)
Pseudo 186 9.85(186) 1.17(186) 598.29(55) — (0) 246.39(12) 0.43(186)
(factor)
Pseudo 16 132.42(5) 41.66(5) 6.74(3) 244.85(6) 2.92(4) 1.50(4)
(miplib)

Quasigroup 25 — (0) 25.01(20) 377.01(14) 652.50(5) 191.07(12) 37.54(11)
Completion

Weighted CSP 71 261.15(62) 9.97(71) 73.22(16) 365.48(52) 22.82(52) 101.49(59)
(planning)

Weighted CSP 21 9.32(6) 3.83(3) 0.56(1) 2.92(6) 128.04(5) 17.35(2)
(spot5-dir)

Weighted CSP 21 7.27(5) 9.18(4) 0.54(1) 14.91(6) 111.41(4) 640.86(4)
(spot5-log)

Solved instances 531 (746) 684 (746) 110 (746) 306 (746) 478 (746) 650 (746)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

SAT4jmaxsat
ChaffLS

SR(w)
Clone

ChaffBS
LB-PSAT

ToolBar
PMS

W-MaxSatz
MiniMaxSat

Figure 9. Comparison of the solvers in the Partial Max-SAT category of the 2007 Max-SAT

Evaluation. A point (x, y) means number x of instances solved in y seconds.

time. The best performing solver is W-MaxSatz. MiniMaxSat has a good performance
profile on Max-2-SAT, and LB-SAT has a good performance profile on Max-3-SAT. We

269

Argelich et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

SAT4jmaxsat
SR(w)

ToolBar
Clone

W-MaxSatz
MiniMaxSat

Figure 10. Comparison of the solvers in the Weighted Partial Max-SAT category of the 2007

Max-SAT Evaluation. A point (x, y) means number x of instances solved in y seconds.

 0

 5

 10

 15

 20

 25

 30

 500 600 700 800 900 1000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

100-variable Random Max-2-SAT

W-MaxSatz
MaxSatz

MaxSatz14

Figure 11. Scalability of the three fastest solvers in the Unweighted Max-SAT category of the

2007 Max-SAT Evaluation on random Max-2-SAT instances with 100 variables and number of

clauses ranging from 500 to 1000.

notice that we consider the three fastest solvers for these instances, independently of the
results shown in Table 4.

Figure 15 and Figure 16 show the scalability of the three fastest Partial Max-SAT solvers
of the 2007 Max-SAT Evaluation on random Max-2-SAT instances with 150 variables, 150
hard clauses and a number of soft clauses ranging from 850 to 4850, and on random Max-
3-SAT instances with 100 variables, 100 hard clauses and a number of soft clauses ranging
from 200 to 700. 100 instances are solved at each point of the plot. The generator of the

270

The First and Second Max-SAT Evaluations

 0

 100

 200

 300

 400

 500

 600

 500 600 700 800 900 1000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

70-variable Random Max-3-SAT

W-MaxSatz
MaxSatz14

MaxSatz

Figure 12. Scalability of the three fastest solvers in the Unweighted Max-SAT category of the

2007Max-SAT Evaluation on randomMax-3-SAT instanceswith 70 variables and number of clauses

ranging from 500 to 1000.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 200 300 400 500 600 700 800 900 1000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

100-variable Random Weighted Max-2-SAT

LB-SAT
MiniMaxSat
W-MaxSatz

Figure 13. Scalability of the three fastest solvers in the Weighted Max-SAT category of the 2007

Max-SAT Evaluation on random Max-2-SAT instances with 100 variables and number of clauses

ranging from 200 to 1000.

2006 edition was modified in order to create Partial Max-SAT instances. A Partial Max-
SAT instance is generated as a weighted instance with hard clauses having weight equal
to the number of its soft clauses. The number of hard clauses in an instance corresponds
to its number of variables. The soft clauses have weight 1. The best performing solver is
W-MaxSatz; and LB-SAT has a good performance profile, particularly on Max-3-SAT. We

271

Argelich et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 300 400 500 600 700 800 900 1000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

70-variable Random Weighted Max-3-SAT

MiniMaxSat
LB-SAT

W-MaxSatz

Figure 14. Scalability of the three fastest solvers in the Weighted Max-SAT category of the 2007

Max-SAT Evaluation on random Max-3-SAT instances with 70 variables and number of clauses

ranging from 300 to 1000.

notice that we consider the three fastest solvers for these instances, independently of the
results shown in Table 5.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (150 hard clauses)

150-variable Random Partial Max-2-SAT

ToolBar
LB-SAT

W-MaxSatz

Figure 15. Scalability of the three fastest solvers in the Partial Max-SAT category of the 2007

Max-SAT Evaluation on random Max-2-SAT instances with 150 variables, 150 hard clauses and

number of soft clauses ranging from 850 to 4850. The total number of clauses ranges from 1000 to

5000.

Figure 17 and Figure 18 show the scalability of the three fastest Weighted Partial Max-
SAT solvers of the 2007 Max-SAT Evaluation on random Max-2-SAT instances with 150

272

The First and Second Max-SAT Evaluations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 300 400 500 600 700 800

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (100 hard clauses)

100-variable Random Partial Max-3-SAT

ToolBar
LB-SAT

W-MaxSatz

Figure 16. Scalability of the three fastest solvers in the Partial Max-SAT category of the 2007

Max-SAT Evaluation on random Max-3-SAT instances with 100 variables, 100 hard clauses and

number of soft clauses ranging from 200 to 700. The total number of clauses ranges from 300 to 800.

variables, 150 hard clauses and a number of soft clauses ranging from 850 to 3850, and
on random Max-3-SAT instances with 100 variables, 100 hard clauses and number of soft
clauses ranging from 200 to 700. 100 instances are solved at each point of the plot. The
generator of the 2006 edition was modified in order to create Weighted Partial Max-SAT
instances. A Weighted Partial Max-SAT instance is generated as a weighted instance with
hard clauses having weight equal to the sum of the weights of soft clauses (randomly gener-
ated between 1 and 10). The number of hard clauses in an instance corresponds to its num-
ber of variables. On Max-2-SAT, the best performing solvers are ToolBar and W-MaxSatz.
On Max-3-SAT, the best performing solver is W-MaxSatz followed by MiniMaxSat. We
notice that we consider the three fastest solvers for these instances, independently of the
results shown in Table 6.

6. Conclusions

We believe that the first Max-SAT evaluations have provided a quite accurate snapshot
of the current state-of-the-art of exact Max-SAT solvers, have contributed to increase the
interest and activity of the research community on Max-SAT, have allowed to identify a
number of good performing solving techniques, and have promoted the creation of a publicly
available collection of challenging Max-SAT benchmarks.

The solvers participating in the evaluation can be classified into three classes: (i) solvers
like ChaffBS, ChaffLS and SAT4Jmaxsat that solve Max-SAT using a SAT encoding and
a state-of-the-art SAT solver; (ii) solvers like LB-SAT, MaxSatz, MaxSatz14, MiniMaxsat,
and PMS that implement a branch and bound scheme and apply inference rules and compute
unit propagation-based underestimations of the lower bound at each node of the proof tree;
and (iii) solvers like Clone and SR(w) that implement a branch and bound scheme and

273

Argelich et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1000 1500 2000 2500 3000 3500 4000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (150 hard)

150-variable Random Weighted Partial Max-2-SAT

MiniMaxSat
ToolBar

W-MaxSatz

Figure 17. Scalability of the three fastest solvers in the Weighted Partial Max-SAT category of

the 2007 Max-SAT Evaluation on randomMax-2-SAT instances with 150 variables, 150 hard clauses

and number of soft clauses ranging from 850 to 3850. The total number of clauses ranges from 1000

to 4000.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 300 400 500 600 700 800

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses (100 hard)

100-variable Random Weighted Partial Max-3-SAT

ToolBar
MiniMaxSat
W-MaxSatz

Figure 18. Scalability of the three fastest solvers in the Weighted Partial Max-SAT category of

the 2007 Max-SAT Evaluation on randomMax-3-SAT instances with 100 variables, 100 hard clauses

and number of soft clauses ranging from 200 to 700. The total number of clauses ranges from 300

to 800.

compute an underestimation by solving a relaxation of a d-DNNF compiled translation of
the Max-SAT instance into a Minimum Cardinality instance. Most of the solvers solving
Partial Max-SAT, independently of the class to which they belong, incorporate learning of

274

The First and Second Max-SAT Evaluations

hard clauses. Solvers of the second class were the ones with better performance profile in
both evaluations.

The solving techniques that we have identified as powerful and promising are:

• Resolution-style inference rules that transform Max-SAT instances into equivalent
Max-SAT instances have a dramatic impact on the the performance profile of solvers.
Solvers implementing powerful inference rules include MaxSatz, MaxSatz14, Mini-
Maxsat, PMS and ToolBar.

• Despite the dramatic improvements achieved by applying inference rules, the compu-
tation of good quality underestimations of the lower bound is decisive to speed up
solvers. The two more powerful techniques that have been identified are the detec-
tion of disjoint inconsistent subsets of clauses via unit propagation and failed literal
detection (LB-SAT, MaxSatz, MaxSatz14, MiniMaxsat, PMS), and transforming the
Max-SAT instance into a Minimum Cardinality instance and solving a relaxation of
this new instance after compiling it with a d-DNNF compiler (Clone, SR(w)).

• Learning of hard clauses produces significant performance improvements on several
types of Partial Max-SAT instances.

• The selection of suitable data structures is decisive for producing fast implementa-
tions. Solvers incorporating lazy data structures include ChaffBS, ChaffLS, Lazy,
MiniMaxsat and SAT4Jmaxsat.

• The formalism used to encode problems has a remarkable impact on performance.
When there are hard and soft constraints, the Partial Max-SAT formalism allows to
exploit structural information.

As a side effect, most authors of solvers had the opportunity of correcting a significant
number of bugs in their code. Since the number of solvers was moderate, the errors detected
during the course of the experimentation were notified to the authors. They had the oppor-
tunity of correcting the reported errors and submitting a new version of their code. This
was very time consuming for the organizers but was very helpful to improve the robustness
of the participating solvers.

Future directions of the 2006 and 2007 Max-SAT Evaluations include to solve optimiza-
tion problems with big integers, promote the participation of solvers from the Operations
Research community, promote a collection of industrial benchmarks, and transform the
evaluation into a competition. As a first step, in the 2008 Max-SAT Evaluation [5], the
benchmarks, in each category, are divided into 3 types: random, crafted and industrial.

7. Acknowledgments

We would like to thank all the people who contributed solvers and benchmarks. Without
their effort, these evaluations could not exist. We would also like to thank the Universitat
de Lleida for allowing to use its cluster for performing the two evaluations.

This research has been partially supported by projects IEA (TIN2006-15662-C02-02),
Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010) and MULOG

275

Argelich et al.

(TIN2007-68005-C04-02) funded by the Ministerio de Educación y Ciencia. The second au-
thor is partially supported by National 973 Program of China under Grant No. 2005CB321900.

References

[1] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved exact solver for weighted Max-
SAT. In Proceedings of the 8th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2005, St. Andrews, Scotland, pages 371–377. Springer
LNCS 3569, 2005.

[2] Teresa Alsinet, Felip Manyà, and Jordi Planes. An efficient solver for Weighted Max-
SAT. Journal of Global Optimization, 41:61–73, 2008.

[3] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. 2006 Max-SAT Evaluation.
http://www.iiia.csic.es/∼maxsat06/.

[4] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. 2007 Max-SAT Evaluation.
http://www.maxsat07.udl.es/.

[5] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. 2008 Max-SAT Evaluation.
http://www.maxsat.udl.cat/08/.

[6] Josep Argelich and Felip Manyà. Partial Max-SAT solvers with clause learning. In
João Marques-Silva and Karem A. Sakallah, editors, Proceedings of 10th Interna-
tional Conference on the Theory and Applications of Satisfiability Testing, SAT 2007,
LNCS 4501, pages 28–40. Springer, 2007.

[7] Daniel Le Berre. SAT4J, a satisfiability library for java.
http://www.sat4j.org/.

[8] Daniel Le Berre and Laurent Simon. SAT Competition.
http://www.satcompetition.org.

[9] Sylvain Darras, Gilles Dequen, Laure Devendeville, and Chu Min Li. On inconsistent
clause-subsets for Max-SAT solving. In Christian Bessiere, editor, Proceedings of 13th
International Conference on Principles and Practice of Constraint Programming, CP
2007, LNCS, pages 225–240, Providence, USA, 2007. Springer.

[10] Adnan Darwiche. c2d compiler.
http://reasoning.cs.ucla.edu/c2d/.

[11] Simon de Givry, Matthias Zytnicki, Federico Heras, and Javier Larrosa. Existential arc
consistency: Getting closer to full arc consistency in weighted CSPs. In Proceedings of
the International Joint Conference on Artificial Intelligence, IJCAI 2005, pages 84–89,
Edinburgh, Scotland, 2005.

[12] Niklas Eén and Niklas Sörensson. The MiniSat page.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.

276

http://www.iiia.csic.es/~maxsat06/
http://www.maxsat07.udl.es/
http://www.maxsat.udl.cat/08/
http://www.sat4j.org/
http://www.satcompetition.org
http://reasoning.cs.ucla.edu/c2d/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

The First and Second Max-SAT Evaluations

[13] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin
Biere and Carla P. Gomes, editors, Proceedings of the 9th International Conference on
the Theory and Applications of Satisfiability Testing, SAT 2006, LNCS, pages 252–265,
Seattle, USA, 2006. Springer.

[14] Federico Heras, Javier Larrosa, Simon de Givry, and Thomas Schiex. 2006 and 2007
Max-SAT evaluations: Contributed instances. submitted to JSAT, Special issue on
SAT 2007 competitions and evaluations, 2007.

[15] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSat: A new weighted
Max-SAT solver. In Joao Marques-Silva and Karem A. Sakallah, editors, Proceedings of
10th International Conference on the Theory and Applications of Satisfiability Testing,
SAT 2007, LNCS 4501, pages 41–55, 2007. Springer.

[16] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT: An efficient
weighted Max-SAT solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

[17] Javier Larrosa and Federico Heras. Resolution in Max-SAT and its relation to local
consistency in weighted CSPs. In Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, 2005.

[18] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient
Max-SAT solving. Artificial Intelligence, 172(2–3):204–233, 2008.

[19] Chu Min Li and Anbulagan. Look-ahead versus look-back for satisfiability problems.
In Proceedings of the 3rd International Conference on Principles of Constraint Pro-
gramming, CP’97, Linz, Austria, LNCS 1330, pages 341–355, 1997. Springer.

[20] Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation to compute
lower bounds in branch and bound Max-SAT solvers. In Proceedings of the 11th Inter-
national Conference on Principles and Practice of Constraint Programming, CP-2005,
Sitges, Spain, pages 403–414.LNCS 3709, 2005. Springer.

[21] Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint inconsistent subfor-
mulas for computing lower bounds for Max-SAT. In Proceedings of the 21st National
Conference on Artificial Intelligence, AAAI 2006, page 14, Boston, USA, 2006. AAAI
Press.

[22] Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for Max-SAT. Journal
of Artificial Intelligence Research, 30:321–359, 2007.

[23] Han Li and Kaile Su. Exploiting inference rules to compute lower bounds for MAX-SAT
solving. In Proceedings of the International Joint Conference on Artificial Intelligence,
IJCAI 2007, page 376, Hyderabad, India, 2007.

[24] Vasco Manquinho and Olivier Roussel. 2006 Pseudo Boolean Evaluation.
http://www.cril.univ-artois.fr/PB06/.

[25] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In 39th Design Automation Conference, 2001.

277

http://www.cril.univ-artois.fr/PB06/

Argelich et al.

[26] Knot Pipatsrisawat and Adnan Darwiche. Clone: Solving weighted Max-SAT in a
reduced search space. In Proceedings of the Australian Conference on Artificial Intel-
ligence, AI 2007, LNCS, Queensland, Australia, 2007. Springer.

[27] Knot Pipatsrisawat, Akop Palyan, Mark Chavira, Arthur Choi, and Adnan Darwiche.
Solving weighted max-sat problems in a reduced search space: A performance analysis.
Journal on Satisfiability Boolean Modeling and Computation (JSAT) 4:191–217, 2008.

[28] Miquel Ramirez and Hector Geffner. Structural relaxations by variable renaming and
their compilation for solving MinCostSAT. In Christian Bessiere, editor, Proceedings of
13th International Conference on Principles and Practice of Constraint Programming,
CP 2007, LNCS 4741, pages 605–619, Providence, USA, 2007. Springer.

278

	Introduction
	Preliminaries
	Input and Output Formats
	Input Format
	Output Format

	Solvers
	Solvers of the 2006 Max-SAT Evaluation
	Solvers of the 2007 Max-SAT Evaluation

	Empirical Evaluation
	Empirical Results in the 2006 Max-SAT Evaluation
	Empirical Results in the 2007 Max-SAT Evaluation

	Conclusions
	Acknowledgments

