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Abstract

Many aspects of the relation of different decision tree and DNF complexity measures
of Boolean functions have been more or less substantially explored. This paper adds a
new detail to the picture: we prove that DNF tautologies with terms conflicting in one
or two variables pairwise possess a tree-like structure. An equivalent reformulation of this
result (adopting the terminology of [7, 8, 9]) is the following. Call a clause-set (or CNF)
a hitting clause-set if any two distinct clauses of it clash in at least one literal, and call a
hitting clause-set an at-most-d hitting clause-set if any two clauses of it clash in at most d

variables. If now an at-most-2 hitting clause-set Φ is unsatisfiable (as a CNF), then, by the
above result, there must exist a variable occurring (negated or unnegated) in each clause
of Φ.
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1. Introduction

A decision tree naturally encodes a DNF tautology—each term of which correspond to
a unique leaf of the tree—, which holds the following special properties (for the formal
definitions see the next section):

(a) the terms are pairwise conflicting: for each pair there exists at least one variable
appearing negated in one of them, and unnegated in the other; and

(b) the terms possess a hierarchical structure: there is a variable x that appears in each of
them; there is a variable y that appears in every term containing literal x and there is
a variable z that appears in every term containing literal x (y and z may be identical);
and so on.

Such DNFs are called decision tree generated DNFs, or DT-DNFs for short1.; meanwhile
DNFs possessing property (a) but not necessarily property (b) are called disjoint DNFs, or
DDNFs. The question thus naturally arises, how special do these properties make a decision
tree, regarding complexity. (It is important to note that this is a purely complexity question,
based on the syntax of the above classes.) This question was investigated by Lovász et al.
in [10]. More precisely they were interested in the following problem: given a DNF tautology

1. DT-DNFs also have a recursive definition, see Section 2.
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F , the task is to construct a decision tree such that for each term of the DNF generated by
it there is a term of F that is a subterm of it. They have shown that for some very “small”
DNF tautologies this problem can be solved only with “extremely large” decision trees2..

On the other hand, as it has been proved by Kullmann [8, 9] (and, independently by
Sloan et al. [13]), when restricting the DNFs to the subclass possessing property (a) (i.e.,
the class of DDNFs), and further bounding the number of conflicts between the terms to
one (i.e., for each pair of terms there is exactly one variable appearing negated in one of
them and unnegated in the other), it turns out that the resulting class consists of DNFs
that can all be generated by decision trees:

Theorem 1 ([8, 9] and [13]). If F is a DDNF tautology with terms conflicting in exactly
one variable pairwise, then F is a DT-DNF.

This problem arose in connection with characterizing strongly minimal tautologies3.

with the additional property that the number of terms is one more than the number of
variables [8, 9] (Aharoni and Linial [1], Davydov et al. [4], Kullmann [7]), and also in
connection with maximal DNFs4. [13]. This DDNF class comes up in other context as well,
for example in connection with the complexity of analytic tableaux (Urquhart [15], referring
to earlier unpublished work of Cook, and Arai et al. [2]).

In this paper we give a strengthening of the above result, showing that the conflict
bound can be relaxed to two:

Theorem 2. If F is a DDNF tautology with terms conflicting in one or two variables
pairwise, then F is a DT-DNF.

Example 3. The DNF5.

Fex3 =x2 x4 ∨ x2x3 x4 ∨ x2x3x4 ∨ x1x4 ∨ x1x2 x3x4 ∨ x1x2x3x4 ∨ x1x3x4

is a DDNF with conflict bound two, and Figure 2 proves that it is also a DT-DNF—which
is also apparent writing Fex3 in the form

Fex3 = x4 x2 ∨ x4x2x3 ∨ x4x2x3 ∨ x4x1 ∨ x4x1x3 x2 ∨ x4x1x3x2 ∨ x4x1x3,

or also from Figure 1, visualizing the relations of the truth sets (set of satisfying assignments,
denoted by T (·)) of the various terms.

Note however that the result of Theorem 2 does not generalize to conflict bound three,
as the following example demonstrates.

2. They measure the complexity by the depth of the DNF (resp. decision tree), which is the maximal
number of literals appearing in a term of the given DNF (resp. of the DT-DNF generated by the tree).
What they show is that for some constant depth DNFs one needs decision trees of depth linear (thus
maximal) in the number of variables.

3. A DNF tautology is strongly minimal if deleting any term of it, or adding any literal to a term of it
results in a non-tautology.

4. A DNF consisting of t terms can have at most 2t
− 1 prime implicants; a DNF having t terms and 2t

− 1
prime implicants is called maximal.

5. Note that, for simplicity (and following the conventions) we omit the “∧” signs when giving a term in
an explicit form. For example, for the term x1 ∧ x3 ∧ x5 ∧ x7 we write x1x3x5x7.
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Figure 1. The assignments to variables x1, x2, x3 and x4 represented as the vertices of the 4-

dimensional hypercube and grouped according to which term of Fex3 they satisfy.

Example 4. DDNF Fex4 = x1x3 ∨ x1x2 ∨ x2 x3 ∨ x1 x2x3 ∨ x1x2x3 is a tautology and has
terms conflicting in at most three variables pairwise, but is not a DT-DNF. (Simply note
that there is no variable that appears in every term.)

In [13] it was also asked, what is the value of αn, defined by

αn = min
F :F is a DDNF tautology over n variables

max
1≤j≤n

vF,j , (1)

where
vF,j =

∑

{

2−|T | : T is a term of F, xj or xj appears in T
}

.

(A DDNF tautology F can be thought of as partitioning the n-dimensional hypercube
{0, 1}n into smaller dimensional subcubes—again, see Figure 1—, and vF,j as the total
volume of the cubes in this partition that are contained in either one of the half cubes
obtained by splitting the hypercube along the variable xj .) In [13] it was proved that

log n − log log n

n
≤ αn ≤ O

(

n−1/5
)

.

(Their upper bound follows from a construction of Savický and Sgall [12].) Considering
DDNFs with smaller conflict bound, Sloan et al. also introduced the notation αd

n, which is
the same as αn except that F is restricted to DDNFs with conflict bound d. Theorem 1 then
implies α1

n = 1, which is also stregthened by Theorem 2 to α2
n = 1 (for arbitrary positive

integer n).

1.1 Related work

1.1.1 CNFs and hitting clause-sets

A clause-set (or CNF) is a hitting clause-set if any two distinct clauses of it clash in at least
one variable (i.e., the variable occurs unnegated in one of them and negated in the other).
Let HIT denote the set of hitting clause-sets, and HIT ≤d the hitting clause-sets in which
no two clauses clash in more than d variable. Note that for each clause in HIT ≤1 it holds
that any two distinct clauses of it clash in exactly one variable; accordingly we also use
HIT 1 to denote this class (which is the notation used for this class in [7, 8, 9]).
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Call a clause-set saturated minimally unsatisfiable if removing any of its clauses or
adding any literal to one of its clauses results in a satisfiable clause-set. Denote the set of
unsatisfiable clause-sets by USAT , and the set of saturated minimally unsatisfiable clause-
sets by SMUSAT .

Obviously, the notion of hitting clause-set is the dual of the DDNF, HIT ≤d is the dual
of DDNFs with conflict bound d, tautology is the dual of unsatisfiable clause-sets, and
saturated minimally unsatisfiable clause formula is the notion of strongly minimal DNF
tautologies (introduced previously). Finally, the dual of DT-DNF is based on the notion of
read-once resolution refutation, an incomplete restriction of resolution in which each clause
can be used at most once [3, 5]. Consequently a read-once resolution refutation has a tree
structure, and it is also easy to see that hitting clause-sets having read-once resolution
refutations are exactly those CNFs which can be obtained by negating some DT-DNF.

Reformulating Theorem 1, it is shown that any clause-set in USAT ∩ HIT 1 (which
obviously equals to the set USAT ∩HIT ) contains some variable occurring (either negated
or unnegated) in each clause of it. Reformulating the result of this paper (Theorem 2): this
also holds for clause-sets in HIT ≤2 ∩ USAT ; that is if Φ ∈ HIT ≤2 ∩ USAT , then there is
a variable occurring (negated or unnegated) in each clause of Φ; what is more, Φ even has
a read-once resolution refutation.

1.1.2 DNF and DT complexity for Boolean functions

Finally we note that a related problem is to represent a Boolean function f as a DNF or
as a decision tree—that is, when one needs to construct a DNF tautology (resp. decision
tree) with each term (resp. with each term of the corresponding DT-DNF) covering only
assignments that satisfy f , or only assignments that falsify f—, and one is interested in
comparing the complexity of the two class in this setting. See for example [6, 11, 14].

2. Preliminaries

We use standard notations from propositional logic such as variable, literal, assignment,
term (or conjunction), subterm, DNF, equivalence of formulas, etc. Throughout let n

denote the number of variables in our universe.

In the paper both the syntactical and semantical view is used, switching frequently
between the two. For this, we first discuss the two separately, and then discuss some
connections of the two used heavily later on.

2.1 Syntax

For some term T let Vars(T ) denote the set of variables appearing in T . (For example
Vars(x1x3x5x7) = {x1, x3, x5, x7}.) Terms T and T ′ conflict in variable x if x appears
unnegated in one of them, and negated in the other; T ⊗ T ′ denotes the set of variables T

and T ′ conflict in (e.g., if T = x1x3x5x7 and T ′ = x1x2x3x5x9 then T ⊗ T ′ = {x3, x5}).

A term is sometimes considered as a set of literals, and a DNF as a set of terms.
Accordingly, for some DNF F and variable x, T ∈ F is used to denote that T is a term of
the DNF F , and x ∈ T (resp. x ∈ T ) that x (resp. x) is a literal in term T . (For example,
considering terms T1 = x1x2, T2 = x2x3 and T3 = x1x3, then x2 ∈ T1, but x2 6∈ T2, and, of
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course x2 6∈ T3.) A disjoint DNF form formula, or DDNF for short, is a DNF with pairwise
conflicting terms. A DDNF formula F has conflict bound d if for arbitrary terms T, T ′ ∈ F

it holds that |T ⊗ T ′| ≤ d (i.e., any two term of F conflict in at most d variables).
A decision tree (or DT for short) is a rooted binary tree such that for each inner node

the edge leading to its right (resp. left) child is labeled “x” (resp. “x ”) for some variable
x. (For an example see Figure 2 or Figure 7.) In a decision tree a path from the root to a
leaf naturally determines a term obtained by simply conjuncting the literals appearing in
the labels of the edges along the path. Thus, given a decision tree, the terms corresponding
to its leaves put up a DDNF tautology. Such DDNF tautologies are called decision tree
generated DNF s, or DT-DNFs for short. Alternatively, one can define DT-DNFs as the
smallest subset DT -DNF of the set of DNFs satisfying:

• If x is a variable, then the DNF x ∨ x is an element of DT -DNF .

• If x is a variable and both T1 ∨ · · · ∨ Tk and T ′
1 ∨ · · · ∨ T ′

ℓ are elements of DT -DNF ,
then the DNF (x ∧ T1) ∨ · · · ∨ (x ∧ Tk) ∨ (x ∧ T ′

1) ∨ · · · ∨ (x ∧ T ′
ℓ) is also an element of

DT -DNF .

2.2 Semantics

Given an assignment α, its weight is defined to be the number of variables it assigns 1 to.
Given some truth assignment α of the variables x1, . . . , xn, and some index 1 ≤ i ≤ n,

α(i) denotes the truth assignment obtained from α by flipping the value it assigns to xi.

2.3 Connecting syntax and semantics

We say that a term T is consistent with partial assignment a, if for every variable x ∈
Vars(T ) it holds that, if x appears negated (resp. unnegated) in T , then either a assigns no
value to x, or a assigns 0 (resp. 1) to it. An assignment α is said to satisfy term T if α (as
a partial assignment) is consistent with T . Accordingly, the truth set of a term T , denoted
by T (T ) is the set of assignments satisfying T .

For a DDNF tautology F and an assignment α there is a unique term of F satisfied by
α; denote it by Tα,F . When it causes no ambiguity, F is omitted and Tα is used instead.
Now, if for some term T and index i it holds that α(i) ∈ T (T ) but α 6∈ T (T ) (i.e., if α(i)

satisfies T but α does not), then

• if α assigns 0 to xi then xi ∈ T and xi ∈ Tα,

• otherwise xi ∈ T and xi ∈ Tα.

3. Proof of Theorem 2

Theorem 2 is proved by induction on the number of terms in F . In case F contains one or
two terms, the statement is obvious. Now we show that F is a DT-DNF, assuming:

Induction hypothesis: DDNF F with conflict bound two

contains t ≥ 3 terms, and the statement holds for any DDNF (2)

tautology with conflict bound two having less than t terms.
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Let T be an arbitrary term of F . Assume without loss of generality that T = x1 · · ·xk.
Of course, if F is a DT-DNF, then for some 1 ≤ i ≤ k F has a subformula equivalent to
x1 · · ·xi−1xi+1 · · ·xk; namely the one induced by the parent node of the leaf corresponding
to T . (For example if F = Fex3 from Example 3 and T = x1x3x4, then i = 3, and the
subformula x1x2 x3x4 ∨x1x2x3x4 ∨x1x3x4 of F is equivalent to T \ {xi} = x1x4.) The next
Claim considers the reverse of this implication. (Also, for an example demonstrating the
claim see Example 6.)

Claim 5. Assume (2), and let T = x1 · · ·xk be a term of F . Suppose that for some
i ∈ {1, . . . , k} it holds that every term in F that conflicts with T only in xi contains
x1 · · ·xi−1xi+1 · · ·xk as a subterm. Then F is a DT-DNF.

Proof. Consider the following sets

S1 =
{

α ∈ {0, 1}n : α(i) ∈ T (T )
}

,

S2 =T (x1 · · ·xi−1xixi+1 · · ·xk),

S3 = ∪T ′∈F :x1···xi−1xixi+1···xk is a subterm of T ′ T (T ′),

S4 = ∪T ′∈F :T⊗T ′={xi} T (T ′).

Then S1 = S2 and S2 ⊇ S3 always hold, and S3 ⊇ S4 follows from the condition of the
Claim. However, S4 ⊇ S1 is also true because

• since F is a tautology, each element β of S1 appears in some T (T ′) for some T ′ ∈ F—
recall that this T ′ is the term we denote as T β—, and

• since F is a DDNF, each of these T β terms must conflict with T in some variable.
But this variable must be xi, and only xi, as the first k bit of each β ∈ S1 is 1, except
for the i-th bit.

Thus all of the above sets are identical. Then defining

F1 := {T ′ ∈ F : x1 · · ·xi−1xixi+1 · · ·xk is a subterm of T ′}

and

F2 :=
(

F \ (F1 ∪ {T})
)

∪ {x1 · · ·xi−1xi+1 · · ·xk}

it holds that both F ′
1 := {T ′ \ {x1, · · · , xi−1, xi, xi+1, · · · , xk} : T ′ ∈ F1} and F2 are DDNF

tautologies (because of the S2 = S3 equality). Furthermore both have less terms then F ,
thus by the induction hypothesis both are DT-DNFs. This immediately implies the Claim:
pick a DT τ1 for F ′

1 and a DT τ2 for F2, expand τ1 to a decision tree for xi ∨ {xi ∧ T ′ :
T ′ ∈ F ′

1} in the natural way, and paste it into τ2 in the place of the leaf corresponding to
x1 · · ·xi−1xi+1 · · ·xk.

Example 6. Demonstrating Claim 5, let F = Fex3 from Example 3 and let T = x1x3x4.
Then i = 3, F1 = x1x2 x3x4 ∨ x1x2x3x4, F ′

1 = x2 ∨ x2 and F2 = (x2 x4 ∨ x2x3 x4 ∨ x2x3x4 ∨
x1x4) ∨ x1x4. See also Figure 2 for the decision tree τ1 (resp. τ2) for F ′

1 (resp. F2).

6



Disjoint DNF Tautologies with Conflict Bound Two

x3x3

x2x2

x2x2 x1

x3x3

τ1

x1

x4x4
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1

Figure 2. Marking τ1 and τ2 on the decision tree generating Fex3 from Example 3.

Defining the following directed graph G(V, E) = GF,T (VF,T , EF,T ):

V ={T ′ ∈ F : |T ⊗ T ′| = 1 and Vars(T ′) 6⊇ Vars(T )},

E ={(T ′, T ′′) ∈ V 2 : xi ∈ T ′ and xi 6∈ Vars(T ′′) for some 1 ≤ i ≤ k}, (3)

based on Claim 5 one can give the following sufficient condition for F being a DT-DNF
(which, as one can easily show, is also a necessary condition):

Claim 7. Assume (2), let T = x1 · · ·xk be a term of F , and let G = GF,T be the graph
defined as in (3). If G contains no cycle, then F is a DT-DNF.

Proof. We show that if F is not a DT-DNF, then G contains a cycle. Suppose thus that F

is not a DT-DNF. By Claim 5 this can only be if for i = 1, . . . , k there is a term Ti ∈ F

containing xi, containing no other variable from T negated, and having at least one of
the variables in T missing. Consequently T1, . . . , Tk ∈ V , and in the subgraph induced by
them, each vertex has indegree at least one. The subgraph has thus no sink, implying that
it contains a cycle. (For example if F = Fex4 from Example 4 and T = x1x3, then V consists
of the terms T1 = x1x2 and T2 = x2 x3, and there is an edge in E both from T1 to T2 and
from T2 to T1—and thus G contains a cycle6.: T1, T2, T1.)

In the rest of the paper we show that G indeed contains no cycle. Assume for the
contradiction that this is not the case, and let T1, . . . , Tℓ, T1 be a cycle of minimal length
(then of course ℓ ≤ k), and assume without loss of generality that xi ∈ Ti, i = 1, . . . , ℓ.
(Note that no other variable of T appears unnegated in Ti, as Ti ∈ V .) Then for any distinct
indices i, j ∈ {1, . . . , ℓ},

• if Tj follows Ti in the cycle7., then xi 6∈ Tj (by the construction of E),

• if not, then xi ∈ Tj , as otherwise (Ti, Tj) ∈ E, which would shortcut the cycle, and
contradict that it is of minimal length.

These observations are summarized in Figure 3.

6. Which is in accordance with the fact that Fex4 is not a DT-DNF.
7. That is, j = i + 1 if i < ℓ, and j = 1 if i = ℓ.
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x1 x2 x3 x4 · · · xℓ−2 xℓ−1 xℓ

T + + + + · · · + + +
T1 − + + + · · · + + ·
T2 · − + + · · · + + +
T3 + · − + · · · + + +
T4 + + · − · · · + + +
...

. . .

Tℓ + + + + · · · + · −

Figure 3. The cycle T1, . . . , Tℓ, T1. In the row of a term: “+” means that the given variable appears

unnegated in it, “−” means that it appears negated in it, and “ · ” means that it does not appear

in it. Consecutive elements of the cycle might conflict in other variables too, but non-consecutive

elements have no more conflict.

Let us now investigate how these terms “behave” on the rest of the variables. The
above observation obviously implies that if terms Ti and Tj are not consecutive elements
of the cycle, then they do not conflict in variables xℓ+1, . . . , xn, as otherwise they would
conflict in at least three variables: xi, xj and xℓ′ for some ℓ ≤ ℓ′ ≤ n. The question is,
whether two consecutive elements of the cycle can (or have to) have some further conflicts.
An equivalent (semantic) formulation of this question is whether there exists a (partial)
assignment to variables xℓ+1, . . . , xn consistent with the two terms. (Again, for an example
demonstrating the claim see Example 9.)

Lemma 8. Assume (2), let T = x1 · · ·xk be a term of F with k < n, let G = GF,T defined as
in (3), and let T1, . . . , Tℓ be a cycle of minimal length in G as in Figure 3. Then there is no
partial assignment for variables xℓ+1, . . . , xn that is consistent with T and all of T1, . . . , Tℓ.

Proof. Suppose that T is of length less then n and a is a partial assignment for variables
xℓ+1, . . . , xn consistent with T, T1, T2, . . . , Tℓ. Let F ′ be the DDNF consisting of the terms of
F that are consistent with a (thus T and T1, . . . , Tℓ are all in F ′), and from this construct F ′′

by removing all occurrences of variables xℓ+1, . . . , xn. Then F ′′ is a DDNF tautology8.. By
the induction hypotheses F ′′ is a DT-DNF9., consequently for some i ∈ {1, . . . , ℓ} variable
xi occurs (either negated or unnegated) in every term of F ′′, and thus also in every term of
F ′—specifically in each of T1, . . . , Tℓ. But the term following Ti in the cycle contains neither
xi nor xi—a contradiction. (The condition k < n is necessary since the partial assignment
with empty domain is consistent with all terms.)

Example 9. Let F = Fex3 from Example 3, and let T = x1x3x4. Then V contains terms
T1 = x1x4 and T2 = x2x3x4, and E contains the edge (T1, T2). As F is a DT-DNF, by

8. F ′′ is obviously a DDNF, since F ′ is a DDNF and the omitted variables occur only with one orientation
in F ′ (i.e., are unate). To see that F ′′ is also a tautology consider an arbitrary assignment β. Let β′ be
the assignment that agrees with β on components corresponding to x1, . . . , xℓ, and with a on the rest.
Since F is a tautology, it has a term T β′

satisfied by β′. By construction, T β′

is consistent with a, thus
removing from it all the occurences of the variables xℓ+1, . . . , xn, the resulting term will be a term of
F ′′—which is still satisfied by β′, and thus also by β.

9. Here it is is used that k < n and is assumed implicitly that every variable occurs in some of the terms
of F .
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Lemma 8 (or, more precisely, by the proof of the lemma), some variable of T (i.e., one
of x1, x3 and x4) must occur in T1 and T2—and indeed: x4 occurs unnegated in T1 and
negated in T2.

The next lemma rules out another case: when there is exactly one pair of consecutive
elements of the cycle that conflict in two variables.

Lemma 10. Assume (2), let T = x1 · · ·xk be a term of F with k < n, let G = GF,T defined
as in (3), and let ℓ be the length of the smallest cycle in G. Unless ℓ = 2, there is no cycle
in G of length ℓ with the property that one pair of consecutive elements of the cycle conflict
in two variables, and all other consecutive pairs conflict in one.

Proof. Assume for the contradiction that T1, . . . , Tℓ, T1 is such a cycle in G with ℓ > 2,
and suppose that T1 and Tℓ are the only consecutive elements conflicting in two variables,
namely in x1 and in some z ∈ {xℓ+1, . . . , xn}

10.. Assume without loss of generality that
T1, . . . , Tℓ behave as in Figure 3, and that z ∈ T1 and z ∈ Tℓ. (Note that neither T nor
T2, . . . , Tℓ−1 contains z or z: if T contained z (resp. z) it would conflict with Tℓ (resp. T1) in
two variables; if any of T2, . . . , Tℓ−2 (resp. T3, . . . , Tℓ−1) contained z, it would conflict with
Tℓ (resp. T1) in three variables; finally if T2 (resp. Tℓ−1) contained z (resp. z), then it would
conflict with T1 (resp. Tℓ) in two variables, contradicting the assumption of the lemma.)
Then there is some partial assignment to the variables {xℓ+1, . . . , xn} \ {z} consistent with
T1, . . . , Tℓ and T . Denote one such by a.

x1 x2 x3 · · · xℓ−2 xℓ−1 xℓ z

T + + + · · · + + + ·
T1 − + + · · · + + · +
T2 · − + · · · + + + ·
...

. . .

Tℓ + + + · · · + · − −
α − + + · · · + + + −
β + + + · · · + + − +

Figure 4. The cycle T1, . . . , Tℓ, T1. In the row of a term: “+” means that the given variable

appears unnegated in it, “−” means that it appears negated in it, and “ · ” means that it does not

appear in it. In the row of an assignment: “+” means that it assigns 1 to the given variable, “−”

means that it assigns 0. Terms T, T1, . . . , Tℓ do not conflict in other variables.

Let α be the assignment consistent with a assigning 0 to x1 and z, and assigning 1 to
x2, . . . , xℓ (see Figure 4). Then one can make the following observations:

• x1 ∈ Tα, since α 6∈ T (T ) and α(x1) ∈ T (T ),

• z ∈ Tα, since α 6∈ T (T1) and α(z) ∈ T (T1)

• xℓ 6∈ Tα, as otherwise Tα and T β conflicts in three variables—where β is the assign-
ment that is consistent with a and assigns 0 to xℓ and 1 to the rest of the variables—,
because

10. If ℓ = 2, then T1 and Tℓ does not conflict in x1—which is the reason for handling this case separately.
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– xℓ ∈ T β , as β 6∈ T (T ) and β(xℓ) ∈ T (T ),

– x1 ∈ T β , as β 6∈ T (T1) and β(x1) ∈ T (T1),

– z ∈ T β , as β 6∈ T (Tℓ) and β(z) ∈ T (Tℓ).

Consequently (as Tα conflicts with T in exactly one variable and does not contain xℓ)
Tα ∈ V , furthermore (Tℓ, T

α), (Tα, T2) ∈ E.

• xi ∈ Tα for i = 2, . . . ℓ − 1, as otherwise (Ti, T
α) ∈ E, which would mean that

T2, . . . , Ti, T
α, T2 is a cycle in G shorter then ℓ—a contradiction.

But then Tα, T2, . . . , Tℓ, T
α is a cycle of length ℓ (thus also of minimal length) such that all

consecutive elements conflict in exactly one variable, contradicting Lemma 8.

Based on the two previous Lemmas we can prove the following:

Lemma 11. Assume (2), let T = x1 · · ·xk be a term of F with k < n, and let G = GF,T

defined as in (3). Then the smallest cycle in G has length at most two.

Proof. Assume for the contradiction that T1, . . . , Tℓ, T1 is a cycle in G of minimal length
with ℓ > 2. Assume furthermore without loss of generality that T1, . . . , Tℓ is as in Figure 3.
Then, by the above lemmas, there is some 1 ≤ i ≤ ℓ−1 such that Ti and Ti+1 conflict in two
variables: in xi+1 and in some z ∈ {xk+1, . . . , xn}. (T contains neither z nor z as otherwise
it would conflict with Ti+1 or Ti in two variables.) Suppose i is the smallest such index.
Then there is some partial assignment of the variables {x1, . . . , xn}\{xi, xi+1, z} consistent
with T , Ti and Ti+1. Denote one such by a, and assume without loss of generality that Ti

contains z, and Ti+1 contains z. (See Figure 5.)

xi xi+1 z

T + + ·
Ti − + +

Ti+1 · − −
α − + −
β + − +

Figure 5. Terms Ti, Ti+1, T and assignments α and β.

Let α and β be the assignments that are consistent with a, with α assigning 0 to xi and
z and 1 to xi+1, and β assigning 1 to xi and z and 0 to xi+1. Then

• xi ∈ Tα, since α 6∈ T (T ) but α(xi) ∈ T (T ),

• xi+1 ∈ Tα, since α 6∈ T (Ti+1) but α(xi+1) ∈ T (Ti+1),

• z ∈ Tα, since α 6∈ T (Ti) but α(z) ∈ T (Ti),

• xi+1 ∈ T β , since β 6∈ T (T ) but β(xi+1) ∈ T (T ), and

• z ∈ T β , since β 6∈ T (Ti+1) but β(z) ∈ T (Ti+1).

10



Disjoint DNF Tautologies with Conflict Bound Two

Thus T β does not contain xi, as otherwise Tα and T β would conflict in three variables. But
then T β ∈ V , furthermore (Ti, T

β), (T β , Ti+2) ∈ E, so T1, . . . , Ti, T
β , Ti+2, . . . , Tℓ, T1 is also

a cycle in G of minimal length, but with Ti and T β conflicting only in one variable. That
is, in this new cycle one gets further (starting from T1) than in the original cycle without
using an edge that’s two endpoints conflict in two variables.

Iterating the above process if necessary, proceeding from the smaller indices to the
larger ones, one obtains a cycle T ′

1, . . . , T
′
ℓ, T

′
1 with consecutive elements conflicting in only

one variable (apart maybe from Tℓ and T1), contradicting Lemma 10.

Now all that is left to prove is that G contains no cycle of length 2.

Lemma 12. Assume (2), let T = x1 · · ·xk be a term of F with k < n, and let G = GF,T

defined as in (3). Then G contains no cycle.

Proof. By Lemma 11, as noted, it suffices to show that G contains no cycle of length 2.
Assume for the contradiction that T1, T2, T1 is a cycle in G and assume furthermore without
loss of generality that x1 ∈ T1, x2 6∈ T1, x1 6∈ T2 and x2 ∈ T2. There are two cases: when
T1 and T2 conflict in only one variable and when they conflict in two.

Let us consider the first case. Then T1 and T2 conflict in some z ∈ {xk+1, . . . , xn} (just
like before, T cannot contain variable z, as otherwise it would conflict with T1 or T2 in at
least two variables), and let us assume without loss of generality that z ∈ T1 and z ∈ T2.
Then there is some partial assignment to variables {x3, . . . , xn}\{z} consistent with T1 and
T2. Denote one such by a. Let furthermore α and β be the assignments consistent with
a, with α assigning 0 to x1 and z and 1 to x2, and β assigning 1 to x1 and z and 0 to x2

(see Figure 6(a)). Using a similar argument as before one can see that x1, x2, z ∈ T (α) and
x1, x2, z ∈ T (β), thus the two terms conflict in three variables, contradiction.

x1 x2 z

T + + ·
T1 − · +
T2 · − −
α − + −
β + − +

(a)

x1 x2 z v

T + + · ·
T1 − · + +
T2 · − − −
α − + − +
β + − + −

(b)

Figure 6. Terms Ti, Ti+1, T and assignments α and β.

The second case is when T1 and T2 conflict in some z, v ∈ {xk+1, . . . , xn} (as in the
previous case T contains neither z nor v). Let us assume without loss of generality that
z, v ∈ T1 and z, v ∈ T2. Similarly as above, let α and β be two assignments that are
consistent with T, T1 and T2 on those variables in which these terms don’t conflict, and
otherwise behave as in Figure 6(b). Again, one can show that z, x1 ∈ Tα and z, x2 ∈ T β .
Furthermore x2 ∈ Tα (resp. x1 ∈ T β), as otherwise Tα ∈ V (resp. T β ∈ V ) and with T2

(resp. with T1) they would form a cycle of length two conflicting with each other in only
one variable, which was ruled out in the previous case. Consequently Tα and T β conflicts
in three variables, contradiction.
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The proof of the Theorem now follows from Claim 7 and Lemma 12, noting that if F

is a DDNF with conflict bound two that only has terms of length n, then n ≤ 2, in which
case the statement obviously holds.

4. Concluding remarks

Theorem 2 considers a very limited class of DDNFs—for which a somewhat surprising
property is proved. Nevertheless this does not bring us any closer to determining αd

n in
the general case (recall (1), the definition of αd

n), or to deriving a sharp bound for αn; this
problem thus remains open.

For another problem consider the direction took by Kullmann [7, 8, 9]: examining the
role of deficiency in various combinatorial aspects of different classes of clause-sets, where
the deficiency of a clause-set is the difference of the number of its clauses and the number
of its variables. Let us denote by SMUSAT (k) the set of saturated minimally unsatisfiable
clause-sets with deficiency at most k. (Restricting our focus to SMUSAT , it is enough
to consider only positive deficiency: Aharoni and Linial [1] has shown that clause-sets in
SMUSAT have deficiency at least 1.) Using these notations a further characterization of
the class HIT ≤1 ∩ USAT , given in [9], can be formalized as follows:

HIT ≤1 ∩ USAT = SMUSAT (1).

Although there doesn’t seem to be a similarly nice characterization for the set HIT ≤2 ∩
USAT (for instance the DT-DNF in Example 13 with conflict bound two consists of twelve
terms and has five variables, meanwhile replacing the last two (resp. four) terms with the
single term vw (resp. v) would result in a DT-DNF with conflict bound two consisting of
eleven (resp. nine) terms and having 5 variables), it would be interesting to find a bound,
say some f : N → N, such that if a clause-set in HIT ≤2 ∩ USAT has m variables then it
has at most f(m) clauses.

Example 13. The DNF

Fex13 =v x y z ∨ v x yz ∨ v xyz ∨ v xyz ∨ vxw y ∨ vxwy ∨ vxwz ∨ vxwz∨

vw y ∨ vwy ∨ vwz ∨ vwz

is a DDNF with conflict bound two over five variables (namely v, w, x, y, z), having twelve
clauses. See Figure 7 for the decision tree generating Fex13.

Finding answers to these problems requires further investigations.
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Figure 7. The decision tree generating the DNF Fex13 from Example 13.
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