
Journal on Satisfiability, Boolean Modeling and Computation 4 (2008) 57-74

Towards a Classification of Hamiltonian Cycles in the 6-Cube

Yury Chebiryak∗ yury.chebiryak@inf.ethz.ch

Computer Systems Institute,
ETH Zurich,
8092 Zurich, Switzerland.

Daniel Kroening† kroening@comlab.ox.ac.uk

Computing Laboratory,

Oxford University,

OX1 3QD Oxford, UK.

Abstract

In this paper, we consider the problem of classifying Hamiltonian cycles in a binary
hypercube. Previous work proposed a classification of these cycles using the edge represen-
tation, and presented it for dimension 4. We classify cycles in two further dimensions using a
reduction to propositional SAT. Our proposed algorithm starts with an over-approximation
of the set of equivalence classes, which is then refined using queries to a SAT-solver to re-
move spurious cycles. Our method performs up to three orders of magnitude faster than
an enumeration with symmetry breaking in the 5-cube.

Keywords: bitonic sorting network, code equivalence, Gray code, Hamiltonian cycle,
hypercube, SAT-solver, symmetry breaking

Submitted November 2007; revised March 2008; published April 2008

1. Introduction

A Hamiltonian cycle is a closed loop through a graph that visits each node exactly once [1].
Various algorithms were invented to find Hamiltonian cycles, including construction algo-
rithms (e.g., by extending a perfect matching of a hypercube [21]), neural approaches [3],
using light rays to perform such computation [32], and others. Hamiltonian cycles and
paths are of interest in many hypercube-like structures: in star graphs [22], in crossed hy-
percubes [39], in hypercubes with prescribed edges [17], and many more. In general, binary
hypercubes are important in many areas of science, e.g., supercomputing [26], algorithmic
biology [7], network protocols [6], and cryptography.

There is exactly one Hamiltonian cycle in the 2- and 3-cube up to automorphism of
a hypercube [25]. The number of different Hamiltonian cycles was reported to be 1,344
and 906,545,790 for dimensions 4 and 5, respectively [25, 14]. The number of classes in
higher dimensions is unknown, but bounds are well studied [15, 16, 30, 10, 34, 20].

P. P. Parkhomenko proposed a coarser classification of the Hamiltonian cycles using
the edge representation [33]. An upper bound on the number of equivalence classes can be

∗ Supported by ETH Research Grant TH-19 06-3.
† Supported by an award from IBM Research.

c©2008 Delft University of Technology and the authors.

Y. Chebiryak and D. Kroening

Table 1. Hamiltonian Cycles

n #cycles #classes
by automorphisms by edge weights

3 6 1 1 [33]

4 1,344 [15, 28] 9 [1] 4 [33]

5 906,545,790 [14] 237,675 [14] 28

6 6 1.50378 · 1030 [10] unknown 550

7 6 2.51511 · 1067 [10] unknown 628972

computed as function of n (see Appendix A). Parkhomenko classified the 1,344 Hamiltonian
cycles of the 4-cube into 4 equivalence classes. In this paper, we present the classification
for two further dimensions (see Table 1, the numbers of equivalence classes in bold face are
our findings).

The empowering technique behind our result is propositional satisfiability (SAT) solving.
Given a Boolean formula in conjunctive normal form (CNF), a propositional SAT-solver
determines if the formula is satisfiable, and if so, provides a satisfying assignment to the
variables in the formula. Solvers for this problem have made tremendous progress over the
past few years. This paper describes how to use a SAT-solver effectively to classify the
Hamiltonian cycles in binary hypercubes. Our approach aims at only classifying them, as
the problem of computing the number of cycles for a given class has no efficient algorithmic
solution [33].

Our main contribution is QUBS (Queries for Upper Bound Strengthening), a classi-
fication method that computes a (conservative) set of candidates for equivalence classes.
This set is then filtered using a propositional SAT-solver, and all spurious sequences are
removed. The experimental results on the 5-cube show that this new method is three orders
of magnitude faster than an enumeration with symmetry breaking. The experiments also
show that the number of spurious equivalence classes is very small.

The paper is organized as follows: Section 2 introduces the necessary notation and
definitions concerned with Hamiltonian cycles. In Section 3, we describe our encoding of
Hamiltonian cycles as a propositional formula. In Section 4, we extend the SAT-encoding
to classify Hamiltonian cycles. Section 4.2 describes an algorithm based on All-SAT that
enumerates the equivalence classes by adding blocking clauses cycles equivalent to those
already found. In Section 4.3, we improve the performance of this algorithm by breaking
symmetries externally: we add constraints to the SAT-instance upfront, instead within the
SAT engine. Section 4.4 provides the details of QUBS. It performs queries to improve the
upper bound on the number of equivalence classes. The appendices present the calculation
of these bounds for any given dimension, and the classes of Hamiltonian cycles in the 5-
and 6-cube.

58

Towards a Classification of Hamiltonian Cycles in the 6-Cube

2. Hamiltonian Cycles

We begin by introducing definitions concerned with the Hamiltonian cycles in binary hy-
percubes.

2.1 Notation and Definitions

Definition 1 (Hypercube [14]). Given a positive integer n, the binary n-cube Qn is defined
as the graph whose set of vertices is {0, 1}n and whose set of edges is formed by the pairs
of vertices A = (A[0], A[1], . . . , A[n− 1]) and B = (B[0], B[1], . . . , B[n− 1]) that differ in
just one coordinate i ∈ {0, 1, . . . , n− 1}, i.e., A[i] 6=B[i], and A[j]=B[j] for all j 6= i.

Definition 2 (Hamming distance). The number of coordinates in which two vertices A and
B differ is the Hamming distance: dH(A, B) := |{i | A[i] 6=B[i]}|.

Definition 3 (Hamiltonian cycle [14]). A Hamiltonian cycle (or H-cycle) of an n-cube is
a cycle of length 2n that does not visit any vertex twice.

Definition 4 (Coordinate sequence [23]). The coordinate sequence of a cycle is a listing
of the coordinates that change as this cycle is traversed. Thus, for the cycle I0, I1, . . . ,

Ik−1 of length k in an n-cube, the coordinate sequence contains k elements within the range
{0, . . . , n− 1}, where the i-th element indicates the index of the flipped bit while traversing
from node Ii to node Ii+1 mod k.

For instance, the H-cycle presented in Figure 1 traverses the nodes in the following
order:

(0000), (0001), (0011), (0010), (0110), (0111), (1111), (1011),
(1001), (1000), (1010), (1110), (1100), (1101), (0101), (0100),

(1)

and thus, its coordinate sequence is

(0 1 0 2 0 3 2 1 0 1 2 1 0 3 0 2) . (2)

2.2 Equivalence of H-Cycles

Our classification of H-cycles follows the proposal of Parkhomenko [33], but we formulate
it more concisely in terms of change numbers and change sequences.

Definition 5 (Change number [23]). The change number cj of the jth coordinate is the
number of times this coordinate appears in the coordinate sequence.

Definition 6 (Change sequence [38]). The change sequence is a vector (cn−1, . . . , c0) of
change numbers over all coordinates.1.

Thus, the H-cycle of Eq. (1) has the change sequence (2, 4, 4, 6).

We define the equivalence relation for H-cycles according to the one in [33].

1. This definition of change sequence is not to be confused with the definition of a change-number se-

quence [14], which is a coordinate sequence in our nomenclature.

59

Y. Chebiryak and D. Kroening

1011

1111

1001

0001

1101

0011

1010

1110

1000

1100

0101
 0111

0000
 0010

0100
 0110

Figure 1. An H-cycle in the 4-cube (the solid lines are edges of the H-cycle)

Definition 7 (Equivalence of Hamiltonian Cycles). Two H-cycles are equivalent if the
change sequence for the first cycle can be obtained from the change sequence of the second
cycle by a permutation of its change numbers.

This equivalence relation is coarser than the one defined by automorphisms of a hyper-
cube. In other words, if we choose two H-cycles, which are the same up to automorphisms
of an n-cube, they fall in the same equivalence class with respect to Def. 7, but the inverse
does not necessarily hold.

For instance, consider the H-cycle with the following coordinate sequence:

(3 2 1 0 3 1 3 2 3 1 3 0 3 2 1 2) . (3)

The change sequence of this cycle is (6, 4, 4, 2) and by Def. 7, this H-cycle is equivalent
to the one in (2). Note that these two H-cycles are not equivalent by automorphisms of
a 4-cube.

It was shown in [33] that there exists a single class of Hamiltonian cycles in Q3 and four
classes in Q4. In this paper, we extend this classification by two dimensions.

2.3 Properties of Change Sequences

Let c be the change sequence of an H-cycle I0, I1, . . . , IN−1 in Qn, where N = 2n. Then,
the following properties hold.

Property 1 (properties 2 and 3 of [33]). Each change number cj of c is an even number
that lies in the range {2, . . . , N

2 }.

For every cycle on a hypercube, if we traverse some axis in one direction, we have to
return to the same hyperplane eventually, thus the change numbers are even. As an H-cycle
visits all nodes, it has to visit every hyperplane as well, thus the change numbers are at

60

Towards a Classification of Hamiltonian Cycles in the 6-Cube

least 2. The change number may not exceed N
2 simply because this is the number of edges

in a hyperplane, and every edge may be traversed only once.
Since every H-cycle has N vertices and edges, we can conclude the following property.

Property 2 ([33]). The change numbers of an H-cycle sum up to the number of vertices of
an n-cube:

∑n−1
j=0 cj = N .

These properties of change sequences determine an upper bound on the number of
equivalence classes. The calculation of the bound is given in Appendix A. We use them for
the QUBS algorithm presented in Section 4.4.

3. The SAT Encoding

3.1 The Propositional Satisfiability Problem

We employ a propositional SAT-solver to search for H-cycles. Propositional satisfiability
(SAT) solvers have made tremendous progress in the past few years, and are able to solve
many problems of practical interest with hundreds of thousands of variables. This progress
was mainly driven by annual competitions, held in conjunction with the SAT conference
series. All competitive solvers are based on the Davis-Putnam-Loveland-Logemann (DPLL)
framework, which was introduced in the early sixties [12, 13]. The introduction of Chaff

in 2001 [31] marked a breakthrough in performance that led to renewed interest in the field.
The authors of Chaff proposed the idea of conflict-driven non-chronological backtracking
coupled with the first conflict-driven decision heuristic.

Let V be a set of Boolean variables, i.e., V = {x0, x1, . . . , xm−1}. A literal is a variable
xi or its negation ¬xi. Let φ be a propositional formula over the variables in V . The
propositional satisfiability problem [24] is to determine whether there exists an assignment
of truth values to the variables in V such that the formula φ evaluates to true.

Most SAT-solvers accept propositional formulae in Conjunctive Normal Form (CNF).
A formula in CNF is given as a set of clauses, where each clause is a disjunction of literals.
Formulae that are not in CNF need to be translated. Tseitin introduced a linear-time
translation of arbitrary Boolean formulae into CNF that preserves satisfiability [37]. We use
Tseitin’s transformation in our encodings whenever necessary, and present our constraints
as Boolean formulae.

For our experiments, we use the MiniSat, written by Eén and Sörensson [19]. MiniSat
provides interfaces for incremental solving and All-SAT. The current version uses prepro-
cessing techniques from QBF-Solvers [18]. The rest of this section describes the encoding
of the search for an H-cycle as an instance of the propositional SAT problem.

3.2 Propositional Encoding of H-Cycles

Our goal is a formula whose satisfying assignments correspond to the coordinates of the
nodes forming an H-cycle in the n-cube. For this purpose, we define n·N Boolean variables
denoted by Ii[j], where i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , n − 1}. The Boolean vector Ii

denotes the coordinates of node number i of the H-cycle, where Ii[0] corresponds to the
right-most bit of the coordinates of node Ii.

In what follows, we define constraints over these variables using propositional formu-
lae. The constraints evaluate to true if and only if the Ii[j] correspond to some H-cycle

61

Y. Chebiryak and D. Kroening

I0, I1, . . . , IN−1. We then apply a SAT-solver to obtain a solution. Trivially, the coordinates
of the H-cycle can be extracted from any satisfying assignment provided by the solver.

The sequence of nodes I0, I1, . . . , IN−1 ought to meet the following requirements in order
to represent an H-cycle (the propositional encoding of the Hamming distance between two
nodes is described in the next subsection):

1. To form a cycle in an undirected n-cube, the neighboring nodes must be adjacent in
the hypercube. The adjacency is expressed using the Hamming distance:

φcycle :=
∧N−1

i=0

(

dH(Ii, Ii+1 mod N) = 1
)

. (4)

2. For a cycle to be Hamiltonian, no node may appear twice, so all binary words must
be distinct. That is, the Hamming distance between any two nodes must be at least
one:2.

φdistinct :=
∧N−3

i=0

∧N−1

j=i+2

(

dH(Ii, Ij) > 1
)

. (5)

As an optimization, we encode this constraint only for the nodes of same parity,
i.e., when j mod 2 = i mod 2, because otherwise nodes are distinct by 2-colorability
of a hypercube (Eq. (4) assures the color alternation).

The propositional formula

φHC := φcycle ∧ φdistinct (6)

encodes the H-cycle in the n-cube. A satisfying assignment to φHC contains the coordinates
of some H-cycle. We now explain how to encode the Hamming distance dH(A, B) for a pair
of nodes A and B.

3.3 Encoding the Hamming distance

Consider two nodes A and B of the n-cube for which the Hamming distance has to be
computed.

Let xorA,B denote the bitwise XOR of the nodes A and B, i.e., we introduce n new
Boolean variables xorA,B[j] indicating whether the vectors A and B differ in the j-th bit:

∧n−1

j=0

(

xorA,B[j]←→ A[j]⊕B[j]
)

. (7)

The next step would be to encode the sum of xorA,B[j] for all j ∈ {0, . . . , n − 1}.
However, observe that computing the precise value of the Hamming distance is not actually
needed to achieve our goal. Instead, it is sufficient to check whether the Hamming distance
is equal to one for formula (4) or greater or equal to one for (5). We therefore introduce
Boolean variables that indicate if the Hamming distance is at least one or at least two,
respectively. Let the former be called once and the latter twice. Subsequently, given two
nodes A and B, we are able to encode

2. As an optimization, this constraint is not generated for two neighbors in the sequence, which have
distance one anyways.

62

Towards a Classification of Hamiltonian Cycles in the 6-Cube

CHAIN(1)

twice[0] once[0]

xor[0]0

(a) base case

xor[k − 1]. . .

CHAIN(k − 1)

. . .

xor[0] xor[k − 2]

once[k − 2]twice[k − 2]

CHAIN(k)

once[k − 1]twice[k − 1]

(b) inductive definition

Figure 2. Chain encoding

• the fact that dH(A, B) is exactly one as

onceA,B ∧ ¬twiceA,B , (8)

• and the fact that dH(A, B) > 1 as

onceA,B . (9)

We experimented with different ways of encoding once and twice. The best encoding we
found uses a chain-construction. We introduce n variables onceA,B[j] for j ∈ {0, . . . , n− 1}
indicating that A and B differ in at least one position within the range {0, . . . , j}. The
twiceA,B[j] variables are defined in the similar way to indicate two or more bit-flips.

The definitions of the variables once and twice are inductive (see also Figure 2):

(

onceA,B[0] := xorA,B[0]
)

, (10)
∧n−1

j=1

(

onceA,B[j]←→ onceA,B[j − 1] ∨ xorA,B[j]
)

, (11)
(

twiceA,B[0] := false
)

, (12)
∧n−1

j=1

(

twiceA,B[j]←→ twiceA,B[j − 1] ∨ onceA,B[j − 1] ∧ xorA,B[j]
)

. (13)

An alternative encoding is to make use of a balanced tree to compute dH > 1, together
with NAND operations for all pairs of XORs to compute dH 6 1:

dH(A, B) > 1←→
∨n−1

j=0
xorA,B[j] , (14)

dH(A, B) 6 1←→
∧n−2

j=0

∧n−1

k=j+1

(

¬xorA,B[j] ∨ ¬xorA,B[k]
)

. (15)

This tree encoding results in a smaller depth and size of the formula. Nevertheless, we
have observed that the SAT-solver performs better on the “once-twice” chain encoding

63

Y. Chebiryak and D. Kroening

Table 2. Different encodings of an H-cycle

Encoding n #vars #clauses Time to solve (s)
φcycle φdistinct #xors total φcycle φdistinct total

tree 5 1360 2608 1376 7925 9301 0.10
tree once-twice 4769 13924 15300 0.05

once-twice tree 2896 1888 7925 9813 0.18
once-twice chain 5057 13924 15812 0.06

tree 6 6336 12000 3520 39686 43206 7.24
tree once-twice 22912 70438 73958 1.83

once-twice tree 12704 4608 39686 44294 23.87
once-twice 23616 70438 75046 1.54

(see Table 2). On Q6, the run-time using the chain encoding is 78% lower than using
the tree encoding.3. This improvement is a bit surprising, since the “once-twice” encoding
constitutes almost twice as many clauses as the tree encoding. One possible reason for the
improvement is the better propagation of decisions by the SAT-solver between parts of the
encoding of φcycle: in case of the tree encoding, the subformulae (14) and (15) are more
isolated.

4. Classification

In this section, we present the classification of Hamiltonian cycles with respect to permuta-
tions of a change sequence. We have reported the classification of induced cycles in binary
hypercubes in earlier work [40]. That classification was performed by enumerating all cy-
cles using an All-SAT solver (i.e., a SAT-solver that computes all satisfying assignments
of a propositional formula) and a subsequent classification. The evident disadvantage of
this approach is that it relies on the set of all cycles being enumerable. However, a 5-cube
already contains over a billion Hamiltonian cycles (see Table 1), and the number of cycles
in Q6 is not reported yet.

Instead of enumerating all H-cycles and subsequently classifying them, we use the SAT-
solver to perform the classification. To that end, we need to encode the change sequence of
an H-cycle.

4.1 Encoding the Change Sequence

We compute the change number cj of the j-th coordinate as the sum of the xor variables
over this coordinate:

cj =
N−1
∑

i=0

xorIi,Ii+1 mod N [j] . (16)

3. All experiments in this paper were performed on a PC with 16 GB of memory and a 3 GHz processor.

64

Towards a Classification of Hamiltonian Cycles in the 6-Cube

A straight-forward encoding uses N adders to compute this sum. Initial experimental
results, however, indicate that there is a superior encoding: using a sorting network we
can obtain a unary representation of the value of cj (which suffices for our method). The
sorting network receives xor bits from Eq. (16) as input and produces a sequence of zeros
followed by ones as output (see [27] for a survey).

Let variables σj [i] with i ∈ {0, . . . , N − 1} be the unary representation of cj , i.e., cj =
∑N−1

i=0 σj [i]. We claim the following:

(σj [i] −→ cj > N − i) ∧ (¬σj [i] −→ cj 6 N − i) ,

for all j = {0, . . . , n− 1} and i = {0, . . . , N − 1}.

The straight-forward encoding of a sorting network with k inputs has k2 comparators
and depth k2. Sorting networks can be constructed with O(k log2 k) comparators [2], but
this bound hides a large constant. A bitonic sorting network, as proposed by Batcher [5],
has O(k log2

2 k) comparators and depth O(log2 k). We have applied bitonic sorting networks
successfully in the past in SAT-encodings in a different context [11]. We omit details of the
bitonic sorting networks encoding for the sake of brevity, but the number of additional
variables is twice the number of comparators, as we need two variables to encode every
comparator.

Compared to the quadratic sorting network, the encoding using the bitonic sorting
network results in a run-time reduction of about 50% on Q6, and thus, all results reported
are obtained using the bitonic sorting networks.

4.2 Direct Enumeration with Internal Symmetry Breaking

The classification algorithm is embedded into a SAT-solver. More precisely, we modify the
algorithm of [41] to compute the number of equivalence classes directly. The only difference
from the approach in [41] is the considered type of symmetry. In this approach, we solve
an instance of an All-SAT problem, where variables that encode change numbers are set to
be important. In other words, the SAT-solver enumerates all solutions to a propositional
formula, for which valuations of σj [i] differ.

To achieve this, we add a blocking clause for each H-cycle equivalent to the found one
according to Def. 7. There are up to n! types of H-cycles that are equivalent to the found
one—the number of permutations of n change numbers in the change sequence. The search
is repeated until no satisfying assignment can be found. Thus, every satisfying assignment
returned corresponds to a representative of a different equivalence class.

The classification for Q4 was obtained in less than one second, with results conforming
to the findings of Parkhomenko in [33]. In dimension 5, the classification took 31 days (see
Table 3).

4.3 Direct Enumeration with External Symmetry Breaking

Clearly, for our classification according to Def. 7, change numbers of an H-cycle are inter-
changeable. In fact, one could break these symmetries right in the SAT instance, instead
of adding n! blocking clauses as in the previous algorithm. In what follows, we transform a
change sequence to standard representation [35]. We do that by encoding a total order on

65

Y. Chebiryak and D. Kroening

Table 3. Classification of Hamiltonian Cycles

n #classes Direct enumeration QUBS
internal external

symmetry symmetry
breaking breaking
Time (s) Time (s) Time (s) #candidates Avg. time (s)

4 4 <1 <1 <1 4 <1

5 28 2,680,000 162,272 106 30 3.5

6 550 - - 190,852 596 320

7 unknown - - - 30,249 -

the change numbers, i.e. cj 6ck for all j 6k, using the following clauses:

∧n−1

j=1

∧N−1

i=0

(

σj−1[i] −→ σj [i]
)

. (17)

The only disadvantage of the symmetry breaking directly in a SAT instance is that we
add new n·N clauses. On the other hand, for every obtained cycle we add only one blocking
clause instead of n!. Moreover, one can use an unmodified all-solutions SAT-solver to obtain
the classification.

The classification for Q5 using the external symmetry breaking approach was obtained
within 2 days (instead of 31 days in case of internal symmetry breaking). Since this approach
was still not promising for Q6, we attempted to improve the performance by shifting some
complexity of the problem away from the SAT-solver.

4.4 Queries for Upper Bound Strengthening (QUBS)

The performance bottleneck for the enumeration is in proving that all classes have been
computed. This corresponds to establishing a conflict in the All-SAT procedure. For in-
stance, in the classification for the 5-cube using internal and external symmetry breaking,
the SAT-solver spends 99.5% and 79% respectively of the computation time in establishing
a conflict. The larger the search space, the greater the effort required to reach a conflict.

Unlike in the previous methods, where the set of equivalence classes EC is constructed
iteratively, we propose to consider a conservative over-approximation of EC. We call this
set the set of equivalence class candidates (ECC). The candidates are defined using the
properties 1 and 2.4. It was already pointed out in [33] that not all change sequences
obeying these properties correspond to feasible Hamiltonian cycles on an n-cube. We call
such sequences spurious.

In order to eliminate the spurious sequences, we perform |ECC| queries, each of which
requires a run of the SAT-solver. For every change sequence (candidate), we generate an
instance where the values of σj [i] are fixed appropriately. If the instance is satisfiable, the
H-cycle exists. Clearly, the number of satisfiable instances is the number of equivalence

4. The derivation of the size of ECC is shown in Appendix A.

66

Towards a Classification of Hamiltonian Cycles in the 6-Cube

classes of H-cycles. If it is unsatisfiable, the candidate is spurious, and we can strengthen
the upper bound.5. For instance, in Q5, the Hamiltonian cycles with change sequences (2,

2, 2, 10, 16) and (2, 2, 2, 12, 14) are spurious.

Our experiments on Q5 show that there is a dramatic improvement in performance: the
speedup is around three orders of magnitude. Also, only 7% of the candidates are spurious,
thus, little work is wasted. We have therefore conducted the classification for the 6-cube
using QUBS (see Table 3). The number of candidates is 596, out of which 550 cycles are
feasible. Thus, the number of spurious cycles is less than 8% on Q6. The overhead caused
by the spurious cycles is negligible—the unsatisfiable instances took about 0.46% of the
total run-time.

The number of candidates in Q7 is 30,249. The time required for solving the SAT
instances generated from queries varies significantly between candidates: some are easily
solved, whereas others time out. In the future, we expect to obtain at least a strong upper
bound for Q7.

In summary, this approach reduces the size of the search space significantly. Moreover,
this method is fully parallelizable. The only disadvantage is that this approach requires
|ECC| calls to the SAT-solver, and this number is at least the number of equivalence
classes.

4.5 Discussion and Future Work

Taking a closer look at spurious candidates, we can deduce the following:

Observation 1. In hypercubes up to dimension 7, H-cycles with change sequences lexico-
graphically less than that of a Binary Reflected Gray Code (BRGC) [35] do not exist.

Indeed, two spurious candidates in the 5-cube have change sequences (2, 2, 2, 10, 16) and
(2, 2, 2, 12, 14), and are less than cBRGC = (2, 2, 4, 8, 16). We have conducted a specialized
SAT-based search to verify this observation in the 7-cube. This search was targeted not on
individual change sequences, but candidates with a given prefix of the change sequences,
e.g., (2, 2, 4, 8, 8, ∗, ∗), allowing the SAT-solver to choose the last two change numbers. The
algorithm terminated within 4 days with UNSAT, and confirmed that 1277 candidates with
change sequences less than that of the BRGC are spurious (thus, allowing us to tighten the
bound of the number of classes, see Table 1). Note that observation 1 is not sufficient to
filter out all spurious cycles, e.g., candidates with prefix (2, 4, 4, 4, ∗, ∗) in the 6-cube are
spurious even though this sequence is greater than that of the BRGC.

The authors are not familiar with any related work stating or proving6. observation 1.
The following may serve as an intuition why the a aforementioned candidates are spurious:
they are rather unbalanced, i.e., their change numbers differ a lot. In fact, Hamiltonian
cycles with balanced change sequences are well studied and are of interest in design and
testing of electrical circuits [8, 38, 29]. The search by QUBS can be restricted to balanced
Hamiltonian cycles, as QUBS allows us to explicitly specify a change sequence. We were
able to find the cycles with the change sequences mentioned in [29] within 3 hours.

5. This approach is inspired by [9], and we therefore use the terminology used in that reference.
6. V. N. Potapov has a proof of a stronger criterion, which is not published yet.

67

Y. Chebiryak and D. Kroening

5. Conclusion

In this paper, we presented the classification of the Hamiltonian cycles in the 5- and 6-
cubes with respect to symmetries of the change sequence, extending the previous results by
two dimensions. Our main contribution is a classification method that computes a set of
candidates for equivalence classes. Spurious sequences are then filtered from the set using
a propositional SAT-solver. In the 5-cube, the new method is three orders of magnitudes
faster than an enumeration with symmetry breaking.

In the future, we plan to extend the presented classification of Hamiltonian cycles by
one dimension and to enumerate classes with respect to automorphisms.

Acknowledgments

We acknowledge the helpful discussions with Christoph M. Wintersteiger and Gennady
Shmonin regarding partitioning theory. We thank Thomas Wahl, Angelo Brillout, Roman
Mitin, Mitra Purandare, Vijay V. D’silva and the anonymous reviewers for improving this
script.

68

Towards a Classification of Hamiltonian Cycles in the 6-Cube

References

[1] H. L. Abbott. Hamiltonian circuits and paths on the n-cube. Canad. Math. Bull.,
9:557–562, 1966.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In STOC ’83:
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages
1–9. ACM, 1983.

[3] I. K. Altinel, N. Aras, and B. J. Oommen. Fast, efficient and accurate solutions to the
Hamiltonian path problem using neural approaches. Comput. Oper. Res., 27(5):461–
494, April 2000.

[4] G. E. Andrews. The theory of partitions. Addison-Wesley, 1976.

[5] K. E. Batcher. Sorting networks and their application. In AFIPS Conf. Proc., vol-
ume 32, pages 307–314. AFIPS Press, 1968.

[6] K. Becker and U. Wille. Communication complexity of group key distribution. In
Procs. of the 5th ACM Conference on Computer and Communications Security, pages
1–6. ACM, 1998.

[7] T. Y. Berger-Wolf, C. Moore, and J. Saia. A computational approach to animal breed-
ing. J Theor Biol, 244(3):433–439, February 2007.

[8] G. S. Bhat and C. D. Savage. Balanced Gray codes. The Electronic Journal of Com-
binatorics, 3(R25):1–11, 1996.

[9] A. R. Bradley and Z. Manna. Checking safety by inductive generalization of coun-
terexamples to induction. In Formal Methods in Computer-Aided Design (FMCAD),
pages 173–180. IEEE Computer Society, 2007.

[10] L. H. Clark. A new upper bound for the number of Hamiltonian cycles in the n-cube.
J. Combin. Inform. System Sci., 25:35–37, 2000.

[11] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Computational challenges in
bounded model checking. Software Tools for Technology Transfer (STTT), 7(2):174–
183, April 2005.

[12] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

[13] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960.

[14] I. J. Dejter and A. A. Delgado. Classes of Hamilton cycles in the 5-cube. J. Combinat.
Math, Combinat. Comput, 61:81–95, 2007.

[15] E. Dixon and S. Goodman. On the number of Hamiltonian circuits in the n-cube. In
Proc. of the Amer. Math. Soc., volume 50, pages 500–504, 1975.

69

Y. Chebiryak and D. Kroening

[16] R. J. Douglas. Bounds on the number of Hamiltonian circuits in the n-cube. Discrete
Math., 17:143–146, 1977.

[17] T. Dvorák. Hamiltonian cycles with prescribed edges in hypercubes. SIAM J. Discret.
Math., 19(1):135–144, 2005.

[18] N. Eén and A. Biere. Effective preprocessing in sat through variable and clause elim-
ination. In Theory and Applications of Satisfiability Testing (SAT), volume 3569 of
Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[19] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing, volume 2919 of Lecture Notes in Computer Science, pages 502–
518. Springer, 2004.

[20] T. Feder and C. Subi. Nearly tight bounds on the number of Hamiltonian circuits
of the hypercube and generalizations. Technical Report 63, Electronic Colloquium on
Computational Complexity, 2007.

[21] J. Fink. Perfect matchings extend to Hamilton cycles in hypercubes. J. Comb. Theory,
97(6):1074–1076, November 2007.

[22] J.-S. Fu. Conditional fault-tolerant hamiltonicity of star graphs. Parallel Comput.,
33(7-8):488–496, 2007.

[23] L. Glass. Combinatorial aspects of dynamics in biological systems. In U. Landman,
editor, Statistical mechanics and statistical methods in theory and applications, pages
585–611. Plenum, 1977.

[24] J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms for the satisfiability (SAT)
problem: a survey. DIMACS, Amer. Math. Soc., pages 19–152, 1997.

[25] F. Harary, J. P. Hayes, and H.-J. Wu. A survey of the theory of hypercube graphs.
Comput. Math. Appl., 15(4):277–289, 1988.

[26] J. P. Hayes and T. Mudge. Hypercube supercomputers. In Procs. of the IEEE, vol-
ume 77, pages 1829–1841, 1989.

[27] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1973.

[28] G. Kreweras. Some remarks about Hamiltonian circuits and cycles on hypercubes.
Bull. Inst. Comb. Appl., 12:19–22, 1994.

[29] X. Liu and G. F. Schrack. A heuristic approach for constructing symmetric Gray codes.
Appl. Math. Comput., 155(1):55–63, July 2004.

[30] M. Mollard. New bounds for the number of Hamiltonian cycles of an n-cube. European
J. of Combin., 9(1):49–52, 1988.

70

Towards a Classification of Hamiltonian Cycles in the 6-Cube

[31] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering
an efficient SAT solver. In Procs of the 38th Design Automation Conference (DAC),
pages 530–535. ACM, 2001.

[32] M. Oltean. Solving the Hamiltonian path problem with a light-based computer. Natural
Computing: an international journal, 7(1):57–70, 2008.

[33] P. P. Parkhomenko. Classification of the Hamiltonian cycles in binary hypercubes.
Autom. Remote Control, 62(6):978–991, 2001.

[34] A. L. Perezhogin and V. N. Potapov. On the number of Hamiltonian cycles in a Boolean
cube. Diskretn. Anal. Issled. Oper., 8(2):52–62, 2001.

[35] C. Savage. A survey of combinatorial gray codes. SIAM Rev., 39(4):605–629, 1997.

[36] J. A. Todd. A table of partitions. In Proc. London Math. Soc., volume 48, pages
229–242, 1943.

[37] G. S. Tseitin. On the complexity of derivation in propositional calculus. In J. Siek-
mann and G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on
Computational Logic 1967-1970, pages 466–483. Springer, 1983.

[38] V. E. Vickers and J. Silverman. A technique for generating specialized Gray codes.
IEEE Trans. Comput., 29(4):329–331, 1980.

[39] D. Wang. An algorithm to embed Hamiltonian cycles in crossed cubes. In Procs. of
the international symposium on Parallel Computing in Electrical Engineering, pages
49–54. IEEE Computer Society, 2006.

[40] I. Zinovik, D. Kroening, and Y. Chebiryak. An algebraic algorithm for the identifica-
tion of Glass networks with periodic orbits along cyclic attractors. In Hirokazu Anai,
Katsuhisa Horimoto, and Temur Kutsia, editors, AB, volume 4545 of Lecture Notes in
Computer Science, pages 140–154. Springer, 2007.

[41] I. Zinovik, D. Kroening, and Y. Chebiryak. Computing binary combinatorial Gray
codes via exhaustive search with SAT-solvers. IEEE Transactions on Information
Theory (IT), 54(4):1819–1823, April 2008.

71

Y. Chebiryak and D. Kroening

Appendix A. The Number of Candidates

In this section, we give details on the upper bound for the number of equivalence classes
used by QUBS.

Definition 8 ([4]). A partition of a positive integer n is a finite non-increasing sequence
of positive integers λ1, λ2, . . . , λr such that

∑r
i=1 λi = n. The λi are called the parts of the

partition.

Let p(N, 6M, n) denote the number of partitions of n into at most M parts, each 6N ,
p(N, =M, n) for exactly M parts and peven(. . .) denote partitioning into even parts.

It follows from properties 1 and 2 that the number of candidates for equivalence classes
equals the number of partitions of 2n into n even parts, each of which is at least 2 and at
most 2n−1: peven(2n−1, =n, 2n). It can be seen that the latter is the same as the number of
partitions of 2n−1 into n parts, each 6 2n−2:

peven(2n−1, =n, 2n) =

= p(2n−2, =n, 2n−1)

= p(2n−2, 6n, 2n−1)− p(2n−1, 6(n− 1), 2n−1) (18)

= p(2n−2 − 1, 6n, 2n−1 − n) (19)

≤ p(2n−1 − n, 6n, 2n−1 − n) = p(2n−1, =n, 2n−1) (20)

The simplification (18) follows from the inclusion-exclusion principle, and Eq. (19) is
obtained using formula (3.2.6) of [4]. Eq. (20) gives us an upper bound of 5, 37, 709,
and 34082 candidates for dimensions from 4 to 7, respectively [36]. Eq. (19) evaluates to 4,
30, 596, and 30249 candidates, respectively.

72

Towards a Classification of Hamiltonian Cycles in the 6-Cube

Appendix B. Equivalence Classes in the 5-cube.

Table 4. Equivalence Classes of Hamiltonian Cycles in dimension 5

Coordinate sequence Change sequence

0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 (2,2,4,8,16)
0 1 0 2 0 1 0 3 1 0 1 2 0 1 0 4 0 1 0 2 1 0 1 3 0 1 0 2 0 1 0 4 (2,2,4,10,14)
2 0 1 0 4 1 0 1 2 1 0 1 3 0 1 0 2 0 1 0 4 0 1 0 2 1 0 1 3 1 0 1 (2,2,4,12,12)
0 1 0 4 0 1 0 2 0 1 0 3 0 2 0 1 0 2 0 4 0 2 0 1 0 2 0 3 0 1 0 2 (2,2,6,6,16)
4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 2 0 1 0 2 0 1 3 1 0 2 0 1 0 2 (2,2,6,8,14)
1 3 0 2 0 1 0 2 0 4 2 1 0 1 2 1 0 3 0 1 0 2 0 1 0 4 1 0 1 2 1 0 (2,2,6,10,12)
0 2 0 1 0 2 0 3 0 1 2 1 0 1 2 4 2 0 1 0 2 0 1 3 1 0 2 0 1 0 2 4 (2,2,8,8,12)
2 0 1 0 4 1 2 1 0 1 2 1 3 0 2 1 2 0 2 1 4 0 2 0 1 0 2 0 3 1 0 1 (2,2,8,10,10)
0 2 0 1 0 4 0 1 0 3 0 1 0 2 0 1 0 3 0 1 0 4 0 3 0 2 0 1 0 2 0 3 (2,4,4,6,16)
1 0 1 4 0 1 0 3 0 1 0 2 0 3 0 1 0 3 0 4 0 2 0 1 0 2 0 3 1 0 1 2 (2,4,4,8,14)
2 0 3 0 1 0 3 0 2 0 1 3 1 0 1 4 1 0 1 2 1 0 1 3 0 1 0 2 0 1 0 4 (2,4,4,10,12)
1 0 2 0 3 1 0 1 2 0 1 0 4 3 0 3 2 0 1 0 2 0 3 0 2 0 1 0 4 0 2 0 (2,4,6,6,14)
0 3 1 2 1 0 2 1 2 3 2 0 4 0 1 0 3 0 1 0 2 0 1 0 3 0 1 0 4 1 0 2 (2,4,6,8,12)
2 1 0 1 2 3 4 0 1 0 2 1 0 1 3 1 0 1 2 1 0 1 4 0 3 0 2 0 1 0 2 3 (2,4,6,10,10)
3 0 1 4 2 1 0 1 2 1 0 3 2 1 2 0 1 2 1 4 0 2 0 3 2 0 1 0 3 0 2 0 (2,4,8,8,10)
3 0 3 1 0 3 0 4 1 2 0 2 3 0 2 0 1 0 2 0 3 2 0 4 1 0 1 3 0 1 0 2 (2,6,6,6,12)
2 4 1 2 3 0 2 0 1 0 2 0 3 0 1 2 1 4 1 0 3 0 1 0 2 1 3 0 3 1 3 0 (2,6,6,8,10)
3 1 0 2 3 2 0 2 3 1 3 0 3 2 4 2 0 1 0 2 0 1 3 1 2 1 0 1 2 1 4 0 (2,6,8,8,8)
0 4 0 3 0 1 0 2 0 1 0 4 0 3 0 4 0 1 0 2 0 4 0 2 0 3 0 2 0 1 0 3 (4,4,4,4,16)
2 0 1 0 3 0 1 0 4 0 1 0 2 0 4 0 1 0 3 1 0 4 0 2 0 1 0 2 3 0 3 4 (4,4,4,6,14)
1 4 3 1 0 1 3 4 2 0 1 0 3 2 0 1 0 2 0 1 4 0 1 0 3 0 1 0 2 0 4 0 (4,4,4,8,12)
0 4 0 1 0 3 1 4 1 0 2 1 0 1 3 2 0 2 1 0 4 1 0 1 3 0 1 0 2 1 4 3 (4,4,4,10,10)
0 4 0 2 1 3 0 2 1 0 2 0 4 0 1 0 3 0 2 0 3 1 0 1 4 3 0 2 1 4 0 2 (4,4,6,6,12)
2 0 2 3 0 2 0 1 0 4 0 3 1 0 1 4 0 2 3 0 4 1 2 0 2 1 3 1 0 1 4 1 (4,4,6,8,10)
2 0 1 0 2 4 2 1 0 1 3 0 1 2 3 0 1 4 3 2 0 1 2 1 4 0 1 2 4 2 3 0 (4,4,8,8,8)
3 4 1 3 0 3 2 0 4 2 3 0 2 1 0 1 4 0 1 0 2 0 3 2 0 4 0 1 2 1 3 0 (4,6,6,6,10)
3 2 1 2 3 4 1 0 3 0 1 0 4 1 2 1 3 0 4 3 0 1 0 3 0 1 2 4 1 2 0 2 (4,6,6,8,8)
0 2 3 1 3 2 3 1 4 1 0 1 2 0 1 0 4 3 4 0 2 0 4 3 1 2 3 4 0 2 0 4 (6,6,6,6,8)

73

Y. Chebiryak and D. Kroening

Appendix C. Equivalence Classes in the 6-cube.

Table 5. Spurious Candidates for Hamiltonian Cycles in dimension 6

Change sequence

(2, 2, 2, *, *, *)
(2, 2, 4, 4, *, *)
(2, 2, 4, 6, *, *)
(2, 4, 4, 4, *, *)

Here stars denote that a change number can take arbitrary value (not contradicting prop-
erties 1 and 2). For any such valuations a change sequence of the cycle is spurious.

74

	Abstract
	Introduction
	Hamiltonian Cycles
	Notation and Definitions
	Equivalence of H-Cycles
	Properties of Change Sequences

	The SAT Encoding
	The Propositional Satisfiability Problem
	Propositional Encoding of H-Cycles
	Encoding the Hamming distance

	Classification
	Encoding the Change Sequence
	Direct Enumeration with Internal Symmetry Breaking
	Direct Enumeration with External Symmetry Breaking
	Queries for Upper Bound Strengthening (QUBS)
	Discussion and Future Work

	Conclusion
	Acknowledgments
	References
	Appendix
	A. The Number of Candidates
	B. Equivalence Classes in the 5-cube.
	C. Equivalence Classes in the 6-cube.

