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Abstract

This paper proposes a new semidefinite programming relaxation for the satisfiability
problem. This relaxation is an extension of previous relaxations arising from the paradigm
of partial semidefinite liftings for 0/1 optimization problems. The construction of the relax-
ation depends on a choice of permutations of the clauses, and different choices may lead to
different relaxations. We then consider the Tseitin instances, a class of instances known to
be hard for certain proof systems, and prove that for any choice of permutations, the pro-
posed relaxation is exact for these instances, meaning that a Tseitin instance is unsatisfiable
if and only if the corresponding semidefinite programming relaxation is infeasible.

Keywords: satisfiability, semidefinite programming, discrete optimization, global opti-
mization

Submitted August 2007; revised December 2007; published December 2007

1. Introduction

This paper is about the application of semidefinite programming to the satisfiability (SAT)
problem. Semidefinite programming (SDP) refers to the class of optimization problems
where a linear function of a matrix variable X is maximized (or minimized) subject to
linear constraints on the elements of X and the additional constraint that X must be positive
semidefinite. This includes linear programming problems as a special case, namely when
all the matrices involved are diagonal. The handbook [41] provides an excellent coverage of
SDP as well as an extensive bibliography covering the literature up to the year 2000. The
impact of SDP in combinatorial optimization has been particularly significant, including
such breakthroughs as the theta number of Lovász for the maximum stable set problem
[31], and the approximation algorithms of Goemans and Williamson for the maximum-
cut and maximum-satisfiability problems [21]. A variety of polynomial-time interior-point
algorithms for solving SDPs (to within a fixed prescribed precision) have been proposed in
the literature, and several excellent solvers for SDP are now available.

The fact that a propositional logic formula can be expressed in optimization terms as a
feasibility problem involving polynomial equations and inequalities is well known, and dates
back at least to the pioneering work of Williams [40] and Blair et al. [14]. Optimization-
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based approaches to propositional logic originally considered formulations of SAT and max-
imum satisfiability (MAX-SAT) as 0/1 integer linear programming problems that can then
be relaxed by allowing the 0/1 variables to take any real value between 0 and 1, thus yielding
a linear programming relaxation that can be solved efficiently. For some types of problems,
such as Horn formulas and their generalizations, deep connections have been established
between the SAT problem and its linear programming relaxation (see e.g. [15]). The book
of Chandru and Hooker [17] provides an excellent coverage of results linking logical inference
and optimization.

One line of research made use of SDP to obtain the best known approximation algo-
rithms for MAX-k-SAT problems1.. Given a set of propositional clauses all of length at most
k in conjunctive normal form, the MAX-k-SAT problem is to determine the largest number
of clauses that can be satisfied simultaneously. Seminal work in this direction was done by
Goemans and Williamson [21] who proposed an SDP-based approximation algorithm for
the MAX-2-SAT problem with a 0.87856-approximation guarantee. Improved guarantees
for MAX-2-SAT were subsequently obtained by other researchers, and the SDP-based ap-
proach was extended to MAX-3-SAT by Karloff and Zwick [27] whose 0.875-approximation
algorithm is the best possible (unless P = NP ). Further extensions have been proposed
by Zwick [42], Halperin and Zwick [26], and Asano and Williamson [11], providing the best
known approximation guarantees for MAX-k-SAT problems. The survey paper [5] provides
a thorough overview of these results.

Most recently, van Maaren and van Norden [38, 39] consider the application of Hilbert’s
Positivstellensatz to MAX-SAT. The idea is to formulate MAX-SAT as a global polyno-
mial optimization problem in such a way that it can then be relaxed to a sum-of-squares
(SOS) problem, and the latter can be solved using SDP (under certain assumptions). The
construction of the SOS problem depends on the choice of a basis of monomials to express
the SOS. Van Maaren and van Norden [39] consider several choices of bases, and present
detailed comparisons between the resulting SOS relaxations and the relaxations of Goemans
and Williamson and of Karloff and Zwick.

Another line of recent research has focused on analyzing the complexity of Nullstellensatz-
and Positivstellensatz-based proofs, including cutting-plane and Lovász-Schrijver methods,
and generalizations thereof (see e.g. [16, 24, 33]). The Nullstellensatz proof system, which
uses only polynomial equalities, was first considered in [13]. By considering systems of
polynomial inequalities (instead of equations only), much more powerful proof systems are
obtained. The first proof system based on inequalities was the cutting plane system of
Gomory [22, 23] which uses linear inequalities, while a more recent approach based on the
Lovász-Schrijver systems [32] allows the use of quadratic inequalities. These two successful
techniques arose in the area of integer linear programming, and in particular the Lovász-
Schrijver approach is an example of the use of lift-and-project methods for 0/1 optimization
[12, 32, 34]. Another recent development in this area is the Lasserre hierarchy of semidefi-
nite liftings for polynomial optimization problems [29], which can be applied in particular
to 0/1 programming problems [30]. Semidefinite constraints may also be employed in the
Lovász-Schrijver lifting scheme, but in a different manner from that of the Lasserre con-

1. The notation k-SAT refers to the instances of SAT for which all the clauses have length at most k.
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struction, which is based on a higher-liftings paradigm for constructing SDP relaxations of
polynomial optimization problems.

The idea underlying the higher liftings is closely related to the sum-of-squares approach
mentioned above, and can be summarized as follows. Suppose that we have a discrete
optimization problem on n binary variables. The SDP relaxation in the space of symmetric
matrices with rows and columns indexed by the n binary variables is called a first lifting.
This first lifting for the specific case of SAT is the Gap relaxation of de Klerk et al. [19, 20].
De Klerk et al. show that the Gap relaxation characterizes unsatisfiability for a class of
SAT problems that includes the mutilated chessboard and pigeonhole instances, in the
sense that the Gap relaxation is infeasible if and only if the corresponding instance of SAT
is unsatisfiable. Rounding schemes and approximation guarantees for the Gap relaxation,
as well as its behavior on (2 + p)-SAT problems, were studied in [19].

The Gap relaxation can be extended along the lines of the second lifting for maximum-
cut proposed by Anjos and Wolkowicz [9], and its generalization independently proposed
by Lasserre [28, 30]. Given any SAT instance, one could use the SDP relaxations QK−1 (as
defined in [28]) for K = 1, 2, . . . , n where the matrix variable of QK−1 has rows and columns
indexed by all the subsets of variables with cardinality at most K. Hence for K = 1, we
obtain the matrix variable of the Gap relaxation. The results in [30] imply that for K = n,
the resulting SDP relaxation characterizes unsatisfiability of the SAT instance. However,
this SDP problem has dimension exponential in n. This limitation motivates the study of
partial higher liftings, where we consider SDP relaxations that have a much smaller matrix
variable, as well as fewer linear constraints.

To obtain interesting partial liftings, there are two important requirements to satisfy.
The first requirement is that the SDP problems arising from the partial liftings must have
both the dimension of the matrix variable and the number of linear constraints depending
linearly on the size of the SAT instance2.. This is because the SDP problems arising from
full higher liftings quickly become far too large for practical computation. For instance,
even for second liftings (corresponding to K = 2) of maximum-cut problems, only instances
with up to 27 binary variables were successfully solved in [1]. This requirement ensures
that the partial liftings are amenable to practical computation. The second requirement
is that the partial lifting construction should take advantage of the structure of the SAT
instance. More specifically, we want to design general partial lifting procedures with the
property that their structure directly follows from the structure of the SAT instance.

Partial lifting procedures for SAT that extend the Gap relaxation have been proposed
by Anjos [2, 4, 6], and the closely related SOS approach for SAT was proposed by van
Maaren and van Norden [38, 39]. All these constructions are defined explicitly rather than
in terms of an iterative process increasingly tightening the relaxations. The explicitness
of the resulting SDP problems is particularly advantageous from a computational point of
view, and their practical performance has been analyzed in [2, 3, 38, 39].

This paper presents new progress in the study of partial semidefinite liftings for SAT.
The contribution of this paper is twofold. First, we describe the construction of a new SDP
relaxation for the general SAT problem. This relaxation is an extension of the SDP relax-
ations in [4, 39]. It is also related to the SDP relaxation in [6], but unlike that relaxation,

2. For an instance in conjunctive normal form, the size is basically determined by the number of clauses.
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the relaxation proposed here is defined for any CNF formula. For this new SDP relaxation,
the dimension of the matrix variable and the number of constraints are linear in the number
of clauses in the instance, assuming that the length of the clauses is bounded from above
by a given, fixed value.

Second, we show that the extended SDP relaxation is exact for the class of Tseitin
instances of SAT. By being exact, we mean that the Tseitin instance is unsatisfiable if
and only if the corresponding SDP problem is infeasible. Although this is not the first
proof that Tseitin instances can be solved in polynomial-time (see e.g. [24]), and these
instances are typically used as counter-examples to the effectiveness of proof systems, the
theorem and its proof provide a greater understanding of how the SDP relaxation captures
the global structure of these instances. We also note that the SDP approach not only
establishes satisfiability or unsatisfiability, but also provides an explicit computational proof
in polynomial-time. This proof comes in the form of a certificate of infeasibility consisting
of a dual feasible solution which may be arbitrarily scaled while remaining feasible, so that
the objective value of the dual problem becomes unbounded. Since the optimal value of the
dual problem always provides a bound on the optimal value of the primal, it follows that
the primal problem must be infeasible. One interesting open question is the design of an
algorithm to extract the combinatorial information contained in the numerical certificate of
infeasibility for the extended SDP relaxation corresponding to an unsatisfiable instance of
SAT. This would likely provide a bridge between the numerical proof provided by an SDP
solver, and more traditional approaches to proving unsatisfiability for SAT.

This paper is structured as follows. After introducing some notation in the remainder
of this section, we recall some of the aforementioned SDP relaxations for SAT in Section
2. In Section 3, we present the construction of the new SDP relaxation. Then in Section 4
we recall the definition of the Tseitin instances of SAT, and in Section 5 we prove the main
result of this paper, namely the characterization of unsatisfiability of the Tseitin instances
by the new SDP relaxtion. Finally, Section 6 provides some closing comments, and outlines
on-going and future research.

We consider the SAT problem for instances in conjunctive normal form (CNF). Such
instances are specified by a set of variables x1, . . . , xn and a propositional formula Φ =
m
∧

j=1
Cj , with each clause Cj having the form Cj =

∨

i∈Ij

xi ∨
∨

k∈Īj

x̄k where Ij , Īj ⊆ {1, . . . , n},

Ij ∩ Īj = ∅, and x̄i denotes the negation of xi. We assume without loss of generality that
|Ij ∪ Īj | ≥ 2 for every clause Cj . The SAT problem is: Given a satisfiability instance, is
Φ satisfiable, that is, is there a truth assignment to the variables x1, . . . , xn such that Φ
evaluates to TRUE? For k ≥ 2, k-SAT refers to the instances of SAT for which all the
clauses have length at most k.

We shall henceforth let TRUE be denoted by 1 and FALSE be denoted by −1. For
clause j and i ∈ Ij ∪ Īj , define

sj,i :=

{

1, if i ∈ Ij

−1, if i ∈ Īj
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The SAT problem is now equivalent to the integer programming feasibility problem

find x ∈ {±1}n

s.t.
∑

i∈Ij∪Īj

sj,ixi ≥ 2 − l(Cj), j = 1, . . . , m

where l(Cj) = |Ij ∪ Īj | denotes the number of literals in clause Cj . Clearly this problem is
equivalent to the original SAT problem, and hence is in general NP-complete. Some special
cases of SAT can be solved in polynomial-time using linear programming, see [18]. Special
instances of SAT with certain constraints on the length of the clauses are often of interest,
both theoretically and in practice; we refer the reader to the survey [25].

2. Previous SDP-Based Formulations and Relaxations for SAT

The initial study of the application of SDP to SAT was done by de Klerk, van Maaren,
and Warners who introduced the Gap relaxation for SAT [19, 20]. The Gap relaxation for
3-SAT may be expressed as follows:

(R1)

find X ∈ S
n+1

s.t.
sj,i1 sj,i2 Xi1,i2 − sj,i1 X0,i1 − sj,i2 X0,i2 + 1 = 0,

where {i1, i2} = Ij ∪ Īj , if l(Cj) = 2
sj,i1 sj,i2 Xi1,i2 + sj,i1 sj,i3 Xi1,i3 + sj,i2 sj,i3 Xi2,i3 − sj,i1 X0,i1

−sj,i2 X0,i2 − sj,i3 X0,i3 ≤ 0,

where {i1, i2, i3} = Ij ∪ Īj , if l(Cj) = 3
diag (X) = e

X � 0

where Sn denotes the space of n×n square symmetric matrices, diag (X) represents a vector
containing the diagonal elements of the matrix X, e denotes the vector of all ones, and
X � 0 denotes that X is positive semidefinite. This relaxation is based on the application
of the elliptic approximations introduced in [37], and the linear constraints are obtained by
expanding and linearizing the elliptic approximation for each clause. Using these elliptic
approximations, it is straightforward to extend the Gap relaxation to SAT instances with
any number of literals in each clause.

More recently, Anjos proposed two improved SDP relaxations that are able to detect
unsatisfiability independently of the length of the clauses, and that inherit all the proper-
ties of the Gap relaxation. The general construction and analysis of these relaxations are
presented in [2, 4]. We outline here the derivation of the stronger of the two relaxations, as
it is the basis for the new relaxation in this paper.

By construction of the coefficients sj,i, the clause is satisfied if and only if sj,ixi equals 1
for at least one i ∈ Ij ∪ Īj , or equivalently, if

∏

i∈Ij∪Īj

(1−sj,ixi) = 0. Applying [4, Proposition
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1], we can formulate the satisfiability problem as follows:

find x1. . . . , xn

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

i∈T

sj,i

)(

∏

i∈T

xi

)

]

= 1, j = 1, . . . , m

x2
i = 1, i = 1, . . . , n.

Note that this formulation has one constraint per clause, corresponding to satisfiability of
the clause, plus one constraint per variable, corresponding to integrality of the variable.

The next step is to formulate the problem in symmetric matrix space. Let P denote
the set of nonempty sets T ⊆ {1, . . . , n} such that the term

∏

i∈T

xi appears in the above

formulation. Also introduce new variables

xT :=
∏

i∈T

xi,

for each T ∈ P, and thus define the rank-one matrix

Y :=











1
xT1

...
xT|P|





















1
xT1

...
xT|P|











T

,

whose |P| + 1 rows and columns are indexed by {∅} ∪ P. By construction of Y , we have
that Y∅,T = xT for all T ∈ P. Using these new variables, and making use of the fact that
the constraints

diag (Y ) = e, Y � 0, rank (Y ) = 1

are equivalent to

x2
i = 1, i = 1, . . . , n and Y∅,T =

∏

i∈T

xi, for all T

(see e.g. [8]), we can formulate the SAT problem as:

find Y ∈ S
1+|P|

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

i∈T

sj,i

)

Y∅,T

]

= 1, j = 1, . . . , m

diag (Y ) = e

rank (Y ) = 1
Y � 0.

(1)

Relaxing this formulation by omitting the rank constraint would give an SDP relaxation
for SAT.
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However, we first add redundant constraints to this formulation3.. To do this, observe
that for every triple T1, T2, T3 of subsets in P such that the symmetric difference of any two
equals the third, the following three equations hold for every feasible Y in (1):

Y∅,T1
= YT2,T3 , Y∅,T2

= YT1,T3 , and Y∅,T3
= YT1,T2 . (2)

Since this is not necessarily true for the SDP relaxation (i.e., after the rank constraint is
removed), we add some of these constraints explicitly to the SDP relaxation for the purpose
of strengthening it. We choose to add the equations of the form (2) for all the triples
{T1, T2, T3} ⊆ P satisfying the symmetric difference condition and such that (T1∪T2∪T3) ⊆
(Ij ∪ Īj) for some clause j. The resulting SDP relaxation is:

find Y ∈ S
1+|P|

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

i∈T

sj,i

)

Y∅,T

]

= 1, j = 1, . . . , m

Y∅,T1
= YT2,T3 , Y∅,T2

= YT1,T3 , and Y∅,T3
= YT1,T2 , ∀{T1, T2, T3} ⊆ P

such that T1∆T2 = T3 and (T1 ∪ T2 ∪ T3) ⊆ (Ij ∪ Īj) for some clause j

diag (Y ) = e

Y � 0

(3)

where Ti∆Tj denotes the symmetric difference of Ti and Tj . For this SDP relaxation, the
main theoretical result is:

Theorem 1. [4] Given any propositional formula in CNF, consider the SDP relaxation (3).
Then:

• If (3) is infeasible, then the formula is unsatisfiable.

• If (3) is feasible, and Y is a feasible matrix such that rankY ≤ 3, then a truth
assignment satisfying the formula can be obtained from Y .

If we had chosen P to contain all the subsets I with |I| ≤ k, where k denotes the length
of the longest clause in the SAT instance, and had added all the redundant constraints of
the form YT1,T2 = YT3,T4 , where {T1, T2, T3, T4} ⊆ {∅} ∪ P and T1∆T2 = T3∆T4, then we
would have obtained the Lasserre relaxation Qk−1 for this problem. However, as mentioned
earlier, the resulting SDP problem has a matrix variable of dimension O(nk), which is
too large for computational purposes, even when k = 2. The objective is to strike a
balance between using the full Lasserre relaxation, or a more reasonably sized relaxation
that preserves as much as possible the strength of the full relaxation. For instance, whenever
k is bounded above by a small constant, the partial higher liftings approach yields an
SDP relaxation with a much smaller matrix variable as well as fewer linear constraints
corresponding to symmetric differences. Indeed, the matrix variable of (3) has dimension
O(m∗2k) = O(m), the number of constraints is also O(m), and although the SDP can have
as many as (1

2(2k − 2)(2k − 1) + 1)m linear constraints, the presence of common variables
between different clauses means that it will typically have many fewer constraints.

3. This approach of adding redundant constraints to the problem formulation so as to tighten the resulting
SDP relaxation is discussed in detail in [8].
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3. The New Extended Semidefinite Relaxation

The relaxation (3) has essentially one constraint per clause, and the connections between
the clauses are solely provided by the positive semidefiniteness constraint on the matrix
of linearized terms. The idea is to extend the relaxation by adding rows and columns to
the matrix variable in such a way that more connections are made between the clauses. In
doing so, however, we still want to control the growth in the size of the SDP relaxation.

For this purpose, we choose one representative term per clause, namely

∏

i∈Ij∪Īj

xi

for each clause j. Let m̃ denote the number of such terms. It is clear that m̃ ≤ m: since
two or more clauses may be formed using exactly the same variables, m̃ < m may occur.
These terms are already included in P, therefore what we do is augment P by adding sets
of variables representing pairwise products of these m̃ terms, so as to better capture the
interactions between clauses. One idea would be to add all pairwise products, i.e.,

(

m̃
2

)

terms. However, the result would be a matrix with dimension quadratic in m̃, and hence
potentially superlinear in m as well.

To restrict the size of the matrix, we proceed as follows: Let C0 = {S|S = Ij ∪
Īj for some j}; clearly C0 ⊂ P and |C0| = m̃. We wish to consider arbitrary pairings of the

m̃ elements of C0, therefore we fix an ordering of the elements of C0, say: S
(1)
0 , S

(2)
0 , . . . , S

(m̃)
0 .

We denote the pairing using a permutation π0 of {1, . . . , m̃} with the interpretation that
the first two elements in the permutation are paired, then the next two, and so on. There
may be a non-paired element at the end of the permutation if m̃ is odd.

Let π0 thus represent a given pairing of the elements of C0. Using π0, we define

C1 =

{

S
(λ)
1 = S

(π0(2λ−1))
0 ∆S

(π0(2λ))
0 |λ = 1, 2, . . . , ⌊

m̃

2
⌋

}

∪
{

S
(π0(m̃))
0 |m̃ is odd

}

.

Clearly |C1| = ⌈ m̃
2 ⌉. Define C2 in a similar way using an arbitrary pairing of the elements

of C1, and so on, until reaching CL with only one set. Note that L ≤ log2 m̃ ≤ log2 m.

Using the set of column indices C := P∪
L
⋃

σ=1
Cσ, we formulate the problem in symmetric

matrix space by proceeding as above. Introducing a variable

xT :=
∏

i∈T

xi,

for each T ∈ C, we define a rank-one matrix with |C| + 1 rows and columns indexed by
{∅}∪C. Note that |C| ≤ 2k+1m, where k is again the length of the longest clause, and hence
for fixed k the size of the matrix variable remains linear in the dimension of the instance.
Using these new variables, we can obtain a new relaxation of the SAT problem. As in
Section 2, we tighten the resulting SDP relaxation by adding redundant constraints. We
choose to add the equations of the form (2) for all the triples {T1, T2, T3} ⊆ P satisfying the
symmetric difference condition and such that (T1∪T2∪T3) ⊆ (Ij∪ Īj) for some clause j, plus
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all the triples {S
(π(2λ−1))
µ , S

(π(2λ))
µ , S

(λ)
µ+1, } ⊆

L
⋃

σ=1
Cσ such that S

(λ)
µ+1 = S

(π(2λ−1))
µ ∆S

(π(2λ))
µ

for some µ and λ. The resulting SDP relaxation is:

find Z ∈ S
1+|C|

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

i∈T

sj,i

)

Z∅,T

]

= 1, j = 1, . . . , m

Z∅,T1
= ZT2,T3 , Z∅,T2

= ZT1,T3 , and Z∅,T3
= ZT1,T2 , ∀{T1, T2, T3} ⊆ P

such that T1∆T2 = T3 and (T1 ∪ T2 ∪ T3) ⊆ (Ij ∪ Īj) for some clause j

Z
∅,S

(πµ(2λ−1))
µ

= Z
S

(πµ(2λ))
µ ,S

(λ)
µ+1

, Z
∅,S

(πµ(2λ))
µ

= Z
S

(πµ(2λ−1))
µ ,S

(λ)
µ+1

,

and Z
∅,S

(λ)
µ+1

= Z
S

(πµ(2λ−1))
µ ,S

(πµ(2λ))
µ

,∀{S
(πµ(2λ−1))
µ , S

(πµ(2λ))
µ , S

(λ)
µ+1} ⊆ P

such that S
(λ)
µ+1 = S

(πµ(2λ−1))
µ ∆S

(πµ(2λ))
µ for some µ and λ

diag (Z) = e

Z � 0.

(4)

We use a simple example to illustrate the construction of the relaxation, and the fact
that different choices of permutations πµ may lead to different relaxations.

Example 1. Suppose we are given the CNF formula

x1 ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x3 ∨ x̄4 ∨ x̄5).

We construct the new SDP relaxation as follows. For the first clause, we have the variable
x1

4.. For the second clause, we add the variables x2 and x12. Continuing in this fashion,
we obtain

P = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, {2, 3, 4}, {3, 4, 5}}

and
C0 = {{1}, {1, 2}, {1, 3}, {2, 3, 4}, {3, 4, 5}}.

If π0 = (5 3 1 4 2), π1 = (3 1 2), and π2 = (1 2), then C1 = {{1, 4, 5}, {1, 2, 3, 4}, {1, 2}}, C2 =
{{2, 4, 5}, {1, 2, 3, 4}}, and C3 ={{1, 3, 5}}. Thus, C=P∪{{1, 4, 5}, {1, 2, 3, 4}, {2, 4, 5}, {1, 3, 5}},
and |C| = 18. Therefore, the matrix variable Z has dimension 19. As for the linear con-
straints, for each clause in the formula, we have one equality constraint:

x1 ⇒ Z∅,x1
= 1;

(x̄1 ∨ x2) ⇒ −Z∅,x1
+ Z∅,x2

+ Z∅,x12
= 1;

(x̄1 ∨ x3) ⇒ −Z∅,x1
+ Z∅,x3

+ Z∅,x13
= 1;

(x2 ∨ x̄3 ∨ x4) ⇒ Z∅,x2
− Z∅,x3

+ Z∅,x4
+ Z∅,x23

− Z∅,x24
+ Z∅,x34

− Z∅,x234
= 1;

(x3 ∨ x̄4 ∨ x̄5) ⇒ Z∅,x3
− Z∅,x4

+ Z∅,x5
+ Z∅,x34

+ Z∅,x35
− Z∅,x45

+ Z∅,x345
= 1.

The other linear constraints enforce the structure of Z as depicted in Figure 1. The elements
of Z denoted by asterisks in Figure 1 are not involved in any of the linear equality constraints,
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1 x1 x2 x3 x4 x5 x12 x13 x23 x24 x34 x35 x45 x234 x345 x145 x1234 x245 x135

1 x12 x13 ∗ ∗ x2 x3 ∗ ∗ ∗ x135 x145 x1234 ∗ x45 x234 ∗ x35

1 x23 x24 ∗ x1 ∗ x3 x4 x234 ∗ x245 x34 ∗ ∗ ∗ x45 ∗
1 x34 x35 ∗ x1 x2 x234 x4 x5 x345 x24 x45 ∗ ∗ ∗ ∗

1 x45 ∗ ∗ x234 x2 x3 x345 x5 x23 x35 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ x345 x3 x4 ∗ x34 ∗ ∗ x24 x13

1 x23 x13 ∗ x1234 ∗ ∗ ∗ ∗ x245 x34 x145 ∗
1 x12 x1234 ∗ ∗ ∗ ∗ x145 x345 x24 ∗ x5

1 x34 x24 ∗ ∗ x4 x245 ∗ ∗ x345 ∗
1 x23 ∗ ∗ x3 ∗ ∗ x13 x5 ∗

1 x45 x35 x2 x5 x135 x12 ∗ x145

1 x34 x245 x4 ∗ ∗ x234 x1

1 ∗ x3 x1 ∗ x2 ∗
1 ∗ ∗ x1 x35 ∗

1 x13 ∗ x23 ∗
1 ∗ x12 x34

1 x135 x245

1 x1234

1







































































Figure 1. Upper triangle of the symmetric matrix Z for Example 1

although they are of course constrained by the positive semidefiniteness constraint. The
resulting SDP relaxation is:

find Z ∈ S
19

s.t.
Z∅,x1

= 1
−Z∅,x1

+ Z∅,x2
+ Z∅,x12

= 1
−Z∅,x1

+ Z∅,x3
+ Z∅,x13

= 1
Z∅,x2

− Z∅,x3
+ Z∅,x4

+ Z∅,x23
− Z∅,x24

+ Z∅,x34
− Z∅,x234

= 1
Z∅,x3

− Z∅,x4
+ Z∅,x5

+ Z∅,x34
+ Z∅,x35

− Z∅,x45
+ Z∅,x345

= 1
Z as in Figure 1
Z � 0.

If we instead used π0 =(1 3 2 4 5), π1 =(1 3 2), and π2 =(1 2), then C1 ={{3}, {1, 3, 4}, {3, 4, 5}},
C2 ={{4, 5}, {1, 3, 4}}, and C3 ={{1, 3, 5}}, and C=P ∪ {{1, 3, 4}, {1, 3, 5}}. Thus, |C|=16
and the matrix variable Z would have dimension 17.

Before concluding this section, we point out that while the matrix variable in (3) has the
same dimensions as that of the SOS relaxation obtained using Mpt, the largest monomial
basis considered in [39]), the number and structure of the linear constraints differs. Van
Maaren and van Norden [39] present computational results supporting the claim that (3)
is generally solved more quickly, but is weaker than the SOS relaxation using Mpt. Since

4. We use x1 as shorthand notation for x{1}, x12 as shorthand for x{1,2}, and so on.
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the relaxation proposed here is a strengthening of (3), it is not immediately clear how its
strength compares with that of the SOS relaxation using Mpt. A careful comparison will
be the subject of future research.

Our objective here is to demonstrate the improvement of this new relaxation over (3).
For this purpose, we recall in the next section the well-known class of SAT instances known
as Tseitin instances. We then prove in Section 5 that this new relaxation characterizes
unsatifiability for these instances, for any choice of permutations πµ.

4. Definition of the Tseitin Instances

First, we define the parity problem. Such a problem consists of a collection of statements
about the parity of a given set of Boolean variables. Each parity statement has the form

x1 ⊕ x2 ⊕ . . . ⊕ xp = r, (5)

where ⊕ denotes exclusive or. Therefore, r = 0 denotes that an even number of the variables
involved is TRUE, while r = 1 denotes that an odd number of them is TRUE. The problem
is to determine if all the statements can be satisfied simultaneously.

Each parity statement (5) is equivalent to a conjunction of 2p−1 disjunctive clauses. The
structure of the clauses depends on the value of r:

• if r = 0 then the conjunction consists of all possible clauses on the p variables with
an odd number of negated variables; and

• if r = 1 then the conjunction consists of all possible clauses on the p variables with
an even number of negated variables.

To build a Tseitin instance of SAT, we fix a connected graph G = (V, E) with each
vertex vi ∈ V labelled with a value t(vi) ∈ {0, 1}. Then we introduce a Boolean variable
xi,j for each (i, j) ∈ E, and let each vi ∈ V give rise to the conjunction of 2deg(vi)−1 clauses
corresponding to the parity statement

⊕

ν∈N(vi)

xvi,ν = t(vi),

where N(vi) ⊂ V denotes the vertices connected to vi by an edge. It is straightforward to
check that the SAT instance obtained from the conjunction of all these clauses is satisfiable
if and only if

∑

vi∈V

t(vi) is even.

If G is a toroidal grid graph, the new SDP relaxation is very closely related to, but not
the same as, the SDP relaxation in [6]. Tseitin [35] showed that proving unsatisfiability
of such instances using regular resolution requires a superpolynomial number of resolution
steps. Tseitin’s result was extended to general resolution in [36] using so-called expander
graphs, a more general class of graphs. Tseitin instances are now typically defined in terms
of expander graphs (see e.g. [24]). The main result in the next section makes no assumption
on the structure of G, and hence applies to expander graphs as a special case.
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5. Proof of Characterizability of Tseitin Instances by the SDP Relaxation

For a Tseitin instance of SAT, each vertex vi is associated with the set V N(vi) := {xvi,ν |ν ∈
N(vi)} of cardinality deg(vi), and contributes 2deg(vi)−1 clauses to the SAT instance, with
the structure of the clauses being determined by the value of t(vi):

• if t(vi) = 0 then vi contributes all possible clauses of length deg(vi) on the variables
in V N(vi) with an odd number of negated variables; and

• if t(vi) = 1 then vi contributes all possible clauses of length deg(vi) on the variables
in V N(vi) with an even number of negated variables.

We denote the 2deg(vi)−1 clauses thus obtained by Cτ (vi), τ = 1, . . . , 2deg(vi)−1. Hence there

are
|V |
∑

i=1
2deg(vi)−1 clauses in the SAT instance. Let Jτ (vi) ⊆ V N(vi) denote the set of

variables negated in clause τ corresponding to vertex vi. Then by construction,

|Jτ (vi)| is odd for every τ = 1, . . . , 2deg(vi)−1 if t(vi) = 0,

and

|Jτ (vi)| is even for every τ = 1, . . . , 2deg(vi)−1 if t(vi) = 1.

For clause Cτ (vi) and variable xvi,ν , define

sτ (vi, ν) :=

{

1, if xvi,ν 6∈ Jτ (i)
−1, if xvi,ν ∈ Jτ (vi)

From the structure of the clauses, it is easy to verify that

∏

ν∈N(vi)

sτ (vi, ν) = (−1)t(vi)+1, for each τ, and i = 1, . . . , |V |,

and that
2deg(vi)−1
∑

τ=1

(

∏

ν∈T

sτ (vi, ν)

)

= 0 (6)

for each subset T 6= ∅, T ( N(vi), and for each i = 1, . . . , |V |.

We will make use of the following two lemmata.

Lemma 1. If Z is feasible for the SDP relaxation (4) of a Tseitin instance, then

Z∅,V N(vi) = (−1)|N(vi)|+t(vi), i = 1, . . . , |V |.

Proof: We consider the 2deg(vi)−1 constraints in the SDP relaxation of the form

l(Cj)
∑

t=1

(−1)t−1





∑

T⊆Ij∪Īj ,|T |=t

(

∏

i∈T

sj,i

)

Z∅,T



 = 1
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for fixed i. It is clear that l(Cj) = |N(vi)| and Ij∪ Īj = V N(vi) for each of these constraints.
Indexing the constraints over τ instead of j, and summing over τ , we obtain:

2deg(vi)−1
∑

τ=1





|N(vi)|
∑

t=1

(−1)t−1





∑

T⊆V N(vi),|T |=t

(

∏

ν∈T

sτ (vi, ν)

)

Z∅,T







 = 2deg(vi)−1

which implies

|N(vi)|
∑

t=1

(−1)t−1





∑

T⊆V N(vi),|T |=t





2deg(vi)−1
∑

τ=1

(

∏

ν∈T

sτ (vi, ν)

)

Z∅,T







 = 2deg(vi)−1.

But by (6) above, the terms
2deg(vi)−1
∑

τ=1

(

∏

ν∈T

sτ (vi, ν)

)

all equal zero, except when T =

V N(vi). Therefore, we have

(−1)|N(vi)|−1
(

2deg(vi)−1(−1)t(vi)+1Z∅,V N(vi)

)

= 2deg(vi)−1

and hence

Z∅,T = (−1)|N(vi)|+t(vi).

Lemma 2. [7, Lemma 3.9] Suppose





1 a b

a 1 c

b c 1



 � 0. Then a2 = 1 ⇒ c = a b.

We now prove the main theoretical result in this paper.

Theorem 2. A Tseitin instance of SAT is unsatisfiable if and only if the corresponding
SDP relaxation (4) is infeasible for any choice of permutations πµ.

Proof: Sufficiency is clear, since any model for the SAT instance yields a feasible (rank-
one) matrix.

We prove necessity by contradiction. Suppose that the SAT instance is unsatisfiable,
and that Z is feasible for the SDP problem. For a Tseitin instance, it is clear that m̃ = |V |,
and by construction of the SDP relaxation, C0 = {V N(vi)|vi ∈ V }, and 3 ≤ |CL−1| ≤ 4.

Without loss of generality, we assume that S
(λ)
0 = V N(vλ), λ = 1, . . . , |V |. By Lemma

1, Z
∅,S

(λ)
0

= (−1)|N(vλ)|+t(vλ) for every S
(λ)
0 ∈ C0, λ = 1, . . . , |V |. Now,

Z
∅,S

(λ)
1

= Z
S

(π0(2λ−1))
0 ,S

(π0(2λ))
0

, by construction of the SDP relaxation

= Z
∅,S

(π0(2λ−1))
0

Z
∅,S

(π0(2λ))
0

, by Lemma 2

= (−1)|N(vπ0(2λ−1))|+t(vπ0(2λ−1))(−1)|N(vπ0(2λ))|+t(vπ0(2λ))

= (−1)deg(vπ0(2λ−1))+deg(vπ0(2λ))+t(vπ0(2λ−1))+t(vπ0(2λ))
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and similarly for Z
∅,S

(λ)
2

, . . . , Z
∅,S

(λ)
L−1

, for all applicable λ.

We now have two cases. If |CL−1| = 3, then

Z∅,SL
= Z

S
(1)
L−1,S

(2)
L−1

= Z
∅,S

(1)
L−1

Z
∅,S

(2)
L−1

and also
Z∅,SL

= Z
∅,S

(3)
L−1

therefore
Z
∅,S

(1)
L−1

Z
∅,S

(2)
L−1

= Z
∅,S

(3)
L−1

which implies

(−1)

|V |
P

i=1
deg(vi)+

|V |
P

i=1
t(vi)

= 1.

But
|V |
∑

i=1
deg(vi) = 2|E|, and since

|V |
∑

i=1
t(vi) is odd by assumption, we have a contradiction.

If |CL−1| = 4, then we similarly deduce that

Z
∅,S

(1)
L−1

Z
∅,S

(2)
L−1

= Z
∅,S

(3)
L−1

Z
∅,S

(4)
L−1

which also implies

(−1)

|V |
P

i=1
deg(vi)+

|V |
P

i=1
t(vi)

= 1,

and also results in a contradiction.
Hence Z cannot exist, and the SDP problem must be infeasible.

6. Concluding Remarks and Future Research

From a theoretical point of view, an intriguing open question is how to extract the combi-
natorial information contained in the SDP certificate of infeasibility for the extended SDP
relaxation corresponding to an unsatisfiable instance of SAT. This would likely provide a
bridge between the numerical proof provided by an SDP solver, and more conventional
means of proving unsatisfiability for SAT.

From a computational point of view, we are currently studying the computational prop-
erties of the extended SDP relaxation for a variety of instances of SAT. It seems likely that
the choice of permutations πµ for specific instances will have an impact on the practical
performance of the SDP relaxation. The ultimate objective of this research is an efficient
SDP-based algorithm for the solution of large satisfiability instances.
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