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Abstract

We show how to exploit the 32/64 bit architecture of modern computers to accelerate
some of the algorithms used in satisfiability solving by modifying assignments to variables
in parallel on a single processor. Techniques such as random sampling demonstrate that
while using bit vectors instead of Boolean values solutions to satisfiable formulae can be
obtained faster. Here, we reveal that more complex algorithms, like unit propagation and
detection of autarkies, can be parallelized efficiently, as well.

We capitalize on the developed parallel algorithms by modifying the state-of-the-art
local search Sat solver UnitWalk accordingly. Experiments show that the parallel version
performs much faster than the original implementation.

Keywords: local search, parallel computing, Boolean Algebra

Submitted October 2007; revised January 2008; published May 2008

1. Introduction

State-of-the-art satisfiability (Sat) solvers can be divided into complete (solving both sat-
isfiable and unsatisfiable formulae) and incomplete (solving only satisfiables) ones. The
former class of solvers uses fast data-structures and reasoning techniques on partial as-
signments to solve problems. Surprisingly, they also dominate performance of incomplete
solvers on most satisfiable structured instances1.. Incomplete Sat solvers, mostly based
on local search, mainly perform modifications on a (full) assignment using ”randomized”
flipping decisions. In general, these solvers are less complex. Incomplete solvers are very
strong on satisfiable random benchmarks.

Today’s 32/64 bit architecture enables computers to perform 32 or 64 of the familiar
Boolean operations within a single clock cycle. Since assignment modifications can be con-
sidered Boolean operations, multiple of those modifications can be parallelized. Incomplete
Sat solvers seem the most likely candidates to apply this technique, because they do not
use reasoning techniques and because assignment modifications are an important aspect of
the used algorithms.

∗ This paper is an extended version of: From Idempotent Generalized Boolean Assignments to Multi-bit

Search. SAT 2007 Springer LNCS 4501 (2007), pp 134-147.
† Supported by the Dutch Organization for Scientific Research (NWO) under grant 617.023.611.

1. Based on the results on the Sat competitions. See www.satcompetition.org for details.
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Current Satisfiability (Sat) solvers do not make use of the opportunity of a p-bit proces-
sor to simulate parallel 1-bit (Boolean) search on p 1-bit processors. Conventional parallel
Sat solving [3, 4, 12] differs from the proposed method in Section 3: The former gains
performance by dividing the workload over multiple processors and by some minor changes
to the solving algorithm, while the latter uses a single processor and requires significant
modifications to the algorithm. The most closely related work [7] also parallelizes a Sat

solver (GSAT), on a single processor. However, they use a vector processor (used in most
supercomputers), instead of scalar processor (used in most desktop computers).

Sat solvers that use integer type of heuristics frequently (counters for instance), are not
very suitable for modification in this respect. However, Sat solvers whose computational
“center of gravity” consists of propagating truth values (or other 1-bit operations) may
profit from this opportunity. One of such solvers is the state-of-the-art local search Sat

solver UnitWalk [6]. We show that UnitWalk can be upgraded using a single p-bit processor.
This results in a considerable speed-up.

This paper, which is an extension [5], describes our Sat solver UnitMarch. The most
important addition presented here are the communication enhancements (see Section 5).
Most results originate from [5], but we also added some new experiments to show the
usefulness of communication on some specific formulae.

2. Multi-Bit Assignments

The satisfiability (Sat) problem deals with the question whether there exits an assignment
to the Boolean variables that satisfies a given Boolean formula. Such a formula is represented
in Conjunction Normal Form (CNF): The formula consists of a conjunction of clauses (e.g.
F = C1∧C2∧C3) and each clause consists of a disjunction of literals (e.g. Ci = l1∨ l2∨ l3).
Literals refer either to a Boolean variable xi or to their complement ¬xi. An assignment
satisfies a formula if it satisfies all clauses. A clause is satisfied if at least on of its literals
is satisfied. A literal xi is satisfied if the corresponding variable is assigned to 1, while a
literal ¬xi is satisfied if xi is assigned to 0.

This paper explores the usefulness of assigning bit vectors {0,1}p instead of Boolean
values to the variables. We refer to these bit vectors as multi-bit values. A non-zero multi-
bit value refers to a bit vector containing at least one 1. An assignment which assigns
multi-bit values to the variables is called a multi-bit assignment (in short MBA).

Example 1.

Consider the 3-bit values. We abbreviate multi-bit values: (0, 1, 0) will be represented by
010. Let F be the formula

x ∧ ¬y ∧ (¬x ∨ ¬z) (1)

and assigning x := 101, y := 001 and z := 111, we calculate

101 ∧ ¬001 ∧
(

¬(101) ∨ ¬(111)
)

= 000 (2)

By assigning x := 101, y := 001 and z := 011 however, F evaluates to the value 100, as the
reader may verify. All non-zero multi-bit values verify that the given formula is satisfiable.
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Notice that if a certain clause gets a 0 in some bit position (by some partial multi-bit
assignment) there is no possibility to extract a satisfying assignment from this bit position,
because the AND’s of the CNF in this bit position can never undo this ”being zero”!

Example 2.

Consider the 2-bit assignments on the formula x ∧ y. The reader may check that there are
16 possible 2-bit assignments of which 7 evaluate to a non-zero value. Drawing multi-bit
assignments randomly, the probability of hitting a non-zero multi-bit value is 7

16 , while
in the conventional Boolean situation this probability is 1

4 . In general, the probability is
1 − (3

4)p using the p-bit assignments.
The above example shows that probability to hit a solution using random sampling

MBA’s increases using more bits. In case multi-bit assignments can be used in approxi-
mately the same computational time as Booleans, solutions can be found faster. This is done
in [8], where Boolean “patterns” (rather than Booleans) are propagated through a circuit
to increase the probability of hitting a solution - indicating an error in their application.

Although this random sampling can be considered a rather straight forward parallelism,
we claim that efficient multi-bit propagation for Sat solving is not straight forward at all:
In [8], at each step, variables are either unassigned or assigned a full Boolean pattern, while
in the proposed propagation variables can also be assigned a partial Boolean assignment.

3. Multi-Bit Unit Propagation

This section describes the use of multi-bit assignments (MBA’s) to parallelize a Sat solving
algorithm. However, this differs from conventional parallelism: Modifications of MBA’s can
be processed in parallel, while, for instance, operations on counters cannot. In general, only
1-bit operations can be parallelized. Therefore, algorithms that potentially benefit from
MBA’s should have their computational “center of gravity” on assignment modifications.

A widely used procedure for assignment modifications is unit propagation: Given a
formula F and an assignment ϕ. If ϕ applied to F (denoted by ϕ ◦ F) contains unit clauses
(clauses of size 1) then the remaining literal in each unit clause is forced to be true - thereby
expanding ϕ. This procedure continues until there are no unit clauses left in ϕ ◦ F . This
section describes a Sat solving algorithm that uses unit propagation at its computational
“center of gravity”.

The UnitWalk algorithm.

For a possible application we focused on local search (incomplete) Sat solvers. In contrast
to complete Sat solvers, they are less complicated and work with full assignments. A generic
structure of local search Sat solvers is as follows: An assignment ϕ is generated, earmarking
a random Boolean value to all variables. By flipping the truth values of variables, ϕ can be
modified to satisfy as many clauses as possible of the formula at hand. If after a multitude
of flips ϕ still does not satisfy the formula, a new random assignment is generated.
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Most local search Sat solvers use counting heuristics to flip the truth value of the
variables in a turn-based manner. These heuristics appear hard to parallelize on a single
processor. However, the UnitWalk algorithm [6] is an exception. Instead of counting
heuristics, it uses unit propagation to flip variables. The UnitWalk Sat solver - based on
this algorithm - is the fastest local search Sat solver on many structured instances and won
the Sat 2003 competition in the category All random SAT [10].

The UnitWalk algorithm (see Algorithm 1) flips variables in so-called periods: Each
period starts with an initial assignment (referred to as master assignment ϕmaster), an empty
assignment ϕactive and an ordering of the variables π. First, unit propagation is executed
on the empty assignment. Second, the first unassigned variable in π is assigned to its value
in ϕmaster, followed by unit propagation of this value. A period ends when all variables are
assigned a value in ϕactive. Notice that conflicts - clauses with all literals assigned to false
- are more or less neglected, depending on the implementation. A new period starts with
the resulting ϕactive as initial ϕmaster and a new ordering of the variables.

Algorithm 1 Flip UnitWalk( ϕmaster )

1: for i in 1 to MAX PERIODS do

2: if ϕmaster satisfies F then

3: break

4: end if

5: π := random ordering of the variables
6: ϕactive := ∅
7: for j in 1 to n do

8: \\ Perform unit propagation
9: while unit clause u ∈ ϕactive ◦ F do

10: ϕactive[ VAR(u) ] := TRUTH(u)
11: end while

12: \\ Assign the next free variable according to πj

13: if π(j) not assigned in ϕactive then

14: ϕactive[ π(j) ] := ϕmaster[ π(j) ]
15: end if

16: end for

17: if ϕactive = ϕmaster then

18: random flip variable in ϕactive

19: end if

20: ϕmaster := ϕactive

21: end for

22: return ϕmaster
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Example 3.

Consider the example formula and initial settings below. Unassigned values in ϕactive are
denoted by *.

Fexample := (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

(¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

ϕmaster := {x1 = 0, x2 = 1, x3 = 1, x4 = 0}

ϕactive := {x1 = ∗, x2 = ∗, x3 = ∗, x4 = ∗}

π := (x2, x1, x4, x3)

Since the formula contains no unit clauses, the algorithm starts by selecting the first vari-
able from the ordering - x2. We assign this variable to true (as in ϕmaster) and perform
unit propagation. Due to ¬x2 ∨¬x3 this results in one unit clause ¬x3. Propagation of this
unit clause - assigning x3 to false - results in unit clauses x4, and ¬x4. Because two com-
plementary unit clauses have been generated we found a conflict. However, the UnitWalk

algorithm does not resolve this conflict.
Instead, it continues by selecting2. one of them, say ¬x4, and assign x4 to false. After

this assignment ϕactive ◦F does not contain unit clauses anymore. We conclude this pe-
riod by assigning x1 to its value in ϕmaster. This results in the full assignment ϕactive =
{x1 = 0, x2 = 1, x3 = 0, x4 = 0}. Notice that the new assignment does not satisfy clause
¬x2 ∨ x3 ∨ x4.

Now, consider the same example, this time assigning 4-bit values to all the variables.
The reader must keep in mind that by parallelizing the former, we aim to satisfy clauses
in each bit position! Recall that once a certain clause gets a 0 at some bit position, no
satisfying assignment is possible at that bit position. Hence, variables may be flipped in
multiple bits, and “conflict” means a conflict in some bit position. For the latter we shall use
the term bit-conflict. In the multi-bit case, a clause is called unit with respect to a certain
bit position if at that bit position one literal is unassigned and all others are falsified. So,
a clause can be(come) unit on multiple bit positions and on different literals at the same
time. Further, we keep using the term “truth value” for its multi-bit analogue. Notice that
in the initial settings below, the first (most left) bit in ϕmaster equals the 1-bit example and
that the ordering is the same. For clarity, in the example recent changes are shown in bold
and an underlined bit position means refers to a bit-conflict.

ϕmaster := {x1 = 0110, x2 = 1100, x3 = 1010, x4 = 0110}

ϕactive := {x1 = ∗∗∗∗, x2 = ∗∗∗∗, x3 = ∗∗∗∗, x4 = ∗∗∗∗}

π := (x2, x1, x4, x3)

2. In [6] the authors suggest to select the truth value used in ϕmaster. However, this is not implemented in
the latest version of the solver and we consider it as a choice.
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Again, we start by assigning x2 to its value in ϕmaster followed by unit propagation. This
will result in two unit clauses:

(x1 = ∗∗∗∗ ∨ x2 = 1100) ⇒ x1 := ∗∗11
(¬x2 = 0011 ∨ ¬x3 = ∗∗∗∗) ⇒ x3 := 00∗∗

Notice that both variables are assigned immediately, although alternative implementations
are possible - see Section 4.1. One of them is selected, say x1, and assigned to its value:

(¬x1 = ∗∗00 ∨ x2 = 1100 ∨ x3 = 00∗∗) ⇒ x3 := 0011
Now we assign x3 which triggers three clauses:

(¬x2 = 0011 ∨ x3 = 0011 ∨ ¬x4 = ∗∗∗∗) ⇒ x4 := 00∗∗
(¬x2 = 0011 ∨ x3 = 0011 ∨ x4 = 00∗∗) ⇒ x4 := 00∗∗ (bit−conflict)

(¬x3 = 1100 ∨ ¬x4 = 11∗∗) ⇒ x4 := 0000
When unit propagation stops, only the first two bits of x1 are still undefined. These bits
are set to their value in ϕmaster assigning all variables. The period ends with ϕactive =
{x1 = 0111, x2 = 1100, x3 = 0011, x4 = 0000} - which satisfies the formula in the third and
fourth bit.

The reader may check that: (1) The order in which unit clauses are propagated, as well
as the order in which clauses are evaluated, is not fixed. Only in case conflicts occur, the
order influences ϕactive. For example, evaluating ¬x2 ∨x3 ∨x4 before ¬x2 ∨x3 ∨¬x4 results
in a different final ϕactive. (2) In the 4-bit example the third and fourth bit are the same
for all variables. This effect could reduce the parallelism, because the algorithm as such
does not intervene here and in fact maintains this collapse. This effect is not restricted to
formulae with a small number of variables. To counter this unwanted effect, we added a
technique removing duplicates - see Section 5.1.

4. Implementation UnitMarch

4.1 Unit propagation

The UnitPropagation procedure within the UnitWalk algorithm is not confluent: Dif-
ferent implementations yield different results. In short, two design decisions need to be
made:

• In case of multiple unit clauses: Which one to select for propagation;

• In case of a conflict: Whether or how to act.

The most recent UnitWalk (version 1.003) implements the following UnitPropagation

procedure: Unit clauses are stored in a multi-set (a set that can contain duplicate elements)
data-structure. For each iteration a random element u from the multi-set is selected. If the
complement of the selected unit clause also occurs in the multi-set - indicating a conflict -
all occurrences of u and ¬u are removed from the multi-set. The algorithm continues with
the next random element - see Algorithm 2. Notice that this is a defensive flip strategy:
The truth value for u in ϕactive tends to be copied from ϕmaster.
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Algorithm 2 UnitPropagation MultiSet ( )

1: while UnitMultiSet is not empty do

2: u := random element from UnitMultiSet
3: remove all occurrences of u in UnitMultiSet
4: if unit clause ¬u also occurs in UnitMultiSet then

5: remove all occurrences of ¬u in UnitMultiSet
6: else

7: ϕactive[ VAR(u) ] := TRUTH(u)
8: for all clauses Ci in which ¬u occurs do

9: if Ci becomes a unit clause then

10: add Ci to UnitMultiSet
11: end if

12: end for

13: end if

14: end while

In our implementation we took a slightly different approach, since the above algorithm
was hard to implement efficiently in a multi-bit version. Instead of the multi-set we used a
queue (first in, first out) data-structure - see Algorithm 3: Unit clauses are selected in the
order in which they are added to the queue. In general, “early” generated unit clauses will
have more bits assigned (at the time of propagation) compared to “recent” unit clauses.
Therefore the queue seems a useful data-structure since it always propagates the “earliest”
unit clause left.

In addition, conflicts are handled differently: The queue is not allowed to contain com-
plementary or duplicate unit clauses. The truth value of the first generated unit clause will
be used during the further propagation. Notice that this flip strategy is more offensive:
Given a bit-conflict, the truth value of the variable is flipped in approximately half of the
cases. As we will see in the results (Section 6), both implementations yield comparable
results (the average number of periods).

Algorithm 3 UnitPropagation Queue ( )

1: while UnitQueue is not empty do

2: u := removed front element from UnitQueue
3: for all clauses Ci in which ¬u occurs do

4: if Ci becomes a unit clause then

5: v := remaining literal in Ci

6: ϕactive[ VAR(v) ] := TRUTH(v)
7: if v not in UnitQueue then append v to UnitQueue
8: end if

9: end for

10: end while
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4.2 Detection of Unit Clauses

The UnitWalk algorithm spends most computational time in detecting which clauses
became unit clauses given an expansion of ϕactive. If a variable is assigned a Boolean value,
all clauses in which it occurs with complementary polarity are potential unit clauses. Recall
that in the 1-bit situation, a potential unit clause can only be unit on a single literal, while
in a multi-bit implementation it can become unit on multiple literals (each on a different
bit position).

Example 4.

Given ϕactive = {x1 = 010∗, x2 = 10∗1, x3 = 101∗, x4 = ∗001} with x3 as remaining literal
of a unit clause to be propagated and with potential clause x1 ∨ ¬x2 ∨ ¬x3 ∨ x4.

(x1 = 010∗ ∨ ¬x2 = 01∗0 ∨ ¬x3 = 010∗ ∨ x4 = ∗001) ⇒ x2 := 1001, x4 := 1001
In general, a clause can become unit on all literals - apart from the propagation literal.

4.2.1 Encoding.

Since each bit in ϕactive consists of three possible values (*,0,1), we used two bits to encode
each value: 00 = *, 01 = 0, 10 = 1, and 11 = bit-conflict3.. We used an array ϕ+

− in
which both xi and ¬xi have a separate assignment: The first bit of each value is stored in
xi while the second bit is stored in ¬xi. Back to the example.

ϕactive is stored as

{

ϕ+
−[ x1] = 0100, ϕ+

−[ x2] = 1001, ϕ+
−[ x3] = 1010, ϕ+

−[ x4] = 0001

ϕ+
−[¬x1] = 1010, ϕ+

−[¬x2] = 0100, ϕ+
−[¬x3] = 0100, ϕ+

−[¬x4] = 0110

Using ϕ+
− we can compute the unit clauses as below. Conflicts are ignored by only allowing

unassigned bits - computed by NOT(ϕ+
−[xi] OR ϕ+

−[¬xi]) - to be assigned.

x1 := ϕ+
−[x3] AND NOT(ϕ+

−[x1] OR ϕ+
−[¬x1]) AND ϕ+

−[x2] AND ϕ+
−[¬x4]

¬x2 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2]) AND ϕ+
−[¬x4]

x4 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND ϕ+
−[x2] AND NOT(ϕ+

−[x4] OR ϕ+
−[¬x4])

The above shows a potential disadvantage of the multi-bit propagation: To check whether
a clause of size k becomes a unit clause and to determine the remaining literal(s) is not
trivially computed in O(k) steps - as is the case with 1-bit propagation. However, a O(k)
implementation can be realized by splitting the computation into two stages:

• Compute the unit mask of a clause - a multi-bit value which is true on all positions
with exactly one not falsified literal (denoted by MNF= 1) and false elsewhere;

• Use the unit mask to quickly determine the newly created unit clauses: All literals
that are unassigned at a true position in the unit mask became unit.

3. The bit-conflict value is not possible within or implementation
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To compute MNF =1, we use two auxiliary masks, MNF < 1 and MNF < 2. The masks denote
multi-bit values which are 1 on all positions with less than one (and two, respectively) not
falsified literals and 0 elsewhere. Notice that MNF= 1 := MNF < 1 XOR MNF < 2. For each
literal li in a clause we update MNF < 1 and MNF < 2 by the following two rules:

MNF < 2 := (MNF < 2 AND ϕ+
−[ ¬ly,i ]) OR MNF < 1

MNF < 1 := MNF < 1 AND ϕ+
−[ ¬ly,i ]

The implementation of the above is shown in Algorithm 4.

Algorithm 4 ComputeUnitMask ( clause Cy )

1: MNF < 1 := ALL BITS TRUE, MNF < 2 := ALL BITS TRUE

2: for i in 1 to |Cy| do

3: MNF < 2 := (MNF < 2 AND ϕ+
−[ ¬ly,i ]) OR MNF < 1

4: MNF < 1 := MNF < 1 AND ϕ+
−[ ¬ly,i ]

5: end for

6: return MNF < 1 XOR MNF < 2

Once MNF= 1 is computed (MNF =1 = 1010 in the example) we can determine the newly
create unit clauses. For the example we only need the computations:

x1 := MNF= 1 AND NOT(ϕ+
−[x1] OR ϕ+

−[¬x1])

¬x2 := MNF= 1 AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2])

x4 := MNF= 1 AND NOT(ϕ+
−[x4] OR ϕ+

−[¬x4])

5. Communication

The above description of a multi-bit version of the UnitWalk algorithm can be seen as
performing the algorithm in parallel without communication. However, communication
can be added to the algorithm to possibly further extend performance gain. This section
offers two kinds of communication. The first is a parallel detection algorithm for duplicate
assignments. This feature repairs an unwanted effect of the UnitWalkalgorithm. Therefore
this communication is not really an enhancement but more an essential addition. The second
is a parallel algorithm to compute the largest autarky in a given (full) assignment.

5.1 Duplicate assignments

During our experiments we frequently observed convergence of the different bit positions in
an assignment. For a given assignment ϕ, the j-th bit position is called a duplicate if there
exists a i < j such that all variables are assigned to the same truth value at bit position i

and j. On most benchmarks, duplicates were observed. In some cases even (all) n − 1 bit
positions became duplicate. Due to the construction of the UnitWalk algorithm, once a
bit position is a duplicate, it will remain a duplicate if no intervention is made. Because
duplicates reduce the parallel behavior of the algorithm, we decided to detect duplicates
and replace them with a new random assignment.
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To detect the duplicates, we used assignment matrices: The assignment matrix Mϕ(xi)
of a variable xi for a p-bit assignment ϕ is a symmetric n × n 0,1-matrix of which each
j-th row and column is ϕ[xi] if xi is assigned to true on the j-th bit-position and ϕ[¬xi]
otherwise. The assignment matrix Mϕ(F) is the entrywise product (so called Hadamard
product, denoted by ◦) of the the assignment matrices of all the variables in F .

Example 5.

Given ϕ = {x1 = 010010, x2 = 101101, x3 = 110111, x4 = 000000}. Now we compute the
assignment matrices:

Mϕ(x1) =















1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1
1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1















Mϕ(x3) =















1 1 0 1 1 1
1 1 0 1 1 1
0 0 1 0 0 0
1 1 0 1 1 1
1 1 0 1 1 1
1 1 0 1 1 1















Mϕ(x2) =















1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1
1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1















Mϕ(x4) =















1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1















⇒ Mϕ(F) =















1 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
1 0 0 1 0 1















Notice that all assignment matrices Mϕ(xi) have at least as many 1’s as 0’s. If a row
contains 1’s in the lower triangle of Mϕ(F), the corresponding bit position is a duplicate. In
the example above, the 4-th, 5-th and 6-th bit positions are duplicates. Using Mϕ(F) we can
obtain mduplicates: Compute the Hadamard product of the strictly lower triangular matrix
and Mϕ(F). Multiply the result with the all one vector. The resulting mask mduplicates is
a p-bit Boolean which has 1’s on all bit positions that are duplicates and 0’s otherwise. In
this example the computation is:

mduplicates =
(















0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0















◦















1 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
1 0 0 1 0 1















)

















1
1
1
1
1
1

















=
[

0 0 0 1 1 1
]

(3)

In UnitMarch mduplicates is computed as in Algorithm 5 - for p-bit assignments. The
algorithm is similar to the above example. Let n denote the number of variables. Although
the algorithm has worst case complexity O(pn), in practice it is quite fast due to the break
command at line 11.
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Algorithm 5 ComputeDuplicateMask ( assignment ϕ )

1: mduplicates := [0]p

2: for j in 1 to p − 1 do

3: mcolumn := [0]j [1]p−j

4: for xi ∈ F do

5: if xi is assigned to true on the j-th bit-position in ϕ then

6: mcolumn := mcolumn AND ϕ[xi]
7: else

8: mcolumn := mcolumn AND ϕ[¬xi]
9: end if

10: if mcolumn = [0]p then

11: break

12: end if

13: end for

14: mduplicates := mduplicates OR mcolumn

15: end for

16: return mduplicates

5.2 Autarkies

An autarky (or autark assignment) is a partial assignment ϕ that satisfies all clauses that
are ”touched” (have at least one literal assigned) by ϕ. So, all satisfying assignments are
autark assignments. Autarkies that do not satisfy all clauses can be used to reduce the
size of the formula: Let Ftouched be the clauses in F that are satisfied by an autarky. The
remaining formula F∗ := F \ Ftouched is satisfiability equivalent to F . If we detect an
autark assignment we can reduce F by removing all clauses in Ftouched.

Given an assignment, one can compute the largest autarky being a reduction of that
assignment using the following algorithm [9]:

• Loop through all the clauses

• If a clause is touched but not satisfied, unassign all variables in that clause

• Repeat the above until no assignment changes have been made

The outcome of the algorithm is either an empty assignment, showing that there exists
no autarky which is a reduction of the input assignment, or some variables are still assigned
which form an autarky. Notice that the algorithm is confluent: All variables that occur in
any autarky being a reduction of the input assignment will be in the output. The larger
the number of assigned variables of the input assignment, the higher the probability that
algorithm will return an autarky. Especially local search Sat solvers - such as UnitWalk -
are likely to profit from the algorithm, since at each period they work with a full assignment.

The above algorithm can easily be parallelized using MBA’s: Check whether at one
or more bit positions the clause is touched but not satisfied. Then unassign all variables
on those bit positions. Again, repeat the above until no assignment changes have been
made. The resulting assignment is either empty or contains an autarky at one or more bit
positions.
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Parallelizing the algorithm has two main advantages: First, since it is easy to perform
the detection in parallel, the costs are relatively small. Second, if an autarky is found
on a single bit position, clauses can be removed from the formula which will reduce the
the propagation costs of the entire solving procedure. Therefore, detecting autarkies and
removing clauses in parallel, could (at least in theory) result in a significant speed-up.

Example 6.

To explain the multi-bit autarky detection, we start by using a slightly modified example
formula from the multi-bit unit propagation example and the same initial ϕmaster. In this
example ⊛ denotes a bit position that has recently been unassigned.

F∗
example := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

(¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

ϕmaster := {x1 = 0110, x2 = 1100, x3 = 1010, x4 = 0110}

First, we loop once through all the clauses. If a clause is not satisfied on a certain bit
position all variables in that clause are unassigned at that bit position:

(x1 = 0110 ∨ x2 = 1100) ⇒ x1 := 011⊛, x2 := 110⊛

(¬x1 = 100∗ ∨ ¬x2 = 001∗ ∨ x3 = 1010) ⇒ x1 := 0⊛1∗, x2 := 1⊛0∗, x3 := 1⊛1⊛

(¬x2 = 0∗1∗ ∨ ¬x3 = 0∗0∗) ⇒ x2 := ⊛∗0∗, x3 := ⊛∗1∗

(¬x2 = ∗∗1∗ ∨ x3 = ∗∗1∗ ∨ ¬x4 = 1001) ⇒ x4 := 0⊛10

(¬x2 = ∗∗1∗ ∨ x3 = ∗∗1∗ ∨ x4 = 0∗10) ⇒ x4 := ⊛∗1⊛

(¬x3 = ∗∗0∗ ∨ ¬x4 = ∗∗0∗) ⇒ x3 := ∗∗⊛∗, x4 := ∗∗⊛∗

Second, we loop again through the clauses. This will unassign one more bit position:

(x1 = 0∗1∗ ∨ x2 = ∗∗0∗) ⇒ x1 := ⊛∗1∗

Since no assignments are unassigned by the other clauses, the algorithm stops. The presence
of assigned variables x1 and x2 indicate that we found an autarky on bit position 3. This
autarky satisfies all clauses except ¬x3 ∨ ¬x4. Since the remaining clause is satisfiability
equivalent to F∗

example, the satisfied clauses can be removed from the formula and we can
continue solving only the reduced formula. The example shows that detection of autarkies
can reduce the formula considerably and speed-up the solving time.

Detection of autarkies can be implemented more efficiently compared to the description
above: Only in the first iteration, one needs to loop through all the clauses. In succeeding
iterations, only those clauses that contain a variable that was unassigned (at some bit
position) in the prior iteration need to be examined. Another technique to reduce the
computational costs of the detection algorithm is to call it once every k periods. In case an
autarky exists on some bit position(s), the UnitWalk algorithm will not alter the truth
values on those bit positions of the variables contributing to the autarky. Therefore, calling
the detection algorithm every once in a while will reveal the same autarkies - although
slightly later.
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6. Results

We implemented the UnitWalk algorithm as a multi-bit local search solver using Unit-

Propagation Queue. The resulting solver, called UnitMarch, can be used for any number
of bits. We added the method which detects and replaces duplicates with new random
assignments (see Section 5.1). Because the autarky detection feature (see Section 5.2) only
slightly influences the performance on the selected benchmarks, we decided to present the
results from [5]. The performance of UnitMarch is compared with the latest version of
UnitWalk4..

The latter is a hybrid solver: If after a number of periods the number of unsatisfied
clauses is not reduced the solver switches to WalkSat [11]. In turn, if that algorithm does
not find a solution after a multitude of flips it switches back, etc. We wanted to compare the
influence of multi-bit search on the pure UnitWalk algorithm, so switching was disabled.

Table 1 shows a comparison between UnitWalk, UnitMarch 1-bit and UnitMarch 32-bit
on various benchmarks. Apart from the dlx2-bugXX family5., all benchmarks can be found
on SATlib6. along with a description. For each solver, we set MAX PERIODS := ∞. We used
100 random seeds for all benchmarks.

The solvers UnitWalk and UnitMarch 1-bit show comparable performance. First, the
number of periods executed per second is almost the same for all checked benchmarks. This
shows that our implementation, with some overhead for parallelization, is fast enough on
the benchmarks at hand. Second, the average number of periods between the two versions
is comparable. Although they differ slightly between instances, the results are ”too close to
call”: There is no clear winner. Hence, the UnitPropagation Queue procedure shows
comparable to the UnitPropagation MultiSet procedure in terms of performance.

Comparing both 1-bit solvers to UnitMarch 32-bit shows that the latter is the clear winner
on almost all experimented instances. We found few exceptions (see logistics-d); all having
less than 100 periods on the three solvers. Apparently, multi-bit search as implemented is
not effective on these simple instances. Figures 1 and 2 present the effect of using different
numbers of bits in more detail. Both figures use logarithmic axes - thus f(x) = c

x
is

represented as a straight line. Four benchmarks are tested for all bits sizes 1 to 32. Using
double logarithmic scaling, these instances show a linear dependency between the average
number of periods and the number of used bits. The average time is also diminished on
all these instances, although this reduction varies per instance. Notice that on all these
instances the trend is strictly decreasing. On instances such as the parity benchmarks,
it could be expected that computers with a p-bit architecture with p > 32 will boost
performance even further.

Although the detection of autarkies sporadically influenced the results on the selected
benchmarks, we present the usefulness of this technique using a separate experiment: We
concatenated multiple satisfiable random 3-Sat formulae7. such that each formula uses
different variables. Each concatenated formula consists of multiple components and for
each component there exists an autarky satisfying only the component. Experiments on
similar formulae is discussed in [2].

4. version 1.003 available from http://logic.pdmi.ras.ru/∼arist/UnitWalk/

5. available from http://www.miroslav-velev.com/sat benchmarks.html

6. http://www.satlib.org
7. with 200 variables and 860 clauses, also from http://www.satlib.org
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Table 1. Comparison between the performance - in average number of periods and average

time and standard deviation - of UnitWalk, UnitMarch 1-bit, and UnitMarch 32-bit on various

benchmarks. The presented data averages runs using 100 different random seeds.

UnitWalk 1.003 UnitMarch 1-bit UnitMarch 32-bit
periods time periods time periods time

aim-2-1-1 119336 6.13 (6.36) 37520 1.62 (1.65) 1339 0.32 (0.33)

aim-2-1-2 1395975 73.56 (71.97) 1001609 44.67 (43.37) 45934 11.35 (10.68)

aim-2-1-3 26487 1.40 (1.39) 12147 0.53 (0.60) 646 0.16 (0.15)

aim-2-1-4 57794 3.13 (3.01) 30708 1.38 (1.58) 945 0.23 (0.22)

aim-3-4-1 89923 7.57 (7.05) 62191 3.19 (3.07) 2134 1.40 (1.42)

aim-3-4-2 99744 8.43 (7.98) 181623 9.33 (8.51) 5838 3.81 (3.33)

aim-3-4-3 51898 4.33 (4.07) 20870 1.7 (0.90) 738 0.48 (0.45)

aim-3-4-4 264125 21.96 (17.79) 240856 21.21 (13.43) 6234 4.29 (3.15)

bw-large.b 441 0.32 (0.33) 311 0.18 (0.13) 13 0.05 (0.03)

bw-large.c 13870 47.61 (40.90) 9342 19.85 (22.05) 498 7.63 (7.44)

dlx2-bug17 1102 6.40 (9.53) 432 2.31 (2.80) 7 0.43 (0.41)

dlx2-bug39 2830 6.78 (6.13) 1899 4.38 (3.72) 69 1.33 (1.76)

dlx2-bug40 1632 3.96 (4.02) 988 2.34 (2.20) 26 0.55 (0.55)

flat200-05 19384 3.46 (3.40) 19880 2.19 (2.35) 704 0.81 (0.75)

flat200-24 5247 0.98 (1.02) 5145 0.56 (0.56) 130 0.16 (0.18)

flat200-39 12142 2.16 (2.29) 12048 1.31 (1.21) 391 0.44 (0.45)

flat200-48 2941 0.52 (0.54) 2346 0.26 (0.25) 84 0.10 (0.10)

flat200-64 6406 1.14 (1.03) 6799 0.75 (0.75) 268 0.34 (0.35)

logistics-a 1970338 636.47 (563.21) 863165 369.09 (383.97) 25100 55.97 (43.53)

logistics-b 6313 1.91 (2.24) 11878 5.43 (5.76) 354 0.73 (0.63)

logistics-c 133572 72.16 (69.36) 310450 228.49 (224.92) 9803 34.19 (31.75)

logistics-d 23 0.11 (0.07) 24 0.08 (0.04) 5 0.11 (0.03)

par16-1 14245 4.97 (4.73) 11267 2.65 (2.85) 365 0.21 (0.20)

par16-2 21417 7.43 (8.08) 20601 5.05 (5.18) 702 0.42 (0.34)

par16-3 17913 6.31 (7.04) 16872 3.98 (3.93) 551 0.33 (0.42)

par16-4 16955 5.94 (5.77) 14087 3.33 (3.47) 523 0.34 (0.32)

par16-5 18889 6.60 (6.70) 23028 5.41 (5.00) 640 0.36 (0.36)

qg1-08 101390 424.17 (399.59) 121127 362.74 (377.55) 4229 127.57 (120.87)

qg2-08 803258 3404.49 (3501.46) 1005351 4360.92 (4518.23) 26223 991.23 (967.20)

qg3-08 165 0.08 (0.06) 166 0.10 (0.10) 5 0.03 (0.03)

qg4-09 1344 1.10 (0.96) 2098 1.82 (1.66) 66 0.53 (0.53)

qg5-11 591 1.92 (1.82) 670 2.13 (2.00) 23 0.82 (0.68)

qg7-13 92600 492.66 (465.71) 98172 408.35 (419.56) 2937 171.63 (146.69)

uf250-054 307317 33.69 (35.84) 472970 30.03 (27.82) 14851 10.74 (11.57)

uf250-062 42137 4.60 (4.85) 88670 5.61 (5.44) 2427 1.74 (1.84)

uf250-071 135296 14.49 (12.79) 218375 13.92 (13.70) 6404 4.59 (4.66)

uf250-072 126387 13.91 (13.33) 172789 10.95 (9.81) 5624 4.10 (4.28)

uf250-093 92110 9.78 (9.71) 146132 9.23 (8.37) 4521 3.25 (2.94)
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Figure 1. Average number of periods by UnitMarch using different number of bits. Averages

are computed using 1000 random seeds. Two logarithmic axes are used.
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Figure 2. Average time (in seconds) by UnitMarch using different number of bits. Averages are

computed using 1000 random seeds. Two logarithmic axes are used.
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The performance of UnitMarch on these formulae - with and without the autarky feature
- is shown in Figure 3. The version with autarky detection is orders of magnitude faster.
Also, the larger the number of components, the larger the speed-up factor realized by the
technique. So, if formulae consist of independent components, they can be solved much
faster using detection of autarkies. Practical applications for this technique are under
current research.
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Figure 3. Performance of UnitMarch 32-bit with and without autarky detection on concatenated

formulae of random 3-Sat instances.

7. Conclusions and future work

Our first observation is that the probability of hitting a solution of propositional Boolean
formulae is increased by assigning multi-bit values instead of Boolean values. Compared to
conventional checking algorithms, the above just exchanges time for space. However, the
architecture of today’s computers is 32- or 64-bit - which enables execution of 32 (64) 1-bit
operations simultaneously. Although many algorithms do not seem suitable for this kind of
parallelism, the UnitWalk algorithm appears to be a suitable first candidate, as well as a
state-of-the-art Sat solver [10].

Our multi-bit implementation of this algorithm, called UnitMarch, shows that this al-
gorithm can be parallelized in such a way that the 1-bit version shows comparable per-
formance to the UnitWalk solver. Using double logarithmic scaling, these instances show
a linear dependency between the average number of periods and the number of used bits.
Most importantly, the average time to solve instances is reduced by using the 32-bit version.

The implementations of UnitWalk and UnitMarch are currently comparable (regardless
the multi-bit feature) but are far from optimal: For instance, in both solvers unit clauses
in the original CNF are propagated in each period. Another performance boost is expected
by adding (redundant) clauses - for instance as implemented in the local search solver
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R+AdaptNovelty+ [1] - because they will increase the number of unit propagations. Finally,
further experiments (not presented in this paper) showed that ordering the variables less
randomly and more based on multi-bit heuristics results in improved performance on many
benchmarks. Developing enhancements (like replacement of duplicate assignments and
detection of autarkies) and effective multi-bit heuristics is under current research.
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