A Switching Criterion for Intensification

 and Diversification in Local Search for SAT, ${ }^{\dagger}$Wanxia Wei
wanxia.wei@unb.ca
Faculty of Computer Science, University of New Brunswick
Chu Min Li
chu-min.li@u-picardie.fr
MIS,
Université de Picardie Jules Verne

Harry Zhang
hzhang@unb.ca
Faculty of Computer Science,
University of New Brunswick

Abstract

We propose a new switching criterion, namely the evenness or unevenness of the distribution of variable weights, and use this criterion to combine intensification and diversification in local search for SAT. We refer to the ways in which state-of-the-art local search algorithms adapt $G^{2} W S A T_{P}$ and $V W$ select a variable to flip, as heuristic adapt $G^{2} W S A T_{P}$ and heuristic $V W$, respectively. To evaluate the effectiveness of this criterion, we apply it to heuristic adapt $G^{2} W S A T_{P}$ and heuristic $V W$, in which the former intensifies the search better than the latter, and the latter diversifies the search better than the former. The resulting local search algorithm, which switches between heuristic adaptG${ }^{2} W S A T_{P}$ and heuristic $V W$ in every step according to this criterion, is called Hybrid. Our experimental results show that, on a broad range of SAT instances presented in this paper, Hybrid inherits the strengths of adapt $G^{2} W S A T_{P}$ and $V W$, and exhibits generally better performance than adapt $G^{2} W S A T_{P}$ and $V W$. In addition, Hybrid compares favorably with state-of-the-art local search algorithm $R+$ adapt Novelty + on these instances. Furthermore, without any manual tuning parameters, Hybrid solves each of these instances in a reasonable time, while $\operatorname{adapt}^{2} W S A T_{P}, V W$, and $R+$ adaptNovelty + have difficulty on some of these instances.

Keywords: SAT, local search, switching criterion, intensification, diversification, distribution of variable weights

Submitted October 2007; revised March 2008; published June 2008

1. Introduction

Intensification and diversification are two properties of a search process. Intensification refers to search strategies that intend to greedily improve solution quality or the chances of finding a solution in the near future [5]. Diversification refers to search strategies that

[^0]
W. Wei et al.

help achieve a reasonable coverage when exploring the search space in order to avoid search stagnation and entrapment in relatively confined regions of the search space that may contain only locally optimal solutions [5].

There appear to be two classes of local search algorithms, those that intensify the search well, and those that diversify the search well. The first class of algorithms includes GSAT [18], HSAT [2], WalkSAT [17], R+adaptNovelty+ [1], $G^{2} W S A T$ [7], and adapt $G^{2} W S A T_{P}$ $[8,9]$. Among these algorithms, $R+$ adaptNovelty + integrates restricted resolution in a preprocessing phase into AdaptNovelty + [4], $G^{2} W S A T$ deterministically uses promising decreasing variables, and $a d a p t G^{2} W S A T_{P}$ implements the adaptive noise mechanism from [4] in $G^{2} W S A T$ and contains limited look-ahead moves. The second class of algorithms includes the variable weighting algorithm $V W$ [15], which uses variable weights to diversify the search. This second class of algorithms also includes clause weighting algorithms, such as Breakout [14], DLM (Discrete Lagrangian Method) [22], Guided Local Search (GLSSAT) [13], SDF (Smoothed Descent and Flood) [16], SAPS (Scaling And Probabilistic Smoothing) [6], RSAPS (Reactive SAPS) [6], and PAWS (Pure Additive Weighting Scheme) [19], because according to [20], clause weighting works as a form of diversification.
$R+$ adaptNovelty+, $G^{2} W S A T$ with noise $p=0.50$ and diversification probability $d p=0.05$, and $V W$ won the gold, silver, and bronze medals, respectively, in the satisfiable random formula category in the SAT 2005 competition. ${ }^{1 .}$ Experiments in [8, 9] show that, without any manual noise or other parameter tuning, adapt $G^{2} W S A T_{P}$ shows generally good performance, compared with $G^{2} W S A T$ with optimal static noise settings, or is sometimes even better than $G^{2} W S A T$, and that $\operatorname{adapt} G^{2} W S A T_{P}$ compares favorably with $R+$ adaptNovelty + and $V W$.

Nevertheless, each local search algorithm or heuristic has weaknesses. To examine the weaknesses of the above two classes of algorithms, we conduct experiments with one state-of-the-art algorithm from each class. The algorithm from the first class is $a d a p t G^{2} W S A T_{P}$, and the algorithm from the second class is $V W$. Our experimental results show that the performance of $a d a p t G^{2} W S A T_{P}$ is poor on some instances for which a local search algorithm may result in imbalanced flip numbers of variables, and that the performance of $V W$ is poor on some instances for which a local search algorithm may result in balanced flip numbers of variables. The poor performance of $a d a p t G^{2} W S A T_{P}$ may result from the fact that this algorithm does not employ any weighting to diversify the search. The poor performance of $V W$ may result from the fact that $V W$ always considers variable weights to diversify the search when choosing a variable to flip, even if the flip numbers of variables are balanced. In fact, when the flip numbers of variables are balanced, i.e., when searches by $V W$ are diversified, $V W$ should intensify the search well.

In the literature, several local search algorithms switch between heuristics $[3,11,7,8,9]$. UnitWalk [3] combines unit clause elimination and local search. UnitWalk 0.98, one of the latest versions of UnitWalk, alternates between WalkSAT-like and UnitWalk-like searches. QingTing2 [11] switches between WalkSAT [17] and QingTing1, which implements UnitWalk with a new unit-propagation technique. $G^{2} W S A T$ [7] switches between a variant of GSAT and Novelty++. The local search algorithm adapt $G^{2} W S A T_{P}[8,9]$ switches between a variant of GSAT and Novelty $++_{p}$. However, none of these algorithms

1. http://www.satcompetition.org/
switches from one heuristic to another during the search to diversify the search by using variable weighting.

In this paper, we propose a new switching criterion: the evenness or unevenness of the distribution of variable weights. We refer to the ways in which local search algorithms adapt $G^{2} W S A T_{P}$ and $V W$ select a variable to flip, as heuristic adapt $G^{2} W S A T_{P}$ and heuristic $V W$, respectively. Then, to evaluate the effectiveness of this switching criterion, we develop a new local search algorithm called Hybrid, which switches between heuristic adapt $G^{2} W S A T_{P}$ and heuristic $V W$ in every step according to this switching criterion. This new algorithm allows suitable diversification strategies to complement intensification strategies by switching between heuristic adapt $G^{2} W S A T_{P}$ and heuristic $V W$. Our experimental results show that, on a broad range of SAT instances presented in this paper, Hybrid inherits the strengths of adapt $G^{2} W S A T_{P}$ and $V W$.

2. Review of Algorithms adapt $G^{2} W S A T_{P}$ and $V W$

Given a CNF formula \mathcal{F} and an assignment A, the objective function that local search for SAT attempts to minimize is usually the total number of unsatisfied clauses in \mathcal{F} under A. Let x be a variable. The break of $x, \operatorname{break}(x)$, is the number of clauses in \mathcal{F} that are currently satisfied but will be unsatisfied if x is flipped. The make of x, make (x), is the number of clauses in \mathcal{F} that are currently unsatisfied but will be satisfied if x is flipped. The score of x with respect to $A, \operatorname{score}_{A}(x)$, is the difference between make (x) and $\operatorname{break}(x)$. Let best and second be the best and second best variables in a randomly selected unsatisfied clause c according to their scores. Heuristic Novelty [12] selects a variable to flip from c as follows.
$\operatorname{Novelty}(p)$: If best is not the most recently flipped variable in c, then pick it. Otherwise, with probability p, pick second, and with probability 1-p, pick best.

Given a CNF formula \mathcal{F} and an assignment A, a variable x is said to be decreasing with respect to A if $\operatorname{score}_{A}(x)>0$. Promising decreasing variables are defined in [7] as follows:

1. Before any flip, i.e., when A is an initial random assignment, all decreasing variables with respect to A are promising.
2. Let x and y be two variables, $x \neq y$, and x be not decreasing with respect to A. If $\operatorname{score}_{C}(x)>0$ where C is the new assignment after flipping y, then x is a promising decreasing variable with respect to the new assignment.
3. A promising decreasing variable remains promising with respect to subsequent assignments in local search until it is no longer decreasing.

According to the above definition of promising decreasing variables, flipping such a variable not only decreases the number of unsatisfied clauses but also probably allows local search to explore new promising regions in the search space.

Let assignment B be obtained from A by flipping x, and let x^{\prime} be the best promising decreasing variable with respect to B. The promising score of x with respect to $A, \operatorname{pscore}_{A}(x)$, is defined in $[8,9,10]$ as
$\operatorname{pscore}_{A}(x)=\operatorname{score}_{A}(x)+\operatorname{score}_{B}\left(x^{\prime}\right)$

W. Wei et al.

where $\operatorname{score}_{A}(x)$ is the score of x with respect to A and $\operatorname{score}_{B}\left(x^{\prime}\right)$ is the score of x^{\prime} with respect to $B .{ }^{2}$.

If there are promising decreasing variables with respect to $B, \operatorname{pscore}_{A}(x)$ represents the improvement in the number of unsatisfied clauses under A by flipping x and then x^{\prime}. In this case, $\operatorname{pscore}_{A}(x)>\operatorname{score}_{A}(x)$. If there is no promising decreasing variable with respect to B,

$$
\operatorname{pscore}_{A}(x)=\operatorname{score}_{A}(x) .
$$

Heuristic Novelty $+{ }_{P}[8,9]$ selects a variable to flip from c as follows.
Novelty $+{ }_{P}(p, d p)$: With probability $d p$ (diversification probability), flip a variable in c whose flip falsifies the least recently satisfied clause. With probability $1-d p$, do as Novelty, but flip second if best is more recently flipped than second and if pscore (second) \geq pscore (best).

If promising decreasing variables exist, the local search algorithm $\operatorname{adapt}^{2} W S A T_{P}[8,9]$ flips the promising decreasing variable with the largest computed promising score. Otherwise, adapt $G^{2} W S A T_{P}$ selects a variable to flip from a randomly chosen unsatisfied clause using Novelty $++_{P}$. We refer to the way in which the algorithm adapt $G^{2} W S A T_{P}$ selects a variable to flip, as heuristic adapt $G^{2} W S A T_{P}$.

The local search algorithm $V W$ [15] uses variable weights to diversify the search. This algorithm initializes the weight of a variable x, var_weight $[x]$, to 0 and updates and smoothes var_weight $[x]$ each time x is flipped, using the following formula:

$$
\begin{equation*}
\text { var_weight }[x]=(1-s)(\text { var_weight }[x]+1)+s \times t \tag{1}
\end{equation*}
$$

where s is a parameter and $0 \leq s \leq 1$, and t denotes the time when x is flipped, i.e., t is the number of search steps since the start of the search.

Clause weighting algorithms usually use expensive smoothing phases in which all clause weights are adjusted to reduce the differences between them. In contrast, $V W$ uses an efficient variable weight smoothing technique, namely continuous smoothing, in which smoothing occurs as weights are updated. We describe this continuous smoothing in the following. In Formula 1, there are two extreme values for parameter s. The first one is $\mathrm{s}=1$, and this value causes variables to forget their flip histories. That is, only the most recent flip of a variable affects the weight of this variable. The second one is $s=0$. This value causes the weight of a variable to behave like a simple counter of the flips of this variable, so every flip of a variable has an equal effect on the weight of this variable. $V W$ adjusts s during the search and lets s be a value between these two extreme values, i.e., $0<s<1$. When $0<s<1$, older events in the search history have lesser but non-zero effects on variable weights.
$V W$ always flips a variable from a randomly selected unsatisfied clause c. If c contains freebie variables, ${ }^{3 \cdot} V W$ randomly flips one of them. Otherwise, with probability p, it flips a variable chosen randomly from c, and with probability $1-p$, it flips a variable in c according to a unique variable selection rule. We call this rule the low variable weight favoring rule,
2. x^{\prime} has the highest $\operatorname{score}_{B}\left(x^{\prime}\right)$ among all promising decreasing variables with respect to B.
3. A freebie variable is a variable with a break of 0 .
and describe it as follows. Let the best variable in a randomly selected unsatisfied clause c so far be best. If a variable x in c has fewer breaks than best, x becomes the new best. If x has the same number of breaks as best but a lower variable weight, x becomes the new best. If x has more breaks than best but a lower variable weight, x becomes the new best with a probability that is equal to or higher than $1 / 2^{\text {break }_{x}-\text { break }_{\text {best }}}$ where break_{x} and break $_{\text {best }}$ are the breaks of x and best, respectively. We refer to the way in which the algorithm $V W$ selects a variable to flip, as heuristic $V W$.

3. Motivation

We observe that searches by $V W$ are better diversified than searches by $a d a p t G^{2} W S A T_{P}$, and that searches by adapt $G^{2} W S A T_{P}$ are better intensified than searches by $V W$. In addition, we conjecture that variable weights provide meaningful information for $V W$ to diversify the search, usually when the flip numbers of variables are imbalanced, and that adapt $G^{2} W S A T_{P}$ intensifies the search well, usually when the flip numbers of variables are generally balanced. To empirically confirm our observations and empirically verify our conjectures, we conduct experiments with $V W$ and adapt $G^{2} W S A T_{P}$.

We make adapt $G^{2} W S A T_{P}$ calculate variable weights in the same way as does $V W$, although adapt $G^{2} W S A T_{P}$ does not consider variable weights when choosing a variable to flip. We run $V W$ and $a d a p t G^{2} W S A T_{P}$ on two classes of instances. ${ }^{4}$. The source code of $V W$ was obtained from the organizer of the SAT 2005 competition. The first class comes from the SAT 2005 competition benchmark ${ }^{5}$. and includes the 8 random instances from O*1582 to O*1589. The second class is from Miroslav Velev's SAT Benchmarks ${ }^{6}$. and consists of all of the formulas from Superscalar Suite 1.0a (SSS.1.0a) except for *bug54.7. Each algorithm is run 100 times $($ Maxtries $=100)$. The cutoffs are set to $10^{8}\left(\right.$ Maxsteps $\left.=10^{8}\right)$ and 10^{7} (Maxsteps $=10^{7}$) for a random instance and an instance from SSS.1.0a, respectively.
"Depth" is one of the three measures introduced in [16] and assesses how many clauses remain unsatisfied during the search. We make $V W$ and $a d a p t G^{2} W S A T_{P}$ calculate the average depth (the number of unsatisfied clauses), the average coefficient of variation of distribution of variable weights (coefficient of variation $=$ standard deviation / mean value), and the average division of the maximum variable weight by the average variable weight, over all search steps. In Tables 1 and 2, we report the calculated average depth ("depth"), the calculated average coefficient of variation of distribution of variable weights ("cv"), and the calculated average division of maximum variable weight by average variable weight ("div"), each value being averaged over 100 runs (Maxtries $=100$). A run is successful if it finds a solution within a cutoff (Maxsteps). The success rate of an algorithm for an instance is the number of successful runs divided by the value of Maxtries. In these tables, we also report success rates ("suc"). In addition, in the last row of each table, we present the average of the values in each column ("avg").

[^1]
W. Wei et al.

Table 1. Performance and distributions of variable weights for $V W$ and $a d a p t G^{2} W S A T_{P}$ on the 8 random instances.

	$V W$				adapt ${ }^{2} W S A T_{P}$			
	depth	cv	div	suc	depth	cv	div	suc
$\mathrm{O}^{*} 1582$	23.22	0.000	1.000	0.30	10.30	0.010	1.017	1.00
$\mathrm{O}^{*} 1583$	22.68	0.001	1.001	0.69	10.17	0.018	1.052	1.00
$\mathrm{O}^{*} 1584$	23.24	0.000	1.002	0.38	10.27	0.009	1.027	1.00
$\mathrm{O}^{*} 1585$	23.19	0.000	1.001	0.35	10.39	0.008	1.015	1.00
$\mathrm{O}^{*} 1586$	22.21	0.000	1.001	0.25	9.73	0.005	1.016	1.00
$\mathrm{O}^{*} 1587$	22.66	0.001	1.002	0.94	9.98	0.032	1.277	1.00
$\mathrm{O}^{*} 1588$	22.75	0.000	1.000	0.30	10.02	0.007	1.017	0.99
$\mathrm{O}^{*} 1589$	22.57	0.000	1.000	0.40	10.11	0.009	1.068	1.00
avg	22.82	0.000	1.001	0.45	10.12	0.012	1.061	1.00

Table 1 shows that on the random instances, the average depths of $V W$ and adapt $G^{2} W S A T_{P}$ are 22.82 and 10.12 , respectively, and that on these instances, the average coefficients of variation of $V W$ and $\operatorname{adapt} G^{2} W S A T_{P}$ are 0.000 and 0.012 , respectively. On these random instances, the average success rate of $V W$ is 0.45 , while that of adapt $G^{2} W S A T_{P}$ is 1.00. Table 2 shows that on the instances from SSS.1.0a, the average depths of $V W$ and $a d a p t G^{2} W S A T_{P}$ are 84.59 and 10.13 , respectively, and that on these instances, the average coefficients of variation of $V W$ and $\operatorname{adapt}^{2} W S A T_{P}$ are 1.820 and 10.204 , respectively. On the instances from SSS.1.0a, the average success rate of $V W$ is 1.00, while that of $a d a p t G^{2} W S A T_{P}$ is 0.23 . That is, regardless of the performance of $V W$ and $\operatorname{adapt} G^{2} W S A T_{P}$, the average coefficient of variation of $a d a p t G^{2} W S A T_{P}$ is significantly higher than that of $V W$, and the average depth of $\operatorname{adapt}^{2} W S A T_{P}$ is significantly lower than that of $V W$.

Table 2. Performance and distributions of variable weights for $V W$ and $\operatorname{adapt} G^{2} W S A T_{P}$ on the 8 instances in SSS.1.0a.

	$V W$				adapt $G^{2} W S A T_{P}$			
	depth	cv	div	suc	depth	cv	div	suc
*bug3	7.36	0.872	3.979	0.97	4.25	11.584	203.114	0.00
*bug4	28.05	1.685	10.144	1.00	4.68	10.793	158.692	0.04
*bug5	26.92	1.511	8.702	1.00	4.94	11.810	190.262	0.03
*bug17	288.18	2.727	29.564	1.00	23.92	7.722	161.185	0.64
*bug38	52.74	1.684	10.501	1.00	5.57	11.734	208.653	0.11
*bug39	53.41	1.836	13.466	1.00	12.50	8.930	139.881	0.41
*bug40	74.62	1.899	15.235	1.00	7.04	10.618	178.253	0.14
*bug59	145.43	2.342	22.812	1.00	18.13	8.443	123.465	0.49
avg	84.59	1.820	14.300	1.00	10.13	10.204	170.438	0.23

The lower the average depth is, the fewer the unsatisfied clauses are, and the better intensified the search is. The distribution of variable weights reflects the flipping history of variables. If all variables have roughly equal chances of being flipped, all variables should have approximately equal weights, and the coefficient of variation of the distribution of
variable weights should be low. Conversely, if some variables have been flipped much more frequently than others, the weights of these variables should be much higher than those of others, and the coefficient of variation of the distribution of variable weights should be high. That is, the higher the average coefficient of variation is, the more variable weights far from the mean value exist, the more imbalanced variable weights are, and the less well diversified the search is. Thus, the results in Tables 1 and 2 confirm that, regardless of the performance of $V W$ and $a d a p t G^{2} W S A T_{P}, V W$ can diversify the search better than adapt $G^{2} W S A T_{P}$, and adapt $G^{2} W S A T_{P}$ can intensify the search better than $V W$.

According to Table 1, on the random instances, the average coefficients of variation of $V W$ and $\operatorname{adapt} G^{2} W S A T_{P}$ are 0.000 and 0.012 , respectively. As indicated in Table 2, on the instances from SSS.1.0a, the average coefficients of variation of $V W$ and $\operatorname{adapt} G^{2} W S A T_{P}$ are 1.820 and 10.204 , respectively. That is, the random instances usually result in balanced variable weights while the instances from SSS.1.0a usually result in unbalanced variable weights. As shown in Table 1, on the random instances, the average success rate of $V W$ is 0.45 , while that of $a d a p t G^{2} W S A T_{P}$ is 1.00 . Hence, the results in these two tables suggest that an algorithm should not consider variable weights when selecting a variable to flip if the distribution of variable weights is balanced. Instead, an algorithm should ignore variable weights and concentrate on improving the objective function to intensify the search well. As shown in in Table 2, on the instances from SSS.1.0a, the average success rate of $V W$ is 1.00 , while that of $a d a p t G^{2} W S A T_{P}$ is 0.23 . Thus, the results in these two tables also suggest that an algorithm should make use of variable weights to diversify the search well when the distribution of variable weights is imbalanced.

As indicated in Table 1, on the random instances, the averages of the values for div in $V W$ and $\operatorname{adapt} G^{2} W S A T_{P}$ are 1.001 and 1.061, respectively, while as indicated in Table 2, on the instances from SSS.1.0a, the averages of the values for $d i v$ in $V W$ and $a d a p t G^{2} W S A T_{P}$ are 14.300 and 170.438 , respectively. That is, the maximum variable weight on the instances from SSS.1.0a usually deviates from the average variable weight to a greater degree than does the maximum variable weight on the random instances. Therefore, the results in these two tables suggest that, similar to the coefficient of variation of distribution of variable weights, the division of the maximum variable weight by the average variable weight also indicates whether variable weights are balanced. In fact, calculating the division is not time-consuming, but calculating the coefficient of variation is.

4. A New Switching Criterion

In this section, we propose a new switching criterion: the evenness or unevenness of the distribution of variable weights. Additionally, we propose a switching strategy that uses this switching criterion. Furthermore, we introduce a new local search algorithm Hybrid that implements this proposed switching strategy.

4.1 Evenness or Unevenness of Distribution of Variable Weights

We propose a new switching criterion: the evenness or unevenness of the distribution of variable weights. Assume that variable weights are updated using Formula 1. Assume that γ is an integer and $\gamma>1$. If the maximum weight is at least γ times as high as the average weight, the distribution of variable weights is considered uneven and the step is called an

W. Wei et al.

uneven step. Otherwise, the distribution is considered even and the step is called an even step. We use an uneven or even distribution of variable weights as a means to determine whether or not a search is undiversified in a step. More specifically, an uneven distribution and an even distribution of variable weights correspond to an undiversified search and a diversified search, respectively, in a step.

One switching strategy that is based on this switching criterion is as follows. In each search step, if the distribution of variable weights is uneven, i.e., if a search is not diversified, a heuristic that can diversify the search well is used to choose a variable to flip. In each search step, if the distribution of variable weights is even, i.e., if a search is diversified, a heuristic that can intensify the search well is used to choose a variable to flip.

We compare the above switching strategy with those used in QingTing2 [11], UnitWalk 0.98 [3], $G^{2} W S A T$ [7], and adapt $G^{2} W S A T_{P}$ [8, 9]. Before solving an instance, QingTing2 samples this instance for a fixed number of trials. During each trial, QingTing2 starts by assigning a random value to an unassigned variable chosen at random. This step is called a random assignment. QingTing2 then propagates this randomly assigned value through unit propagation. When the unit propagation stops, QingTing2 conducts another random assignment. Such a process repeats until all the clauses in the formula of this instance are either conflicted or satisfied. In [11], variable immunity is defined as the ratio of the number of random assignments in a trial to the number of variables of an instance. Intuitively, the higher a variable immunity is, the less dependence the variables of an instance have. Then, for this instance, according to whether the obtained variable immunity is higher than a threshold, QingTing2 decides to use either WalkSAT or QingTing1. During the search, for this instance, QingTing2 never switches to the other heuristic. Let n be the number of variables of an instance. UnitWalk 0.98 repeats periods ${ }^{8}$. of UnitWalk until the following two conditions hold: k opposite unit clause pairs are found during a period and k^{\prime} of these pairs are found in the previous period, where k and k^{\prime} are integers, $k \geq n / 12$, and $k \geq k^{\prime}$. When these two conditions hold, UnitWalk 0.98 switches to WalkSAT, for which the cutoff is set to $n^{2} / 2$. During the search, both $G^{2} W S A T$ and $a d a p t G^{2} W S A T_{P}$ switch between heuristics according to whether there are promising decreasing variables. When the distribution of variable weights is uneven, our proposed switching strategy uses a heuristic that can diversify the search well to choose a variable to flip. Otherwise, this switching strategy uses a heuristic that can intensify the search well to choose a variable to flip.

In summary, our proposed switching strategy has two features. First, it diversifies the search when the distribution of variable weights is uneven, and intensifies the search when the distribution of variable weights is even, while none of the strategies used in QingTing2, UnitWalk 0.98, $G^{2} W S A T$, and adapt $G^{2} W S A T_{P}$ has these functions. Second, like those used in $G^{2} W S A T$ and $a d a p t G^{2} W S A T_{P}$, it considers whether to switch to the other heuristic in every step, while those used in QingTing2 and UnitWalk 0.98 do not.

4.2 Algorithm Hybrid

To evaluate the effectiveness of the proposed switching criterion, we implement the proposed switching strategy in an algorithm called Hybrid, which is described in Fig. 1. In each step, Hybrid chooses a variable to flip according to heuristic $V W$ if the distribution of variable
8. An iteration of the outer loop of UnitWalk is called a period.

```
Algorithm: Hybrid(SAT-formula \(\mathcal{F})\)
    \(A \leftarrow\) randomly generated truth assignment;
    for each variable \(x\) do initialize flip_time \([x]\) and var_weight \([x]\) to 0 ;
    initialize \(p\), dp, max_weight, and ave_weight to 0;
    store promising decreasing variables in stack DecVar;
    for flip \(\leftarrow 1\) to Maxsteps do
        if \(A\) satisfies \(\mathcal{F}\) then return \(A\);
        if max_weight \(\geq \gamma \times\) ave_weight
        then \(y \leftarrow\) heuristic \(V W(p)\);
        else \(y \leftarrow h e u r i s t i c ~ a d a p t ~ G ~ W S A T ~(~ p, d p) ; ~\)
        \(A \leftarrow A\) with \(y\) flipped; adapt \(p\) and \(d p\);
        update flip_time[y], var_weight[y], max_weight, ave_weight, and DecVar;
    return Solution not found;
```

Figure 1. Algorithm Hybrid
weights is uneven, and selects a variable to flip according to heuristic adapt $G^{2} W S A T_{P}$ otherwise. As a result, Hybrid combines intensification strategies with suitable diversification strategies by switching between these two heuristics.

Hybrid uses a quite simple switching strategy to measure whether a search is diversified. Alternative switching strategies can be based on mobility and coverage, the other two measures proposed in [16], which determine how rapidly and systematically, respectively, the search explores the entire space. These two measures were introduced to deal with the following situation: a local search algorithm achieves a good depth value but easily gets stuck in local minima if it fails to explore the search space rapidly and systematically. Our prospective research will involve using mobility and coverage to establish new switching criteria to measure whether a search is diversified. Compared with these alternative switching strategies, the simple switching strategy that Hybrid uses is not time-consuming when implemented. Though this simple strategy is easy and fast to implement, according to our experimental results presented in Section 5, this strategy is effective.

Hybrid is an example that uses the proposed switching criterion. This switching criterion can be used in other local search algorithms that combine intensification strategies with diversification strategies.

5. Evaluation

We define the switching criterion used in Hybrid more specifically in this section than in Section 4.1. In addition, we compare the performance of Hybrid with those of state-of-the-art local search algorithms such as $\operatorname{adapt} G^{2} W S A T_{P}, V W$, and $R+a d a p t N o v e l t y+$ on a wide range of SAT instances. Moreover, we justify the proposed switching strategy used in Hybrid.

W. Wei et al.

5.1 Groups of Instances

We conduct experiments on 11 groups of benchmark SAT problems (65 problems). Structured problems come from the SATLIB repository ${ }^{9}$. and Miroslav Velev's SAT Benchmarks. These problems include bw_large.c and bw_large.d in blocksworld, e0ddr2*1, e0ddr2*4, enddr2*1, enddr2*8, ewddr2*1, and ewddr2*8 in Beijing, g250.29 in GCP, logi*.c in logistics, par16-1, par16-2, par16-3, par16-4, and par16-5 in parity, the 10 satisfiable instances in QG, ${ }^{10 .}$ and all satisfiable formulas in SSS.1.0a except for *bug54. Crafted and industrial problems come from the SAT 2005 competition benchmark. Crafted problems consist of the 8 instances from $\mathrm{g}^{*} 1334$ to $\mathrm{g}^{*} 1341$. Industrial problems include $\mathrm{v}^{*} 1912, \mathrm{v}^{*} 1915, \mathrm{v}^{*} 1923$, $\mathrm{v}^{*} 1924, \mathrm{v}^{*} 1944, \mathrm{v}^{*} 1955, \mathrm{v}^{*} 1956$, and $\mathrm{v}^{*} 1959$. Random problems constitute two groups. The first group consists of the 8 instances unif04-52, unif04-62, unif04-65, unif04-80, unif04-83, unif04-86, unif04-91, and unif04-99, from the SAT 2004 competition benchmark. ${ }^{11 .}$ The second group includes the 8 instances from $\mathrm{O}^{*} 1582$ to $\mathrm{O}^{*} 1589$ from the SAT 2005 competition benchmark.

We select the above 11 groups of benchmark SAT problems using the following three rules. First, these problems should include those widely used benchmark problems in the literature. As a result, these problems include the entire set of instances that were used to originally evaluate $R+$ adaptNovelty $+[1]$, the best local search algorithm in the SAT 2005 competition. Second, these problems should constitute structured, crafted, industrial, and random instances. Third, these problems should include those instances that, for Hybrid, usually lead to the following two combinations of the distributions of variable weights: the distributions of variable weights are even and the distributions of variable weights are uneven. Specifically, among these 65 instances, for Hybrid, the instances in parity and the 8 random instances from $\mathrm{O}^{*} 1582$ to $\mathrm{O}^{*} 1589$ generally result in even distributions of variable weights. The instances from Beijing and from SSS.1.0a, and the crafted instances from $\mathrm{g}^{*} 1334$ to $\mathrm{g}^{*} 1341$ usually lead to uneven distributions of variable weights.

The cutoff (Maxsteps) is set to 10^{6} for the instance in logistics, to 10^{7} for all instances in blocksworld, Beijing, GCP, SSS.1.0a, and the group from the SAT 2004 competition, to 10^{8} for the crafted instances, the industrial instances, and the random instances from the SAT 2005 competition benchmark, and to 10^{9} for all instances in parity. Maxsteps is set to 10^{8} for qg7-13 in QG and to 10^{7} for the other instances in this group. Each instance is executed 250 times (Maxtries $=250$). The cutoff for each instance is set to a fixed value, to ensure that at least one algorithm discussed achieves a success rate greater than 50% in order to calculate median flip number and median run time based on these 250 runs. We report success rate ("suc"), median flip number ("\#flips"), and median run time ("time") in seconds. If an algorithm cannot achieve a success rate greater than 50% on an instance within the specified cutoff, we use " $>$ Maxsteps" (greater than Maxsteps) and " n / a " to denote the median flip number and the median run time, respectively. Results in bold indicate the best performance for an instance.
9. http://www.satlib.org/
10. Since these QG instances contain unit clauses, we simplify them using my_compact, which was downloaded from http://www.laria.u-picardie.fr/~cli.
11. http://www.lri.fr/~simon/contest04/results/

5.2 Updating Variable Weights and Defining Switching Criterion

Like $V W$, Hybrid updates variable weights using Formula 1. To adapt to Hybrid, parameter s in this formula is fixed to 0 . That is, in Hybrid, $s=0$. When s is 0 , the weight of a variable defined in this formula is just a counter of the number of flips of this variable. In contrast, s in $V W$ is adjusted during the search $(s>0)$.

The higher parameter γ in Hybrid is, the fewer the uneven steps exist, and the less frequently Hybrid chooses heuristic $V W$ to select a variable to flip. We run different versions of Hybrid with $\gamma=4,10,15,20,25,30,35,40$, and 45 . Our experimental results show that on the hardest instances from the 11 groups, Hybrid with $\gamma=10$ exhibits the best overall performance among all of these versions. So, in Hybrid, the default value of γ is set to 10 .

Table 3. Experimental results for adapt $G^{2} W S A T_{P}, V W$, Hybrid_4, Hybrid ($\gamma=10$), and Hybrid_45 on the hardest instances from the first category. In Hybrid_4, Hybrid ($\gamma=10$), and Hybrid_45, $s=0$.

		adapt*	VW	Hybrid_4	Hybrid	Hybrid_45
g250.29	r_unev			99.98\%	59.17\%	21.25\%
	\#flips	637472	$>10^{7}$	$>10^{7}$	1306322	590009
	time	28.2	n / a	n / a	94.0	26.3
	suc	1.00	0.18	0.00	0.88	1.00
par16-2	r_unev			21.86\%	1.00\%	0.00\%
	\#flips	106070896	$>10^{9}$	867375405	152549064	109877709
	time	57.0	n / a	540.5	92.5	109.5
	suc	1.00	0.00	0.54	1.00	1.00
v*1915	r_unev			0.50\%	0.14\%	0.02\%
	\#flips	11570303	$>10^{8}$	10165555	11904448	11261618
	time	372.6	n / a	416.5	399.1	422.5
	suc	1.00	0.18	1.00	1.00	0.99
unif04-83	r_unev			25.89\%	3.09\%	0.01\%
	\#flips	5260203	$>10^{7}$	5856586	5827928	4482255
	time	6.3	n / a	7.9	8.8	6.0
	suc	0.77	0.24	0.66	0.74	0.77
O*1586	r_unev			0.04\%	0.01\%	0.00\%
	\#flips	15649195	$>10^{8}$	15169011	14538393	14782108
	time	225.5	n / a	233.8	249.3	230.6
	suc	0.99	0.27	0.98	0.99	0.99

Tables 3, 4, and 5 compare the performance of Hybrid ($\gamma=10$), Hybrid_4 (Hybrid with $\gamma=4$), and Hybrid_45 (Hybrid with $\gamma=45$) on the hardest instances from the 11 groups. ${ }^{12 .}$ In these tables, we also report the ratio of uneven steps to total steps ("r_unev"), which is averaged over 250 runs. This ratio is also the ratio of steps in which heuristic $V W$ is used to select a variable to flip, to all steps. In addition, we report success rate ("suc") in these tables. We group these instances into three categories: those that are hard for the algorithm $V W$ but are not hard for the algorithm $a d a p t G^{2} W S A T_{P}$, those that are not hard for the algorithm $V W$ but are hard for the algorithm $\operatorname{adapt} G^{2} W S A T_{P}$, and those that are not hard for either algorithm. For the first category, which includes g250.29, par162, v*1915, unif04-83, and $\mathrm{O}^{*} 1586$, r_unev in Hybrid ($\gamma=10$) is generally lower than 50%. As a result, in most steps, Hybrid $(\gamma=10)$ usually chooses heuristic adapt $G^{2} W S A T_{P}$ to
12. In these three tables, adapt* and Hybrid refer to $\operatorname{adapt} G^{2} W S A T_{P}$ and Hybrid $(\gamma=10)$, respectively. Results in italics indicate the poorest performance for an instance.

W. Wei et al.

Table 4. Experimental results for $\operatorname{adapt} G^{2} W S A T_{P}, V W, H y b r i d _4, H y b r i d \quad(\gamma=10)$, and Hybrid_45 on the hardest instances from the second category. In Hybrid_4, Hybrid ($\gamma=10$), and Hybrid_45, $s=0$.

		adapt*	VW	Hybrid_4	Hybrid	Hybrid_45
qg7-13	r_unev			64.48\%	42.53\%	24.53\%
	\#flips	$>10^{8}$	8843466	2581390	1881094	$>10^{8}$
	time	n / a	307.6	151.5	32.3	n / a
	suc	0.48	0.90	0.76	0.71	0.44
*bug3	r_unev			99.98\%	85.77\%	3.28\%
	\#flips	$>10^{7}$	1786329	635297	628668	$>10^{7}$
	time	n / a	3.7	3.1	3.0	n / a
	suc	0.00	0.98	0.96	0.97	0.34
g*1341	r_unev			96.79\%	87.38\%	42.81\%
	\#flips	$>10^{8}$	6253863	2683350	2751076	2985281
	time	n / a	17.8	20.1	23.1	40.2
	suc	0.00	1.00	1.00	1.00	1.00

select a variable to flip. Conversely, for g250.29, r_unev in Hybrid_4 is too high, as high as 99.98%, resulting in the poor performance of Hybrid_4 on this instance. For the second category, which consists of $\mathrm{qg} 7-13,{ }^{*} \mathrm{bug} 3$, and $\mathrm{g}^{*} 1341$, $\mathrm{r} _$unev in $\operatorname{Hybrid}(\gamma=10)$ is generally higher than 50%. Consequently, in most steps, Hybrid $(\gamma=10)$ usually chooses heuristic $V W$ to select a variable to flip. By contrast, for qg7-13 and *bug3, the values of r_unev in Hybrid_ 45 are too low, as low as 24.53% and 3.28%, respectively, leading to the poor performance of Hybrid_45 on these two instances. For the third category, which includes bw_large.d, e0ddr2*1, and logi*.c, r_unev in Hybrid $(\gamma=10)$ can be lower or higher than 50%. Therefore, the success of searches by Hybrid for an instance lies in whether, based on the switching criterion, in most search steps, Hybrid usually chooses the appropriate heuristic to select a variable to flip for this instance.

Table 5. Experimental results for $\operatorname{adapt} G^{2} W S A T_{P}, V W, H y b r i d _4, H y b r i d \quad(\gamma=10)$, and Hybrid_45 on the hardest instances from the third category. In Hybrid_4, Hybrid $(\gamma=10)$, and Hybrid_45, $s=0$.

		adapt*	VW	Hybrid_4	Hybrid	Hybrid_45
bw_large.d	r_unev			99.89%	99.54%	18.66%
	\#flips	2124858	2963500	$\mathbf{8 2 2 9 0 0}$	962677	1984479
	time	12.4	18.1	$\mathbf{4 . 8}$	6.3	22.5
	suc	0.96	$\mathbf{0 . 9 8}$	0.97	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 8}$
e0ddr2*1	r_unev			100%	100%	96.00%
	\#flips	3068450	6549282	$\mathbf{1 0 5 1 2 2}$	114774	211200
	time	15.3	22.5	$\mathbf{2 . 7}$	2.9	4.2
	suc	0.99	0.66	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$
logi*.c *.	r_unev				99.21%	67.42%
	\#flips	49469	70446	$\mathbf{1 7 6 0 2}$	19038	47086
	time	$\mathbf{0 . 1}$				
	suc	$\mathbf{1 . 0 0}$				

We allow Hybrid to adjust s in the same way as does $V W(s>0)$, and we call this version of Hybrid H_{-}asVW. Our experimental results show that Hybrid $(\gamma=10)$ exhibits better overall performance than $H_{_} a s V W(\gamma=10)$ on the hardest instances from the 11 groups. Table 6 presents the performance of these two algorithms on these instances.

Table 6. Experimental results for $H _a s V W(\gamma=10)$ and $\operatorname{Hybrid}(\gamma=10)$ on the hardest instances from the 11 groups. In $H _a s V W(\gamma=10), s>0$, while in Hybrid $(\gamma=10), s=0$.

	H_asVW			Hybrid		
	\#flips	time	suc	\#flips	time	suc
bw_large.d	1881240	15.9	0.98	962677	6.3	0.98
e0ddr2*1	240223	4.0	1.00	114774	2.9	1.00
g250.29	689661	39.0	1.00	1306322	94.0	0.88
logi*.c	37765	0.1	1.00	19038	0.1	1.00
par16-2	99909500	60.8	1.00	152549064	92.5	1.00
qg7-13	$>10^{8}$	n / a	0.44	1881094	32.3	0.71
* ${ }^{\text {bug3 }}$	$>10^{7}$	n / a	0.14	628668	3.0	0.97
g*1341	6831055	41.2	0.98	2751076	23.1	1.00
v*1915	10477276	358.8	1.00	11904448	399.1	1.00
unif04-83	4421929	6.0	0.77	5827928	8.8	0.74
O*1586	15271672	263.0	0.99	14538393	249.3	0.99

Table 7. Experimental results for $R+$ adaptNovelty + , adapt $G^{2} W S A T_{P}, V W$, and $\operatorname{Hybrid}(\gamma=10)$ on the structured and crafted instances. In Hybrid $(\gamma=10), s=0$.

	$R+$ adapt Novelty +			$\operatorname{adaptG}^{3} W S A T_{P}$			$V W$			Hybrid ($\gamma=10$)		
	\#flips	time	suc									
bw_large.c \dagger	9489817	29.1	0.52	992093	3.5	1.00	1868393	6.0	1.00	597473	2.5	0.99
bw_large.d	$>10^{7}$	n/a	0.29	2124858	12.4	0.96	2963500	18.1	0.98	962677	6.3	0.98
e0ddr2*1 \dagger	2488226	10.6	0.92	3068450	15.3	0.99	6549282	22.5	0.66	114774	2.9	1.00
e0ddr2* $4 \dagger$	355044	1.5	1.00	694059	4.3	1.00	1894243	7.9	0.98	71214	2.7	1.00
enddr2* $1 \dagger$	331420	1.6	1.00	641226	4.3	1.00	4484178	17.6	0.83	54245	2.6	1.00
enddr2* $8 \dagger$	11753	0.0	1.00	555475	3.8	1.00	3398071	16.1	0.92	47090	2.7	1.00
ewddr $2 * 1 \dagger$	154825	0.7	1.00	520705	3.6	1.00	4052096	16.5	0.88	42881	2.5	1.00
ewddr $2 * 8 \dagger$	32527	0.1	1.00	432671	3.1	1.00	4608302	20.5	0.86	35079	2.4	1.00
g250.29	733420	23.2	1.00	637472	28.2	1.00	$>10^{7}$	n/a	0.18	1306322	94.0	0.88
logi*.c \dagger	57693	0.1	1.00	49469	0.1	1.00	70446	0.1	1.00	19038	0.1	1.00
par16-1†	80339283	37.6	1.00	55017679	28.0	1.00	$>10^{9}$	n/a	0.00	65354529	37.8	1.00
par16-2 \dagger	324826713	157.5	0.89	106070896	57.0	1.00	$>10^{9}$	n / a	0.00	152549064	92.5	1.00
par16-3 \dagger	224140856	107.4	0.93	97156387	51.6	1.00	$>10^{9}$	n / a	0.00	87443760	53.5	1.00
par16-4 \dagger	274054172	129.7	0.92	118557332	61.4	1.00	$>10^{9}$	n / a	0.00	108114087	63.6	1.00
par16-5 \dagger	264871971	125.0	0.94	83028280	44.4	1.00	$>10^{9}$	n/a	0.01	105083154	63.0	1.00
qg1-07 \dagger	9609	0.0	1.00	6206	0.0	1.00	27607	0.1	1.00	5722	0.0	1.00
qg 1-08 \dagger	733077	2.5	1.00	380083	2.3	1.00	2178590	30.9	0.95	440417	3.6	1.00
qg 2-07 \dagger	6515	0.0	1.00	4318	0.0	1.00	9847	0.0	1.00	4226	0.0	1.00
qg 2-08 \dagger	1893442	7.2	0.97	1540278	10.7	1.00	$>10^{7}$	n / a	0.48	1353338	10.0	1.00
qg3-08 \dagger	46193	0.1	1.00	35226	0.1	1.00	143567	0.2	1.00	32808	0.1	1.00
qg4-09 \dagger	119896	0.2	1.00	61492	0.1	1.00	318048	0.6	1.00	63634	0.1	1.00
qg5-11 \dagger	37875	0.2	1.00	20494	0.2	1.00	53713	0.5	1.00	19212	0.2	1.00
qg6-09 \dagger	638	0.0	1.00	353	0.0	1.00	1151	0.0	1.00	417	0.0	1.00
qg $7-09 \dagger$	540	0.0	1.00	283	0.0	1.00	1074	0.0	1.00	320	0.0	1.00
qg $7-13 \dagger$	5113772	66.7	0.72	$>10^{8}$	n / a	0.48	8843466	307.6	0.90	1881094	32.3	0.71
*bug3	$>10^{7}$	n / a	0.30	$>10^{7}$	n / a	0.00	1786329	3.7	0.98	628668	3.0	0.97
* bug4	$>10^{7}$	n / a	0.16	$>10^{7}$	n / a	0.03	185184	0.4	1.00	113857	0.8	1.00
* bug5	$>10^{7}$	n / a	0.06	$>10^{7}$	n / a	0.06	280071	0.7	1.00	102743	0.9	1.00
* bug 17	6420481	150.1	0.72	128497	2.6	0.70	32999	0.3	1.00	20361	1.4	1.00
*bug38	3765043	23.5	0.79	$>10^{7}$	n / a	0.13	157834	0.4	1.00	210259	1.2	0.96
* bug39	$>10^{7}$	n / a	0.46	$>10^{7}$	n / a	0.39	83287	0.2	1.00	89306	0.7	1.00
* bug40	$>10^{7}$	n / a	0.34	$>10^{7}$	n / a	0.12	98834	0.3	1.00	55004	0.6	1.00
* bug59	387471	3.7	0.99	$>10^{7}$	n / a	0.49	66090	0.3	1.00	30058	1.8	1.00
g*1334	$>10^{8}$	n/a	0.07	$>10^{8}$	n/a	0.10	167786	0.2	1.00	67540	0.2	1.00
g*1335	22181994	27.6	0.56	18665469	17.5	0.54	170227	0.2	1.00	76130	0.3	1.00
g*1336	3304773	6.1	0.72	137026	0.3	0.62	132881	0.2	1.00	77116	0.3	1.00
g*1337	41860116	60.4	0.53	94475014	100.4	0.51	304756	0.5	1.00	142529	0.6	1.00
g*1338	13007309	39.4	0.74	543830	2.2	0.56	822693	1.9	1.00	373965	2.0	1.00
g*1339	20646978	78.1	0.76	1040992	5.7	0.62	1220583	2.9	1.00	606668	4.4	1.00
g*1340	$>10^{8}$	n / a	0.00	$>10^{8}$	n / a	0.00	8891929	22.4	1.00	2529897	14.0	1.00
g*1341	$>10^{8}$	n / a	0.00	$>10^{8}$	n / a	0.00	6253863	17.8	1.00	2751076	23.1	1.00

5.3 Comparison of Performance of Hybrid with Performance of adapt $G^{2} W S A T_{P}$, $V W$, and $R+$ adaptNovelty +

Table 8. Experimental results for $R+$ adaptNovelty $+, \operatorname{adapt}^{2} W S A T_{P}, V W$, and $\operatorname{Hybrid}(\gamma=10)$ on the industrial and random instances. In Hybrid $(\gamma=10), s=0$.

	R +adaptNovelty +			adapt ${ }^{2} W$ SAT ${ }_{P}$			$V W$			Hybrid ($\gamma=10$)		
	\#flips	time	suc									
v*1912	6812718	148.7	1.00	3419845	101.6	1.00	61152892	3037.7	0.68	3570353	95.6	1.00
v*1915	78909897	2208.9	0.59	11570303	372.6	1.00	$>10^{8}$	n/a	0.18	11904448	399.1	1.00
v*1923	2736569	51.7	1.00	1300954	31.1	1.00	12518563	428.5	0.99	1404437	28.2	1.00
v*1924	2931225	60.3	1.00	1746729	41.7	1.00	13744232	515.7	0.99	1537351	35.0	1.00
v*1944	6153990	373.9	1.00	3587804	221.8	1.00	58541545	7971.7	0.69	3508563	194.1	1.00
v*1955	2755333	89.5	1.00	1393168	65.4	1.00	10396220	1074.0	1.00	1336078	50.9	1.00
v*1956	2865074	114.7	1.00	1494423	70.0	1.00	13419375	1437.0	0.98	1607320	70.0	1.00
v*1959	2420412	118.3	1.00	559281	29.9	1.00	11433482	1377.2	1.00	542837	26.4	1.00
unif04-52 \dagger	$>10^{7}$	n/a	0.28	4656882	5.2	0.79	$>10^{7}$	n/a	0.29	4079329	5.2	0.82
unif04-62 \dagger	1296842	1.2	1.00	534814	0.6	1.00	3140198	3.1	0.90	442513	0.6	1.00
unif04-65 \dagger	$>10^{7}$	n / a	0.48	1110469	1.3	1.00	3800951	3.7	0.84	936079	1.2	1.00
unif04-80 \dagger	5433833	4.7	0.68	2016760	2.4	0.96	$>10^{7}$	n / a	0.34	2105533	2.8	0.94
unif04-83†	$>10^{7}$	n / a	0.04	5260203	6.3	0.77	$>10^{7}$	n / a	0.24	5827928	8.8	0.74
unif04-86 \dagger	$>10^{7}$	n / a	0.18	4026873	4.9	0.80	$>10^{7}$	n/a	0.49	4285016	6.0	0.80
unif04-91 \dagger	1826562	1.6	0.97	538064	0.7	1.00	2634811	2.9	0.91	572947	0.8	1.00
unif04-99 \dagger	$>10^{7}$	n/a	0.32	4010745	5.0	0.87	$>10^{7}$	n / a	0.34	3503235	5.2	0.81
$\mathrm{O}^{*} 1582$	15032455	176.6	0.98	11250878	159.2	1.00	$>10^{8}$	n/a	0.34	10819125	162.6	0.99
O*1583	4311571	51.0	1.00	3628184	50.6	1.00	53945903	5805.5	0.69	3714975	56.8	1.00
O*1584	9279077	109.2	1.00	8292676	115.3	1.00	$>10^{8}$	n / a	0.40	7139020	108.1	1.00
O*1585	20140780	242.3	0.96	10724723	155.8	1.00	$>10^{8}$	n / a	0.38	11512426	174.3	0.99
O*1586	19112213	222.9	0.94	15649195	225.5	0.99	$>10^{8}$	n/a	0.27	14538393	249.3	0.99
O*1587	1602114	18.8	1.00	1206202	17.9	1.00	25999225	2846.3	0.96	1426090	21.3	1.00
O*1588	19823423	241.2	0.97	16073531	228.3	1.00	$>10^{8}$	n / a	0.36	14406395	227.0	0.99
O*1589	7727511	90.9	1.00	4813256	66.6	1.00	95733874	10081.0	0.52	5031016	75.3	1.00

We compare the performance of Hybrid with $\gamma=10$ (the default value), $a d a p t G^{2} W S A T_{P}$, $V W$, and $R+$ adaptNovelty + on the 11 groups of instances, or 65 instances, in Tables 7 and 8 , in which instances with \dagger on the right constitute the entire set of instances that were used to originally evaluate $R+$ adaptNovelty + in [1]. $R+$ adaptNovelty + was downloaded from http://users.rsise.anu.edu.au/~anbu/. From these two tables, we summarize the strengths of the performance of Hybrid.

1. Among the 3 algorithms adapt $G^{2} W S A T_{P}, V W$, and $R+$ adaptNovelty+, adapt $G^{2} W S A T_{P}$ exhibits the best performance on parity, the industrial instances, and the 2 groups of random instances. Hybrid inherits the strengths of $\operatorname{adapt} G^{2} W S A T_{P}$ on these 4 groups. Among these 3 algorithms, $V W$ exhibits the best performance on SSS.1.0a and the crafted instances. Hybrid inherits the strengths of $V W$ on these 2 groups.
2. Hybrid outperforms adapt $G^{2} W S A T_{P}$ on the following 6 groups: blocksworld, Beijing, QG, SSS.1.0a, the crafted instances, and the industrial instances. Hybrid outperforms $V W$ on the following 8 groups: blocksworld, Beijing, GCP, parity, QG, the industrial instances, and the 2 groups of random instances. Hybrid outperforms $R+$ adaptNovelty + on the following 7 groups: blocksworld, parity, SSS.1.0a, the crafted instances, the industrial instances, and the 2 groups of random instances.
3. Without any manual tuning parameters, Hybrid solves each of these 65 instances in a reasonable time. In contrast, adapt $G^{2} W S A T_{P}, V W$, and $R+$ adaptNovelty + have difficulty on some of these instances.

A state-of-the-art local search algorithm can often solve a satisfiable instance quickly if this algorithm uses the optimal values of its parameters, but it is difficult to find the optimal values for every instance. Moreover, a state-of-the-art local search algorithm may be effective for one class of instances but have poor performance for another. However, as shown in Tables 7 and 8, Hybrid solves a broad range of instances in a reasonable time using a fixed value of γ, the default value 10 . In contrast, adapt $G^{2} W S A T_{P}, V W$, and $R+$ adaptNovelty + have difficulty on some of these instances. Therefore, the overall performance of Hybrid is much better than the overall performance of $a d a p t G^{2} W S A T_{P}$, $V W$, and $R+$ adaptNovelty+, although the performance of Hybrid on each instance in Tables 7 and 8 is not necessarily better than the best performance of $a d a p t G^{2} W S A T_{P}$, $V W$, and $R+$ adaptNovelty + on this instance.

5.4 Justification for Proposed Switching Strategy

To justify the proposed switching strategy used in Hybrid, we implement the other two switching strategies, namely the opposite switching strategy and the random switching strategy, in two algorithms, called Hybrid_opposite and Hybrid_random.

Table 9. Experimental results for $\operatorname{adapt}^{2} W S A T_{P}, V W, H y b r i d(\gamma=10)$ and Hybrid_opposite $(\gamma=10)$ on structured and crafted instances. In Hybrid $(\gamma=10)$ and Hybrid_opposite $(\gamma=10), s=0$.

	$\operatorname{adaptG}^{3} W$ SAT ${ }_{P}$			$V W$			Hybrid ($\gamma=10$)			Hybrid_opposite ($\gamma=10$)		
	\#flips	time	suc									
bw_large.c \dagger	992093	3.5	1.00	1868393	6.0	1.00	597473	2.5	0.99	1271889	5.7	1.00
bw_large.d	2124858	12.4	0.96	2963500	18.1	0.98	962677	6.3	0.98	1778613	13.6	0.99
e0ddr2* $1 \dagger$	3068450	15.3	0.99	6549282	22.5	0.66	114774	2.9	1.00	2746153	17.2	1.00
e0ddr2* $4 \dagger$	694059	4.3	1.00	1894243	7.9	0.98	71214	2.7	1.00	666626	4.8	1.00
enddr $2 * 1 \dagger$	641226	4.3	1.00	4484178	17.6	0.83	54245	2.6	1.00	681762	5.2	1.00
enddr2* ${ }^{*} \dagger$	555475	3.8	1.00	3398071	16.1	0.92	47090	2.7	1.00	528608	4.3	1.00
ewddr $2 * 1 \dagger$	520705	3.6	1.00	4052096	16.5	0.88	42881	2.5	1.00	510126	4.2	1.00
ewddr $2 * 8 \dagger$	432671	3.1	1.00	4608302	20.5	0.86	35079	2.4	1.00	422659	3.7	1.00
g250.29	637472	28.2	1.00	$>10^{7}$	n/a	0.18	1306322	94.0	0.88	$>10^{7}$	n/a	0.13
logi*.c \dagger	49469	0.1	1.00	70446	0.1	1.00	19038	0.1	1.00	46795	0.1	1.00
par16-1 \dagger	55017679	28.0	1.00	$>10^{9}$	n / a	0.00	65354529	37.8	1.00	$>10^{9}$	n/a	0.02
par16-2 \dagger	106070896	57.0	1.00	$>10^{9}$	n / a	0.00	152549064	92.5	1.00	$>10^{9}$	n / a	0.07
par16-3 \dagger	97156387	51.6	1.00	$>10^{9}$	n / a	0.00	87443760	53.5	1.00	$>10^{9}$	n / a	0.08
par16-4 \dagger	118557332	61.4	1.00	$>10^{9}$	n / a	0.00	108114087	63.6	1.00	$>10^{9}$	n / a	0.15
par16-5 \dagger	83028280	44.4	1.00	$>10^{9}$	n / a	0.01	105083154	63.0	1.00	$>10^{9}$	n/a	0.04
qg1-07 \dagger	6206	0.0	1.00	27607	0.1	1.00	5722	0.0	1.00	14097	0.1	1.00
qg1-08 \dagger	380083	2.3	1.00	2178590	30.9	0.95	440417	3.6	1.00	2032878	26.9	0.98
qg2-07 \dagger	4318	0.0	1.00	9847	0.0	1.00	4226	0.0	1.00	7259	0.1	1.00
qg 2-08 \dagger	1540278	10.7	1.00	$>10^{7}$	n / a	0.48	1353338	10.0	1.00	9215062	141.0	0.53
qg3-08 \dagger	35226	0.1	1.00	143567	0.2	1.00	32808	0.1	1.00	133873	0.3	1.00
qg 4-09 \dagger	61492	0.1	1.00	318048	0.6	1.00	63634	0.1	1.00	150705	0.5	1.00
qg5-11 \dagger	20494	0.2	1.00	53713	0.5	1.00	19212	0.2	1.00	41630	1.6	1.00
qg6-09 \dagger	353	0.0	1.00	1151	0.0	1.00	417	0.0	1.00	748	0.0	1.00
qg7-09 \dagger	283	0.0	1.00	1074	0.0	1.00	320	0.0	1.00	684	0.0	1.00
qg $7-13 \dagger$	$>10^{8}$ 10	n / a	0.48	8843466	307.6	0.90	1881094	32.3	0.71	$>10^{8}$	n / a	0.40
*bug3	$>10^{7}$	n/a	0.00	1786329	3.7	0.98	628668	3.0	0.97	$>10^{7}$	n/a	0.02
* bug4	$>10^{7}$	n / a	0.03	185184	0.4	1.00	113857	0.8	1.00	$>10^{7}$	n / a	0.08
* bug5	$>10^{7}$	n / a	0.06	280071	0.7	1.00	102743	0.9	1.00	$>10^{7}$	n/a	0.01
*bug17	128497	2.6	0.70	32999	0.3	1.00	20361	1.4	1.00	501997	11.3	0.51
* bug38	$>10^{7}$	n / a	0.13	157834	0.4	1.00	210259	1.2	0.96	$>10^{7}$	n / a	0.05
* bug39	$>10^{7}$	n / a	0.39	83287	0.2	1.00	89306	0.7	1.00	$>10^{7}$	n / a	0.23
* bug40	$>10^{7}$	n / a	0.12	98834	0.3	1.00	55004	0.6	1.00	$>10^{7}$	n / a	0.13
* bug59	$>10^{7}$	n / a	0.49	66090	0.3	1.00	30058	1.8	1.00	$>10^{7}$	n / a	0.49
g*1334	$>10^{8}$	n/a	0.10	167786	0.2	1.00	67540	0.2	1.00	$>10^{8}$	n/a	0.04
g*1335	18665469	17.5	0.54	170227	0.2	1.00	76130	0.3	1.00	40211337	59.3	0.52
g*1336	137026	0.3	0.62	132881	0.2	1.00	77116	0.3	1.00	263465	0.6	0.57
g*1337	94475014	100.4	0.51	304756	0.5	1.00	142529	0.6	1.00	$>10^{8}$	n/a	0.46
g*1338	543830	2.2	0.56	822693	1.9	1.00	373965	2.0	1.00	6839090	14.1	0.51
g*1339	1040992	5.7	0.62	1220583	2.9	1.00	606668	4.4	1.00	1132979	8.4	0.57
g*1340	$>10^{8}$	n / a	0.00	8891929	22.4	1.00	2529897	14.0	1.00	$>10^{8}$	n/a	0.00
g*1341	$>10^{8}$	n / a	0.00	6253863	17.8	1.00	2751076	23.1	1.00	$>10^{8}$	n / a	0.00

Table 10. Experimental results for adapt $G^{2} W S A T_{P}, V W$, Hybrid ($\gamma=10$), and Hybrid_opposite $(\gamma=10)$ on industrial and random instances. In Hybrid $(\gamma=10)$ and Hybrid_opposite $(\gamma=10), s=0$.

	adapt ${ }^{2} W S A T_{P}$			VW			Hybrid ($\gamma=10$)			Hybrid_opposite ($\gamma=10$)		
	\#flips	time	suc									
v*1912	3419845	101.6	1.00	61152892	3037.7	0.68	3570353	95.6	1.00	41774649	2103.1	0.77
$\mathrm{v}^{*} 1915$	11570303	372.6	1.00	$>10^{8}$	n/a	0.18	11904448	399.1	1.00	$>10^{8}$	n / a	0.14
v*1923	1300954	31.1	1.00	12518563	428.5	0.99	1404437	28.2	1.00	8674682	367.8	1.00
v*1924	1746729	41.7	1.00	13744232	515.7	0.99	1537351	35.0	1.00	12814347	503.8	1.00
v*1944	3587804	221.8	1.00	58541545	7971.7	0.69	3508563	194.1	1.00	49909890	6017.3	0.74
v*1955	1393168	65.4	1.00	10396220	1074.0	1.00	1336078	50.9	1.00	10218659	691.4	1.00
v*1956	1494423	70.0	1.00	13419375	1437.0	0.98	1607320	70.0	1.00	13151370	1096.5	1.00
v*1959	559281	29.9	1.00	11433482	1377.2	1.00	542837	26.4	1.00	11135528	1103.1	1.00
unif04-52†	4656882	5.2	0.79	$>10^{7}$	n/a	0.29	4079329	5.2	0.82	> 10	n/a	0.33
unif04-62 \dagger	534814	0.6	1.00	3140198	3.1	0.90	442513	0.6	1.00	8128046	10.8	0.58
unif04-65†	1110469	1.3	1.00	3800951	3.7	0.84	936079	1.2	1.00	4278880	5.3	0.72
unif04-80 \dagger	2016760	2.4	0.96	$>10^{7}$	n / a	0.34	2105533	2.8	0.94	$>10^{7}$	n / a	0.18
unif04-83†	5260203	6.3	0.77	$>10^{7}$	n / a	0.24	5827928	8.8	0.74	$>10^{7}$	n / a	0.20
unif04-86 \dagger	4026873	4.9	0.80	$>10^{7}$	n / a	0.50	4285016	6.0	0.80	$>10^{7}$	n / a	0.42
unif04-91 \dagger	538064	0.7	1.00	2634811	2.9	0.91	572947	0.8	1.00	6003885	9.2	0.69
unif04-99+	4010745	5.0	0.87	$>10^{7}$	n / a	0.34	3503235	5.2	0.81	$>10^{7}$	n / a	0.14
O*1582	11250878	159.2	1.00	$>10^{8}$	n/a	0.34	10819125	162.6	0.99	$>10^{8}$	n / a	0.10
O*1583	3628184	50.6	1.00	53945903	5805.5	0.69	3714975	56.8	1.00	$>10^{8}$	n / a	0.18
O*1584	8292676	115.3	1.00	$>10^{8}$	n / a	0.40	7139020	108.1	1.00	$>10^{8}$	n / a	0.16
O*1585	10724723	155.8	1.00	$>10^{8}$	n / a	0.38	11512426	174.3	0.99	$>10^{8}$	n / a	0.11
O*1586	15649195	225.5	0.99	$>10^{8}$	n/a	0.27	14538393	249.3	0.99	$>10^{8}$	n / a	0.07
O*1587	1206202	17.9	1.00	25999225	2846.3	0.96	1426090	21.3	1.00	$>10^{8}$	n / a	0.42
O*1588	16073531	228.3	1.00	$>10^{8}$	n / a	0.36	14406395	227.0	0.99	$>10^{8}$	n / a	0.09
O*1589	4813256	66.6	1.00	95733874	10081.0	0.52	5031016	75.3	1.00	$>10^{8}$	n / a	0.12

We compare the switching strategies used in Hybrid, Hybrid_opposite, and Hybrid_random. We first recall the switching strategy used in Hybrid. In each step, Hybrid chooses a variable to flip according to heuristic $V W$ if the distribution of variable weights is uneven, and selects a variable to flip according to heuristic adaptG ${ }^{2} W S A T_{P}$ otherwise. Hybrid_opposite uses the opposite switching strategy to that used in Hybrid. In each step, Hybrid_opposite chooses a variable to flip according to heuristic $V W$ if the distribution of variable weights is even, and selects a variable to flip according to heuristic adapt $G^{2} W S A T_{P}$ otherwise. Hybrid_random uses the random switching strategy. In each step, Hybrid_random chooses a variable to flip according to heuristic $V W$ or heuristic adapt $G^{2} W S A T_{P}$. Hybrid_random selects a heuristic from heuristic $V W$ and heuristic adapt $G^{2} W S A T_{P}$ randomly, not based on the distribution of variable weights.

We compare the performance of Hybrid with that of Hybrid_opposite on the 11 groups of instances, or 65 instances, in Tables 9 and 10. The value of parameter γ in both Hybrid and Hybrid_opposite is set to 10. Among these 65 in stances, Hybrid_opposite does not show better performance than Hybrid on any instance. In fact, Hybrid_opposite inherits all of the weaknesses of adapt $G^{2} W S A T_{P}$ and $V W$. Specifically, Hybrid_opposite inherits the poor performance of $\operatorname{adapt} G^{2} W S A T_{P}$ on qg7-13, the 8 instances in SSS.1.0a, and the 8 crafted instances, and inherits the poor performance of $V W$ on g250.29, the 5 instances in parity, the 8 industrial instances, and the 8 random instances from the SAT 2005 competition benchmark (instances from O*1582 to O*1589).

We compare the performance of Hybrid with that of Hybrid_random on the 11 groups of instances, or 65 instances, in Tables 11 and 12. The value of parameter γ in Hybrid is set to 10. The run time performance of Hybrid_random is better than that of Hybrid on only 11 out of the 65 instances presented in Tables 11 and 12. On the remaining 54 instances, Hybrid shows better run time performance than Hybrid_random. Specifically, the run time performance of Hybrid is much better than that of Hybrid_random on GCP, qg7-13, $\mathrm{v}^{*} 1915$, and the 8 random instances from the SAT 2005 competition benchmark.

Table 11. Experimental results for adapt $G^{2} W S A T_{P}, V W$, $\operatorname{Hybrid}(\gamma=10)$, and Hybrid_random on the structured and crafted instances. In Hybrid $(\gamma=10)$ and Hybrid_random, $s=0$.

	adapt ${ }^{3}{ }^{\text {WSAT }}{ }_{P}$			$V W$			Hybrid ($\gamma=10$)			Hybrid_random		
	\#flips	time	suc									
bw_large.c \dagger	992093	3.5	1.00	1868393	6.0	1.00	597473	2.5	0.99	376008	1.6	1.00
bw_large.d	2124858	12.4	0.96	2963500	18.1	0.98	962677	6.3	0.98	397443	3.0	1.00
e0ddr2* $1 \dagger$	3068450	15.3	0.99	6549282	22.5	0.66	114774	2.9	1.00	161557	3.0	1.00
e0ddr2* $4 \dagger$	694059	4.3	1.00	1894243	7.9	0.98	71214	2.7	1.00	165399	3.2	1.00
enddr2* $1 \dagger$	641226	4.3	1.00	4484178	17.6	0.83	54245	2.6	1.00	116633	2.8	1.00
enddr $2 * 8 \dagger$	555475	3.8	1.00	3398071	16.1	0.92	47090	2.7	1.00	89587	2.6	1.00
ewddr $2 * 1 \dagger$	520705	3.6	1.00	4052096	16.5	0.88	42881	2.5	1.00	99759	2.8	1.00
ewddr2*8 \dagger	432671	3.1	1.00	4608302	20.5	0.86	35079	2.4	1.00	79277	2.1	1.00
g250.29	637472	28.2	1.00	$>10^{7}$	n/a	0.18	1306322	94.0	0.88	7963853	482.3	0.59
logi*.ct	49469	0.1	1.00	70446	0.1	1.00	19038	0.1	1.00	13543	0.1	1.00
par16-1 \dagger	55017679	28.0	1.00	$>10^{9}$	n / a	0.00	65354529	37.8	1.00	360851332	299.6	0.84
par16-2 \dagger	106070896	57.0	1.00	$>10^{9}$	n / a	0.00	152549064	92.5	1.00	118912415	119.2	1.00
par16-3 \dagger	97156387	51.6	1.00	$>10^{9}$	n / a	0.00	87443760	53.5	1.00	178938233	113.5	0.99
par16-4 \dagger	118557332	61.4	1.00	$>10^{9}$	n / a	0.00	108114087	63.6	1.00	56660973	54.9	1.00
par16-5 \dagger	83028280	44.4	1.00	$>10^{9}$	n / a	0.01	105083154	63.0	1.00	111896481	112.5	1.00
qg 1-07 \dagger	6206	0.0	1.00	27607	0.1	1.00	5722	0.0	1.00	8494	0.0	1.00
qg 1-08 \dagger	380083	2.3	1.00	2178590	30.9	0.95	440417	3.6	1.00	728452	5.0	1.00
qg2-07 \dagger	4318	0.0	1.00	9847	0.0	1.00	4226	0.0	1.00	3895	0.0	1.00
qg 2-08 \dagger	1540278	10.7	1.00	$>10^{7}$	n / a	0.48	1353338	10.0	1.00	2537061	19.5	0.92
qg3-08 \dagger	35226	0.1	1.00	143567	0.2	1.00	32808	0.1	1.00	81866	0.2	1.00
qg4-09 \dagger	61492	0.1	1.00	318048	0.6	1.00	63634	0.1	1.00	133997	0.3	1.00
qg 5-11†	20494	0.2	1.00	53713	0.5	1.00	19212	0.2	1.00	16197	0.3	0.99
qg6-09 \dagger	353	0.0	1.00	1151	0.0	1.00	417	0.0	1.00	443	0.0	1.00
qg $7-09 \dagger$	283	0.0	1.00	1074	0.0	1.00	320	0.0	1.00	364	0.0	1.00
qg $7-13 \dagger$	$>10^{8}$	n / a	0.48	8843466	307.6	0.90	1881094	32.3	0.71	7501896	156.5	0.52
*bug3	$>10^{7}$	n / a	0.00	1786329	3.7	0.98	628668	3.0	0.97	1176148	6.8	1.00
*bug4	$>10^{7}$	n / a	0.03	185184	0.4	1.00	113857	0.8	1.00	1716795	9.8	0.98
*bug5	$>10^{7}$	n / a	0.06	280071	0.7	1.00	102743	0.9	1.00	38993	0.3	1.00
* bug 17	128497	2.6	0.70	32999	0.3	1.00	20361	1.4	1.00	14477	0.6	1.00
* bug 38	$>10^{7}$	n / a	0.13	157834	0.4	1.00	210259	1.2	0.96	22611	0.3	1.00
* bug39	$>10^{7}$	n / a	0.39	83287	0.2	1.00	89306	0.7	1.00	19765	0.2	1.00
* bug 40	$>10^{7}$	n / a	0.12	98834	0.3	1.00	55004	0.6	1.00	22070	0.3	1.00
* bug59	$>10^{7}$	n / a	0.49	66090	0.3	1.00	30058	1.8	1.00	19805	0.6	1.00
g*1334	$>10^{8}$	n/a	0.10	167786	0.2	1.00	67540	0.2	1.00	108151	0.3	1.00
g*1335	18665469	17.5	0.54	170227	0.2	1.00	76130	0.3	1.00	116019	0.3	1.00
g*1336	137026	0.3	0.62	132881	0.2	1.00	77116	0.3	1.00	99677	0.4	1.00
g*1337	94475014	100.4	0.51	304756	0.5	1.00	142529	0.6	1.00	224652	0.8	1.00
g*1338	543830	2.2	0.56	822693	1.9	1.00	373965	2.0	1.00	679395	3.2	1.00
g*1339	1040992	5.7	0.62	1220583	2.9	1.00	606668	4.4	1.00	1042199	6.0	1.00
g*1340	$>10^{8}$	n / a	0.00	8891929	22.4	1.00	2529897	14.0	1.00	10063627	44.9	1.00
g*1341	$>10^{8}$	n / a	0.00	6253863	17.8	1.00	2751076	23.1	1.00	8522296	46.2	1.00

Table 12. Experimental results for adapt $G^{2} W S A T_{P}, V W$, $\operatorname{Hybrid}(\gamma=10)$, and Hybrid_random on the industrial and random instances. In Hybrid $(\gamma=10)$ and Hybrid_random, $s=0$.

	adapt ${ }^{2} W$ SAT ${ }_{P}$			VW			Hybrid ($\gamma=10$)			Hybrid_random		
	\#flips	time	suc									
v*1912	3419845	101.6	1.00	61152892	3037.7	0.68	3570353	95.6	1.00	8857485	263.6	1.00
v*1915	11570303	372.6	1.00	$>10^{8}$	n / a	0.18	11904448	399.1	1.00	37407782	1426.5	0.84
v*1923	1300954	31.1	1.00	12518563	428.5	0.99	1404437	28.2	1.00	2218590	47.9	1.00
v*1924	1746729	41.7	1.00	13744232	515.7	0.99	1537351	35.0	1.00	2920894	79.4	1.00
v*1944	3587804	221.8	1.00	58541545	7971.7	0.69	3508563	194.1	1.00	7194486	430.0	1.00
v*1955	1393168	65.4	1.00	10396220	1074.0	1.00	1336078	50.9	1.00	2224233	87.1	1.00
v*1956	1494423	70.0	1.00	13419375	1437.0	0.98	1607320	70.0	1.00	2382822	112.4	1.00
v*1959	559281	29.9	1.00	11433482	1377.2	1.00	542837	26.4	1.00	1465191	76.5	1.00
unif04-52 \dagger	4656882	5.2	0.79	$>10^{7}$	n/a	0.29	4079329	5.2	0.82	6152594	7.1	0.67
unif04-62 \dagger	534814	0.6	1.00	3140198	3.1	0.90	442513	0.6	1.00	1706443	2.1	0.94
unif04-65 \dagger	1110469	1.3	1.00	3800951	3.7	0.84	936079	1.2	1.00	1973233	2.2	0.94
unif04-80 \dagger	2016760	2.4	0.96	$>10^{7}$	n / a	0.34	2105533	2.8	0.94	$>10^{7}$	n/a	0.33
unif04-83 \dagger	5260203	6.3	0.77	$>10^{7}$	n / a	0.24	5827928	8.8	0.74	7021946	8.8	0.60
unif04-86 \dagger	4026873	4.9	0.80	$>10^{7}$	n / a	0.50	4285016	6.0	0.80	$>10^{7}$	n/a	0.49
unif04-91 \dagger	538064	0.7	1.00	2634811	2.9	0.91	572947	0.8	1.00	1224722	1.6	0.98
unif04-99 \dagger	4010745	5.0	0.87	$>10^{7}$	n / a	0.34	3503235	5.2	0.81	$>10^{7}$	n/a	0.46
O*1582	11250878	159.2	1.00	$>10^{8}$	n / a	0.34	10819125	162.6	0.99	26539748	517.4	0.94
O*1583	3628184	50.6	1.00	53945903	5805.5	0.69	3714975	56.8	1.00	7616784	149.5	1.00
O*1584	8292676	115.3	1.00	$>10^{8}$	n / a	0.40	7139020	108.1	1.00	16892628	325.9	0.99
O*1585	10724723	155.8	1.00	$>10^{8}$	n / a	0.38	11512426	174.3	0.99	28287602	560.2	0.93
O*1586	15649195	225.5	0.99	$>10^{8}$	n/a	0.27	14538393	249.3	0.99	37189904	708.2	0.84
O*1587	1206202	17.9	1.00	25999225	2846.3	0.96	1426090	21.3	1.00	2979337	56.8	1.00
O*1588	16073531	228.3	1.00	$>10^{8}$	n / a	0.36	14406395	227.0	0.99	29788687	572.4	0.89
O*1589	4813256	66.6	1.00	95733874	10081.0	0.52	5031016	75.3	1.00	10937851	212.4	1.00

W. Wei et al.

6. Conclusion

We have proposed a new switching criterion: the evenness or unevenness of the distribution of variable weights. Then, to evaluate the effectiveness of this criterion, we have developed a new local search algorithm Hybrid, which switches between heuristic adapt $G^{2} W S A T_{P}$ and heuristic $V W$ in every step according to this switching criterion. This new algorithm combines intensification and diversification by switching between these two heuristics. Our experimental results show that the strengths of the algorithms adapt $G^{2} W S A T_{P}$ and $V W$ are combined in the single algorithm Hybrid.

Acknowledgements

The authors wish to thank two anonymous referees for their thoughtful and insightful comments and suggestions that helped improve the paper.

References

[1] Anbulagan, D. N. Pham, J. Slaney, and A. Sattar. Old Resolution Meets Modern SLS. In Proceedings of AAAI-2005 (2005), 354-359.
[2] I. P. Gent and T. Walsh. Towards an Understanding of Hill-Climbing Procedures for SAT. In Proceedings of AAAI-1993 (1993), 28-33.
[3] E. A. Hirsch and A. Kojevnikov. UnitWalk: A New SAT Solver that Uses Local Search Guided by Unit Clause Elimination. Annals of Mathematics and Artificial Intelligence, $43(1)(2005), 91-111$.
[4] H. H. Hoos. An Adaptive Noise Mechanism for WalkSAT. In Proceedings of AAAI-2002 (2002), 655-660.
[5] H. H. Hoos and T. Stűtzle. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann (2004).
[6] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and Probabilistic Smoothing: Efficient Dynamical Local Search for SAT. In Proceedings of CP-2002, Springer, Lecture Notes in Comput. Sci. 2470 (2002), 233-248.
[7] C. M. Li and W. Q. Huang. Diversification and Determinism in Local Search for Satisfiability. In Proceedings of SAT-2005, Springer, Lecture Notes in Comput. Sci. $\mathbf{3 5 6 9}$ (2005), 158-172.
[8] C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In Proceedings of LSCS-2006 (2006), 2-16.
[9] C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In Frédéric Benhamou, Narendra Jussien, and Barry O'Sullivan, editors, Trends in Constraint Programming. ISTE (2007), chapter 14, 261-267.
[10] C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In Proceedings of SAT-2007, Springer, Lecture Notes in Comput. Sci. 4501 (2007), 121-133.
[11] X. Y. Li, M. F. Stallmann, and F. Brglez. A Local Search SAT Solver Using an Effective Switching Strategy and an Efficient Unit Propagation. In Proceedings of SAT-2003, Springer, Lecture Notes in Comput. Sci. 2919 (2003), 53-68.
[12] D. A. McAllester, B. Selman, and H. Kautz. Evidence for Invariant in Local Search. In Proceedings of AAAI-1997 (1997), 321-326.
[13] P. Mills and E. Tsang. Guided Local Search for Solving SAT and Weighted MAXSAT Problems. Journal of Automated Reasoning, Special Issue on Satisfiability Problems, 24 (2000), 205-223.
[14] P. Morris. The Breakout Method for Escaping from Local Minima. In Proceedings of AAAI-1993 (1993), 40-45.
[15] S. Prestwich. Random Walk with Continuously Smoothed Variable Weights. In Proceedings of SAT-2005, Springer, Lecture Notes in Comput. Sci. 3569 (2005), 203-215.
[16] D. Schuurmans and F. Southey. Local Search Characteristics of Incomplete SAT Procedures. In Proceedings of AAAI-2000 (2000), 297-302.
[17] B. Selman, H. Kautz, and B. Cohen. Noise Strategies for Improving Local Search. In Proceedings of AAAI-1994 (1994), 337-343.
[18] B. Selman, D. Mitchell, and H. Levesque. A New Method for Solving Hard Satisfiability Problems. In Proceedings of AAAI-1992 (1992), 440-446.
[19] J. Thornton, D. N. Pham, S. Bain, and V. F. Jr. Additive versus Multiplicative Clause Weighting for SAT. In Proceedings of AAAI-2004 (2004), 191-196.
[20] D. A. D. Tompkins and H. H. Hoos. Warped Landscapes and Random Acts of SAT Solving. AI\&M 26-2004. In Proceedings of AIBM-2004 (2004).
[21] W. Wei, C. M. Li, and H. Zhang. Criterion for Intensification and Diversification in Local Search for SAT. In Proceedings of LSCS-2007 (2007), 16-30.
[22] Z. Wu and B. W. Wah. Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satiafiability Problems. In Proceedings of AAAI-2000 (2000), 310-315.

[^0]: * A preliminary version of this paper was presented at the 4th International Workshop on LSCS [21].
 \dagger The work of the first author is partially supported by NSERC PGS-D (Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarships for Doctoral students).

[^1]: 4. All experiments reported are conducted in Chorus, which consists of 2 dual processor master nodes with hyperthreading enabled and 80 dual processor compute nodes. Each compute node has two 2.8 GHz Intel Xeon processors with 2 to 3 Gigabytes of memory.
 5. http://www.lri.fr/~simon/contest/results/
 6. http://www.ece.cmu.edu/~mvelev/sat_benchmarks.html
 7. The instance *bug54 is hard for every algorithm discussed in this paper. For example, if we run $V W$ on *bug54 (Maxsteps $=10^{8}$), the success rate is only 0.40%.
