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Abstract

Existing difference logic (DL) solvers can be broadly classified as eager or lazy, each
with its own merits and de-merits. We propose a novel difference logic solver SDSAT that
combines the strengths of both these approaches and provides a robust performance over
a wide set of benchmarks. The solver SDSAT works in two phases: allocation and solve.
In the allocation phase, it allocates non-uniform adequate ranges for variables appearing in
difference predicates. This phase is similar to previous small domain encoding approaches,
but uses a novel algorithm Nu-SMOD with 1-2 orders of magnitude improvement in per-
formance and smaller ranges for variables. Furthermore, the difference logic formula is
not transformed into an equi-satisfiable Boolean formula in a single step, but rather done
lazily in the following phase. In the solve phase, SDSAT uses a lazy refinement approach
to search for a satisfying model within the allocated ranges. Thus, any partially DL-theory
consistent model can be discarded if it cannot be satisfied within the allocated ranges. Note
the crucial difference: in eager approaches, such a partially consistent model is not allowed
in the first place, while in lazy approaches such a model is never discarded. Moreover, we
dynamically refine the allocated ranges and search for a feasible solution within the up-
dated ranges. This combined approach benefits from both the smaller search space (as in
eager approaches) and also from the theory-specific graph-based algorithms (characteris-
tic of lazy approaches). Experimental results show that our method is robust and always
better than or comparable to state-of-the art solvers using similar eager or lazy techniques.
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1. Introduction

Difference Logic (DL) extends propositional logic with predicates of the form x + c . y
where . ∈ {>,≥}, c is a constant, and x, y are variables of some ordered infinite type integer
or real. All other equalities and inequalities can be expressed in this logic. Uninterpreted
functions can be handled by reducing them to Boolean equalities [1]. Difference predicates
play a pivotal role in verification of timed systems [2] and hardware models with ordered
data structures like queues and stacks, and modeling job scheduling problem [3]. Deciding
a difference logic problem is NP-Complete. Decision procedures based on graph algorithms
use a weighted directed graph to represent difference predicates; with nodes representing
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variables appearing in the predicates and edges representing the predicates. A predicate
of the form x+c ≥ y is represented as directed edge from node x to node y with weight c.
A conjunction of difference predicates is consistent if and only if the corresponding graph
does not have a cycle with negative accumulated weight. The task for decision procedures
is reduced to finding solutions without negative cycles. Note, some decision procedures
can decide the more general problem of linear arithmetic where predicates are of the form
Σiaixi ≥ c where ai, c are constants and xi are variables. ICS [4], HDPLL [5] , PVS [6],
and ASAP [7] are based on a variable elimination technique like Fourier-Motzkin [8], while
most of the recent solvers such as Ario [9], MathSAT [11], Simplics [12], and Yices [13] are
based on Simplex [14]. Here, we restrict ourselves to a discussion of decision procedures
dedicated for difference logic.

Satisfiability of a difference logic formula can be checked by translating the formula into
an equi-satisfiable Boolean formula and checking for a satisfying model using a Boolean
satisfiability solver (SAT). In the past, several dedicated decision procedures have taken
this approach to leverage off recent advances in SAT engines [15]. These procedures can
be classified as either eager or lazy, based on whether the Boolean model is refined (i.e.,
transformed) eagerly or lazily, respectively. In eager approaches [16, 17, 18, 19, 20, 21], the
difference formula is reduced to an equi-satisfiable Boolean formula in a single step and
SAT is used to check the satisfiability. Reduction to propositional logic is done either by
deriving adequate ranges for formula variables (a.k.a small domain encoding) [16, 18, 21]
or by deriving all possible transitivity constraints (a.k.a per-constraint encoding) [17]. A
hybrid method combines the strengths of the two encoding schemes and was shown [19]
to give robust performance. In lazy approaches [10, 11, 13, 22, 23, 24, 25], SAT is used
to obtain a possibly feasible model corresponding to a conjunction of difference predicates,
and feasibility of the conjunct is checked separately using graph-based algorithms. If the
conjunct is infeasible, the Boolean formula is refined and thus, an equi-satisfiable Boolean
formula is built lazily by adding the transitivity constraints on a need-to basis.

Both the eager and lazy approaches have relative strengths and weaknesses. Though
the small model encoding approaches [16, 18, 21] reduce the range space allocated to a
finite domain, Boolean encoding of the formula often leads to a large propositional logic
formula, eclipsing the advantage gained from the reduced search space. Researchers have
also experimented with the pseudo-Boolean Solver PBS [26] to obtain a polynomial size
formula, but without any significant performance gain [20]. In a per-constraint encoding [17],
the formula is abstracted by replacing each predicate with a Boolean variable, and then
preemptively adding all transitivity constraints over the predicates. Often the transitivity
constraints are redundant and adding them eagerly can lead to an exponentially large
formula. The Boolean SAT solvers are often unable to decide “smartly” in the presence
of such overwhelmingly large number of constraints. As a result the advantage gained
from reduced search often takes a back-seat due to lack of proper search guidance. Lazy
approaches overcome this problem by adding the constraints as required. Moreover, they use
advanced graph algorithms based on Bellman-Ford shortest path algorithm [27] to detect
an infeasible combination of predicates in polynomial time in the size of the graph. These
approaches exploit incremental propagation and efficient backtracking schemes to obtain
improved performance. Several techniques have been proposed [11, 23] to preemptively
add some subset of infeasible combination of predicates. This approach has been shown
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to reduce the number of backtracks significantly in some cases. Note, the feasibility check
is based on detection of a negative cycle (negative accumulation of edge weights) in the
graph. Potentially, there could be an exponential number of such cycles and eliminating
them lazily can be quite costly. Thus, we are motivated to combine the strength of the two
approaches as tightly as possible.

There have been some previous efforts to overcome limitations in the eager or lazy ap-
proaches. In [25], a dynamic predicate learning has been proposed, and was combined with
a lazy framework. The basic idea involves detecting shorter negative cycles and adding cor-
responding predicates dynamically as needed, which can potentially eliminate many longer
negative cycles. It has been shown to give good results for specific benchmarks such as
diamond, which has ∼2n cycles, where n is the number of variables. In an effort to combine
eager and lazy methods such as ASAP [7], ranges are underestimated and iteratively in-
creased until a solution is found or the formula is proved unsatisfiable. A related approach
is followed in [28]. The problem encoded after range refinement can be quite different struc-
turally from that before the refinement. This limits the scope of incremental formulation,
and hence, the effectiveness of incremental learning [29].

We discuss a robust difference logic solver SDSAT [30] (Small Domain SATisfiability
solver) that combines the strengths of both eager (small domain encoding) and lazy ap-
proaches and gives a robust performance over a wide set of benchmarks. Without over-
whelming the SAT solver with a large number of constraint clauses and thereby, adversely
affecting its performance, we take advantage of both the (finite) reduced search space and
the need-to basis transitivity constraints, which are able to guide the SAT solver more
efficiently. The solver SDSAT works in two phases: allocation and solve. In the alloca-
tion phase, it allocates non-uniform adequate ranges for variables appearing in difference
predicates. This phase is similar to previous small domain encoding approaches, but uses
a novel algorithm Nu-SMOD, with 1-2 orders of magnitude improvement in performance
and smaller ranges for variables. Furthermore, the difference logic formula is not trans-
formed into an equi-satisfiable Boolean formula in a single step, but rather done lazily in
the following phase. In the solve phase, SDSAT uses a lazy refinement approach to search
for a satisfying model within the allocated ranges. Thus, any partially DL-theory consis-
tent model can be discarded if it cannot be satisfied within the allocated ranges. Note the
crucial difference: in eager approaches, such a partially consistent model is not allowed in
the first place, while in lazy approaches such a model is never discarded. Moreover, we dy-
namically refine the allocated ranges and search for a feasible solution within the updated
ranges. This combined approach benefits from both the smaller search space (as in eager
approaches) and also from the theory-specific graph-based algorithms (characteristic of lazy
approaches). Experimental results show that our method is robust and always better than
or comparable to state-of-the art solvers using similar eager or lazy techniques.

Outline: We give a short background on difference logic and the state-of-the-art solvers
in Section 2. We describe our solver SDSAT in detail, highlighting the technical details and
novelties in Section 3. This is followed by experiments and conclusions in Sections 4 and 5,
respectively.
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2. Background: Difference Logic

Difference predicates are of the form x + c . y where . ∈ {>,≥}, c is a constant and x, y
are variables of some ordered infinite type integer or real, D. The theory of difference
logic combined with propositional logic is NP-Complete. If all variables are integers then
a strict inequality x + c > y can be translated into a weak inequality x + (c − 1) ≥ y
without changing the decidability of the problem. Similar transformations exist for mixed
types, by decreasing c by small enough amounts, determined by remaining constants in the
predicates [10]. Note, an inequality of the form x . c, can also be translated into a weak
inequality of two variables, by introducing a reference node z. Henceforth, we will consider
difference predicates of the form x + c ≥ y.

2.1 State-of-the-art Lazy approach: Negative-cycle detection

We discuss briefly the essential components in the state-of-the-art difference logic solvers
based on lazy approaches as shown in Figure 1.

2.1.1 Problem Formulation

In this class of decision procedures, a difference logic formula ϕ is abstracted into a Boolean
formula ϕB by mapping predicates x + c ≥ y and y + (−1 − c) ≥ x to a Boolean variable
and its negation, respectively (or vice versa, depending on some ordering of x and y.) An
assignment (or interpretation) is a function mapping each variable to value in D and each
Boolean variable to {T, F}. An assignment α is extended to map a difference logic formula
ϕ to {T, F} by defining the following mapping over the difference logic predicates, i.e.,
α(x+c≥y)=T iff α(x) + c ≥ α(y). A Boolean SAT solver is used to obtain a consistent
assignment for Boolean variables in ϕB. If such an assignment does not exist, it declares
the problem unsatisfiable. On the other hand, for any satisfying assignment to ϕB, an
additional consistency check is required for the underlying difference logic predicates. Note,
incremental solvers [11, 24, 31] perform this check on a partial assignment to detect conflict
early. The problem is declared SAT only when the satisfying assignment is consistent under
the check.

2.1.2 Constraint Feasibility

Any partial assignment (also referred to as a partial Boolean model) to variables in ϕB

represents a conjunction of difference logic predicates. The Boolean model is represented
as a weighted directed graph (a.k.a constraint graph) [32], where an edge x→y with weight
c (denoted as (x, y, c)) corresponds to the predicate e ≡ (x + c ≥ y) where α(e)=T. The
constraint graph is said to be consistent if and only if it does not have an accumulated
negative weighted cycle (or simply, negative cycle.) Intuitively, a negative cycle violates
the transitivity property of the difference logic predicates. The building of the constraint
graph and detection of negative cycles, as shown in Figure 1, are done incrementally to
amortize the cost of constraint propagation. It has been shown [33] that addition of a
predicate and update of a feasible assignment α can be done in O(m+n log n) where m is
the number of predicates and n is the number of variables. After the constraint graph is
detected consistent, i.e., feasible (shown by the feasible arc in Figure 1), more assignments
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are made to the unassigned variables in ϕB leading to a more constraint graph. The problem
is declared satisfiable by Boolean SAT, if there is no conflict and no further assignments to
make.

Boolean 

Formula, ϕϕϕϕB

Constraint Feasibility
Find assignment:  αααα:x→→→→D(x) 
Check feasibility: Neg. cycle
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Figure 1. Overview of state-of-the-art difference logic solver based on lazy approach

2.1.3 Refinement

Whenever a negative cycle is encountered during constraint feasibility checking (a.k.a. con-
straint propagation), a transitivity constraint not yet implied by ϕB is learnt and added to
ϕB as a conflicting clause. For example, if the subgraph corresponding to a conjunction of
predicates, i.e., e1∧e2∧e3∧¬e4 has a negative cycle, then a clause (¬e1∨¬e2∨¬e3∨ e4) is
added to ϕB to avoid re-discovering it. As shown in [10], instead of stopping at the first
negative cycle, one can detect all negative cycles and then choose a clause with minimum
size representing a stronger constraint. Note, due to large overhead, addition of all detected
negative cycle clauses is usually not done. Moreover, as in Boolean SAT solvers, incremen-
tal solvers [11, 24, 31] restore the assignments to the variables to a state just before the
inconsistency was detected, instead of starting from scratch.

2.1.4 Preemptive Learning (Theory Deduction)

Some solvers [11, 23] have capabilities to add transitivity constraints preemptively to ϕB

to avoid finding them later. However, as the overhead of adding all transitivity constraints
can be prohibitive, as observed in a per-constraint eager approach [17], solvers often use
heuristics to add them selectively and optionally (shown as dotted arrow in Figure 1).

2.2 Eager approach: Finite instantiation

Range allocation (a.k.a. small domain encoding) approaches find the adequate set of values
(a.k.a. ranges) for each variable in the finite model. We briefly describe the range allo-
cation problem for difference logic which has been discussed at greater depth in [21, 34].
Let Vars(ϕ) denote the set of variables used in a difference logic formula ϕ over the set
of integers Z. We assume ϕ is in Non-Negated Form (NNF), i.e., every predicate occur-
ring negatively in the formula is converted into its dual positive predicate a priori (e.g.,
¬(x + c < y) ⇒ (x + c ≥ y)) A domain (or range) R(ϕ) of a formula ϕ is a function from
Vars(ϕ) to 2Z . Let Vars(ϕ) = {v1,. . . ,vn} and |R(vi)| denote the number of elements in
the set R(vi), the domain of vi. The size of domain R(ϕ), denoted by |R(ϕ)| is given by
|R(ϕ)| = |R(v1)| · |R(v2)| · · · |R(vn)|. Let SATR(ϕ) denote that ϕ is satisfiable in a domain
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R. The goal is to find a small domain R such that

SATR(ϕ) ⇔ SATZ(ϕ) (1)

We say that a domain R is adequate for ϕ if it satisfies formula (1). Since finding the
smallest domain for a given formula is at least as hard as checking the satisfiability of ϕ, the
goal (1) is relaxed to finding the adequate domain for the set of all difference logic formulas
with the same set of predicates as ϕ, denoted by Φ(ϕ). Adequacy for Φ(ϕ) implies adequacy
for ϕ. As discussed in the previous section, difference logic predicates can be represented
by a constraint directed graph G(V, E). Thus, the set of all the subgraphs of G represents
the set Φ(ϕ). Given G, the range allocation problem is set up to find a domain R such that
every consistent subgraph of G can be satisfied from the values in R.

It has been shown [18] that for a difference logic formula with n variables, a range
[1 . . . n+maxC] is adequate for each variable, with maxC being equal to the sum of absolute
constants in the formula. This leads to a state space of (n+maxC)n where all variables
are given uniform ranges regardless of the formula structure. This small model encoding
approach in UCLID [18], would require dlog2|R(x)|e Boolean variables to encode the range
R(x), allocated for variable x. There has been further work [21] to reduce the overall ranges
and hence, the size of the Boolean formula for the difference logic. A method SMOD was
proposed [21] to allocate non-uniform ranges to variables, exploiting the problem structure.
The method builds a cut-point SCC (Strongly Connected Component) graph recursively in
a top-down manner and allocates ranges to the nodes bottom-up, propagating the range
values. The approach is based on enumeration of all cycles and therefore, the worst-case
complexity of such an approach is exponential. In a similar approach [35], ranges are
obtained by not converting the dis-equalities into disjunctions of inequalities.

In this article, we discuss an efficient and robust method called Nu-SMOD [30], that
computes non-uniform ranges in time polynomial in the number of predicate variables and
size of the constants. Moreover, the ranges are comparable to, or better than, the non-
uniform ranges obtained using SMOD, and consistently better than the uniform ranges
obtained using UCLID [18]. We do not eagerly convert the difference logic problem into a
propositional problem using these ranges. Instead, we use these ranges during theory con-
sistency check lazily to reduce search. We specifically emphasize performance improvement,
i.e., obtaining the ranges with smaller time overhead, as opposed to obtaining tight ranges.
In experimental evaluation, Nu-SMOD completes range allocation for all the benchmarks
unlike SMOD, with 1-2 orders of magnitude performance improvement over SMOD. Unlike
SMOD, we do not compute cut-point SCCs or enumerate cycles in our new procedure Nu-
SMOD ; rather we propagate only distinct values along a path from a cut-point. Thus, our
objective differs from the SMOD procedure and the work using finite-instantiations [35].

3. SDSAT: Integrating Small Domain and Lazy Approaches

We propose a difference logic Solver SDSAT as shown in Figure 2, that combines the
strengths of both eager (small domain encoding) and lazy approaches and provides a robust
performance over a wide set of benchmarks. This combined approach benefits both from the
reduced search space (as in eager approaches) and also from the need-to basis refinement
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of the Boolean formula with transitivity constraints (as in lazy approaches). The solver
SDSAT proceeds in two phases: allocation and solve.

In the allocation phase (shown as Phase I in Figure 2), it computes non-uniform ade-
quate ranges using an efficient technique Nu-SMOD that runs in polynomial time; polyno-
mial in the number of predicate variables and size of the constants. This phase is similar to
previous small domain encoding approaches. However, we do not transform the difference
logic formula into an equi-satisfiable Boolean formula in a single step, but rather transform
it lazily in the following phase.
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Figure 2. Overview of our difference logic solver SDSAT

In the solve phase (shown as Phase II in Figure 2), SDSAT searches for a satisfying
model within the allocated ranges using a lazy refinement approach. Thus, any partially
DL-theory consistent model is discarded if it cannot be satisfied within the allocated ranges
(The check is done in the blocks “Check feasibility” and “Constraint feasibility” in Figure 2.)
Note the key difference: in eager approaches, such a partially consistent model is not allowed
in the first place, while in lazy approaches such a model is never discarded. By focusing
on adequate ranges and not just consistency of the difference logic predicates, we are able
to learn more constraints leading to larger reductions in search space. Furthermore, we
dynamically refine the ranges allocated to variables in the allocation phase using range
constraint propagation (described in Section 3.2.2) and search for a feasible solution within
the updated ranges (shown in the block “Updated Ranges (RCP)” in Figure 2). Another
novelty is in the use of cutpoints to determine whether an added edge (to a consistent
model) leads to an infeasible condition. This is based on the observation that any cycle will
have at least one cutpoint. (Given a directed graph G(V, E), a cutpoint set C ⊆ V is a set
of nodes whose removal breaks all the cycles in G.) If an added edge x→y (corresponding
to the predicate x+c ≥ y) is not reachable from some cutpoint, and x is not a cutpoint,
then a previously consistent subgraph modified with this new edge is guaranteed not to
have a negative cycle. Moreover, like in most lazy approaches, SDSAT has incremental
propagation and cycle detection, and preemptive learning of infeasible condition (theory
deduction, shown as dotted arrow in Figure 2).
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3.1 Allocation Phase: Non-Uniform Range Allocation

We discuss the algorithm Nu-SMOD that we use to allocate non-uniform ranges to variables
in the predicates. The algorithm assumes that the constraint directed graph G(V, E) is an
SCC. Extension to non-SCCs is straightforward: compute the ranges for SCCs individually
and then offset the ranges appropriately to account for the edges between the SCCs starting
from some root SCC. As far as validity of the difference logic problem is concerned, it is
easy to see that these edges can be removed from the problem as they will never contribute
to a cycle.

Algorithm Nu-SMOD: We describe the procedure Nu-SMOD as shown in Figure 3.
We first derive a cutpoint set C using polynomial approximation [36], as finding a minimal
cutpoint set is an NP-Hard problem. Using the cutpoint set C as initial set of nodes I, we
invoke the procedure Nu-SMOD-1, as shown in Figure 4, to allocate the ranges as follows:
forward range of each node x, denoted by Rf (x), is divided into several sets; each identified
with a unique id or simply level. Let the level k set of the node x be denoted by Lk(x). Note,
Rf (x)=∪kL

k(x). Initially, all the level sets are empty. The nodes in Level 1 set, denoted
by I, are allocated 0 value, i.e., ∀x∈IL

1(x) ={0}. To compute a Level (k + 1) value — i.e.,
Lk+1(y) for node y (line 7), we offset the Level k value of an incoming node x with an edge
weight c, where the edge corresponds to the predicate x+c≥ y. Thus, to compute all Level
(k+1) values, we offset each Level k value for every incoming edge to y (lines 5-7). We refer
allocation of such level values also as tight value allocation.

After obtaining the ranges for the cutpoints C using Nu-SMOD-1, we obtain reverse dfs
values Q[y], for each non-cutpoint y (lines 3-6, Figure 3). Starting from each cutpoint (line
4-5) with value M (equal to maximum range value allocated among the cutpoints), we call
the procedure reverse dfs (lines 8-12) to update Q values (line 10) of all the non-cutpoints,
by reverse propagating a tight value (higher than the previous Q value, line 9) without
traversing through any other cutpoints (line 8). Note that the reverse DFS path from a
cutpoint to non-cutpoint is a simple path as there is no cycle. All the inequalities from
non-cutpoint to cutpoint are satisfied using reverse dfs Q values. Range of the node x,
R(x) is given by (line 7), Rf (x)∪{Q[x]}.

Overall the runtime complexity of Nu-SMOD can be shown to be polynomial in the
number of nodes n and edges m and size of the maximum edge constant (see Appendix A
for details).

Example 1: We illustrate Nu-SMOD algorithm on an example shown in Figure 5. Let the
difference logic formula F be e1 ∧ e4 ∧ e5 ∧ e8 ∧ e9 ∧ (e2 ∨ e3)∧ (e6 ∨ e7) where ei represents a
difference predicate. Let n0 . . . n5 represent the integer variables. The difference predicates
are shown as edges ei in Figure 5(a) (with weights in brackets). For example: e1 ≡ (n0 ≥ n1)
and e9 ≡ (n5 − 1 ≥ n0).

In the first step, we derive the cutpoint set {n2} for the constraint graph Φ(F ) as shown
in Figure 5(a). Using the procedure Nu-SMOD-1 with I={n2}, we derive the Level values
Lk(x) at depth k starting from nodes in the set I by doing forward traversal as shown in
Figure 5(b). Note, n2 has direct edges e5 and e7 to nodes n4 and n6, respectively. Using
tight value allocation, i.e., n4 = n2 and n6 = n2, we obtain L2(n4)={0} and L2(n6)={0},
respectively. Similarly, we obtain the level values for the other nodes as well. Now, we
compute reverse dfs Q values of all non-cutpoints starting from the cutpoint set {n2} with
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Synopsis: Range allocation for an SCC G(V,E)
Input: G(V,E), Cutpoint set C
Output: R(x) for ∀x ∈ V
Procedure: Nu-SMOD

1. Nu-SMOD-1(G, I); {Input: G(V,E), I = C; Output: ∀x∈V R(x) }
2. ∀y∈V \C Q[y] = −∞;
3. M=max (∪∀x∈CRf (x));
4. foreach x ∈ C do
5. reverse dfs(x,M);
6. end
7. ∀x∈V R(x) = Rf (x) ∪ {Q[x]};

Sub-procedure: reverse dfs (x, v)

8. foreach (y, x, w) s.t. y /∈ C do
9. if (Q[y] + w ≥ v) continue;
10. Q[y] = v − w;
11. reverse dfs (y,Q[y]);
12. end

Figure 3. Pseudo-code for the algorithm Nu-SMOD

Synopsis: Level values allocation
Input: G(V,E), I ⊆ V
Output: ∀x∈V Rf (x)
Procedure: Nu-SMOD-1

1. ∀x∈IL
1(x) = {0}, ∀x∈V \IL

1(x) = {}
2. ∀x∈V,1<k≤|V |L

k(x) = {},
3. foreach k, 1 ≤ k < |V | do
4. foreach node x ∈ V do
5. foreach (x, y, c) ∈ fanouts(x) do
6. foreach value v ∈ Lk(x) do
7. Lk+1(y) = Lk+1(y) ∪ {v + c};
8. ∀x∈V Rf (x) = ∪1≤k≤|V |L

k(x);

Figure 4. Pseudo-code for the algorithm Nu-SMOD-1

value M (=0), equal to the maximum of all level values as shown in Figure 5(c). The
allocated range R for each node is the union of the level values of all levels (i.e., Rf ) and
reverse dfs values (Q) as shown in Figure 5(d). In the following Theorem 1, we show that
the ranges R so allocated are adequate.
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Figure 5. Procedure Nu-SMOD on an example

Theorem 1. Ranges allocated by Nu-SMOD are adequate.

Proof: We now show that the ranges allocated by Nu-SMOD are adequate, i.e., any satisfi-
able sub-graph Gd(V d, Ed) of G(V, E) (V d⊆V, E d⊆E ) has a satisfying assignment from the
allocated set of ranges. We further assume Gd is connected. If not, then each component
is a satisfiable sub-graph of G and ranges can be assigned to variables in each component
independently of the other. We construct the adequacy proof by devising an assignment
procedure ASSIGN as shown in Figure 6, which will generate a satisfying solution from the
allocated set of ranges.

We first construct a set S of root nodes (those nodes in V d∩ C that cannot be reached
from any other node in V d∩ C) in Gd (line 1). If set S is empty, either V d∩C is empty or
all nodes are in some cycle. In the former case, we skip to line 7, else we pick any node in
V d∩C and continue. We initially assign all the nodes not in S with +∞ (a large positive
value, line 2). We denote the value assigned to a node x as vx. Starting from each node in
S (with initial value 0 as in line 4), we call bfm (similar to Bellman-Ford-Moore Shortest
Path algorithm [27]) procedure to assign tight values on the nodes that can be reached.
The edge (x, y, c) is said to be stable if the current value of x and y is said to satisfy the
constraint (x+ c ≥ y). Note that the value of the node can change only if the current value
is lower than the previously assigned value (line 11). Such an operation is also called an edge
relaxation [27]. Only under such a scenario, the node is en-queued (line 12). Those nodes
whose value are still +∞, are given reverse dfs Q values (line 7). To show that the given
assignment procedure ASSIGN generates a satisfying solution from the ranges allocated,
we need to prove the following lemmas. (Proof details are in Appendix B.)

Lemma 1. The procedure ASSIGN terminates.

Lemma 2. All inequalities corresponding to edges of Gd are satisfied.

Lemma 3. Each assigned value vx belongs to R(x).

The above theorem guarantees the existence of a solution for a satisfying subgraph Gd

with all the root nodes in V d∩ C having special value 0 and the other nodes in V d\C
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Synopsis: Assignment for subgraph Gd of G
Input: Gd(V d, Ed)
Output: {(x, vx)|x ∈ V d, vx ∈ R(x)}
Procedure: ASSIGN

1. S = {set of root nodes}
2. ∀y∈V d\S vy = +∞;
3. foreach x ∈ S do
4. vx = 0; enqueue(x);
5. bfm(x);
6. end
7. ∀y∈V d\S if (vy = +∞) vy = Q[y];

Sub-procedure: bfm(x)

8. while (x = dequeue()) 6= null)
9. foreach(x, y, c) ∈ fanouts(x) do
10. if (vx + c ≥ vy) continue;
11. vy = vx + c;
12. enqueue(y);
13. end
14. end

Figure 6. Pseudo-code for the algorithm ASSIGN

having either tight values or reverse dfs values Q, depending on whether they are reachable
from the root nodes or not, respectively. Note that the cutpoints do not need Q values as
they are the root nodes. As we will see shortly, the solve phase is based primarily on this
observation.

Example 1 (contd.): We illustrate a line-by-line run of the procedure ASSIGN on
a subgraph Gd with V d = {n1, n3, n2, n4, n6, n5} and Ed = {e2, e4, e5, e7, e6, e8}. Note,
S = {n2} in Line 1. In Line 4, vn2

= 0. On execution of Line 5, we obtain vn4
= 0,

vn6
= 0, and vn5

= 0, and on execution of Line 7, we obtain vn1
= 0 and vn3

= 0 (using the
reverse dfs values as shown in Figure 5(c)).

3.2 Solve Phase

Similar to standard lazy solvers, we first build an abstract Boolean formula ϕB from the
given difference logic formula ϕ and search for a partial consistent Boolean model. As
the partial model is being incrementally built, we search for a satisfying model using a
cutpoint-relaxation algorithm (described in Section 3.2.1) within the dynamically updated
ranges achieved by range constraint propagation (described in Section 3.2.2). We build
these algorithms by augmenting the procedure ASSIGN (described in Figure 6) with

• inconsistency detection due to negative cycles,
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• range violations check, and

• pre-emptive learning.

In the following, we restrict our discussion to novelties in detecting the inconsistencies. (For
details on pre-emptive learning please refer to [11, 23, 37]).

3.2.1 Incremental Cycle Detection Using Cutpoint Relaxation

In the past [31, 38, 33], the detection of negative cycles and finding satisfying assignments
are done incrementally in a weighted digraph that is built incrementally. Each of these
algorithms uses a variant (mostly in the ordering of the relaxed edges) of Bellman-Ford-
Moore Shortest Path (BFMSP) algorithm and extends it with an ability to detect negative
cycle. Our approach is also based on BFMSP with the following difference: For a satisfiable
sub-graph Gd, we consider only those solutions which lie within the ranges allocated by
the Nu-SMOD procedure. Note, a satisfying assignment set {α(x)} represents a class of
satisfying assignments {α(x)+k} for some constant k.

As shown in the procedure ASSIGN, the existence of the solution for a satisfying sub-
graph Gd is guaranteed with all the root nodes in V d∩ C having special value 0 and the other
nodes in V d\C having either tight values or reverse dfs values Q, depending on whether
they are reachable from root nodes or not, respectively. Thus, in our approach, we restrict
the set of satisfying assignments such that α(x)=0 for the root nodes x ∈ V d∩ C. We
discuss the implication of such a restriction in our incremental cycle detection algorithm
cutpoint relaxation. As will be clear shortly, the theoretical complexity of the algorithm is
not different from BFMSP and its variants. In our cutpoint relaxation algorithm (unlike
ASSIGN procedure) we do not change α(x) from +∞ to Q[x] if a node x is not reachable
from a root node (due to incremental addition of edges, such a node may be reachable later).
Now, we discuss how the incremental addition and deletion of edges affect the negative cycle
detection.

Edge Addition: Suppose, we add an edge (x, y, c) to Gd and obtain a subgraph Gd′

. If

α(x) 6= +∞, x is reachable from some root node in Gd and we do the usual BFMSP. If
α(x) = +∞, we consider two cases depending on x ∈ C or x /∈ C.

• Case x ∈ C: Clearly, x is root node in Gd′

as it is not reachable from any other
root node in Gd. We choose α(x)=0 and do the usual BFMSP with negative cycle
detection after relaxing (x, y, c).

• Case x /∈ C: Note, x is not reachable from any node in V d∩C. As any cycle will have
at least one cutpoint and since x is not a cutpoint in G, there cannot be any cycle in
subgraph Gd′

(of G) with the edge (x, y, c). Based on this observation, we skip edge
relaxation and cycle detection for this case.

Edge Deletion: When an edge (x, y, c) is deleted, we need to restore the previous α(y)
value only if it is different from +∞. Since, deletion of edges takes place at the time of
backtracking, we restore only those α(y) that got affected after the backtrack level. We use
a standard stack-based approach for efficient backtracking.
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Thus, our algorithm cutpoint relaxation has two main novelties: First, the approach
allows us to identify cases where we guarantee no negative cycles in a subgraph without
edge relaxation. Second, we reduce the search space by restricting our solution space in a
spirit similar to finite instantiation. Though maintaining such a restriction on assignment
values on root nodes has an overhead, we did not find it to be a significant bottleneck.
Besides using cutpoints and restricted solutions to reduce the search space, we can further
reduce the search space by dynamically updating the ranges of the variables as discussed in
the following section.

3.2.2 Range Constraint Propagation (RCP)

Ranges computed by the allocation phase guarantee the adequacy for a satisfiable subgraph
Gd; however, the ranges are often more than those required to obtain a satisfying solution
for Gd. We allow range constraint propagation (RCP) to dynamically refine the ranges of
the variables for the given subgraph Gd, while maintaining the range adequacy (Theorem
2). This approach is similar to the more general approach for interval arithmetic [39, 40],
and arc-consistency used in the constraint programming community [41]. We achieve RCP
as follows: Let the minimum (MIN) and maximum (MAX) values in the range of a variable
x be denoted by L(x) and U(x), respectively. Initially, these limits are obtained during the
allocation phase. RCP on an edge x+c≥ y, denoted by RCP(x+c≥ y), updates the limits
L(x) and U(y) as follows:

L(x) ⇐ MAX{L(x), L(y) − c}
U(y) ⇐ MIN{U(y), U(x) + c} (2)

We apply this process recursively, i.e., whenever the L (or U) value of a given node changes,
we update the L (or U) values of all nodes with a direct edge to (or from) the given node.
The process stops when either a range violation is detected, i.e., L(x) > U(x) or all the
limits have stabilized. As constraint propagation reduces the range sizes monotonically, the
process is guaranteed to terminate. A conflict can also be detected due to range violation
of the invariant L(x) ≤ α(x) ≤ U(x) where α(x) is a satisfying assignment for x reachable
from some root node. Note, these range violations can occur in a subgraph even without a
negative cycle. (These checks are carried out in the block “Check feasibility” in Figure 2.
We illustrate this with an example later.) Thus, the reduced range space leads to faster
detection of conflicts and hence, reduced search. We can also obtain the set of conflicting
edges by storing the edges as reasons for the change in minimum and maximum limits. The
following theorem addresses the range adequacy after RCP.

Theorem 2. Reduced ranges obtained by RCP are adequate for subgraph Gd.

Proof: See Appendix C.

Example 1 (contd): We illustrate RCP and its role in reducing the search space on the
diamond example (shown in Figure 5(a)). The previous approaches based on only negative
cycle detection have to find all four negative cycles involving edge pairs (e2, e6), (e2, e7),
(e3, e6) and (e3, e7), before the difference logic formula F is declared unsatisfiable. Using
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our approach of combined negative cycle detection with RCP, we decide unsatisfiability
with detection of two negative cycles and one range violation as described below.

As shown in Figure 5(d), L and U of each variable are initially set to corresponding
minimum and maximum range values R obtained by Nu-SMOD . For example: L(n0) = −1,
U(n0) = 0, as discussed in Section 3.1. Note that these ranges are adequate for this graph.
Consider the subgraph e1 ∧ e2 ∧ ¬e3. Assume the edges are added in the order e1, e2

and ¬e3. The step-wise execution of RCP on these edges is shown in Figure 7(a), with
∗L and ∗U denoting changes from the previous step. In Step 1 when e1 is added with
(L(n0) = −1 = L(n1) and U(n0) = 0 = U(n1)), L(n0) and U(n1) are unchanged (Eq. 2).
In Step 2, when e2 is added, L(n0) updates to 0 as L(n2) = 0; which in turn updates L(n1)
to 0. Similarly, in Step 3, with the addition of edge ¬e3, L(n3) updates to 0 and U(n0)
updates to −1. The latter update causes U(n1) and U(n2) to change in Step 4 and 5,
respectively. At Step 5, we detect a range violation as explained in the following . As U(n0)
changes in Step 3, we change U(n1) to -1 in Step 4 as the edge e1 is incident on n1, and
U(n2) to -1 in Step 5 as the edge e2 is incident on n2. Now, as L(n2) = 0 > U(n2) = −1,
we detect a range violation. We also learn a clause (¬e1 ∨ ¬e2 ∨ e3) by performing conflict
analysis.

Using the learnt clause by RCP, together with two other conflict clauses due to negative
cycle detection, we show how the formula F can be declared unsatisfied by simply applying
resolution rules, as shown in Figure 7(b). The learnt clause (¬e1∨¬e2∨ e3), together with
the formula clause (e2∨e3) implies a clause (¬e1∨ e3); which in turn with formula clause
(e1) implies (e3). When we detect two negative cycles with edge pairs (e3, e7) and (e3, e6),
we learn that e3 implies (¬e6∧¬e7). As (e6 ∨ e7) is a formula clause, we could declare the
formula F unsatisfiable, without the need to detect further negative cycles.
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Figure 7. RCP with negative cycle detection

4. Experimental Results

We have integrated our incremental cycle detection using cutpoint relaxation and RCP with
the zChaff Boolean SAT solver [42]. We have also implemented pre-emptive learning but
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have not done controlled experiments to ascertain its usefulness. We conducted experi-
ments on a set of six public benchmark suites generated from verification and scheduling
problems: diamonds, DTP, DLSAT, mathsat, sal and uclid [43]. We ran our experiments
on a workstation with 3.0 GHz Intel Pentium 4 processor and 2 GB of RAM running Red
Hat Linux 7.2. First, we compare the range allocation algorithms; second, we evaluate
the effectiveness of RCP in SDSAT and third, we compare it with state-of-the-art solvers
(available at the time of experimentation).

4.1 Comparison of Range Allocations Algorithms

We compared our approach Nu-SMOD with previous approaches SMOD [21] and UCLID [18]
on these benchmarks and present results in Figures 8 and 9. We used a time limit of 2 min-
utes for each run. Note, the UCLID procedure allocates to each of n nodes in an SCC a
continuous range from 1 to n+maxC, where maxC is the sum of all constant absolute values.
We compare the number of Boolean variables required to encode the ranges assigned by the
different approaches as the ratio between the approach and Nu-SMOD. Note, for range set
R(y), we require dlog2|R(y)|e Boolean variables to encode the set R(y).

4.1.1 UCLID v/s Nu-SMOD

Nu-SMOD, when compared to UCLID (Figure 8), allocates on average about 40% less
range bits (about 4X less on diamond set). Note that such linear reductions amount to
exponential reduction in search space.
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Figure 8. Ratio of range bits allocated between UCLID v/s Nu-SMOD

4.1.2 SMOD v/s Nu-SMOD

Of 432 benchmarks, SMOD could complete only 262 in the given time limit of 2 minutes.
If we increase the time limit to 20 minutes, it solves 23 more cases. Not surprisingly,
time-out occurs mostly for dense graph as also observed by the authors [21]. Barring a
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few benchmarks, the ranges allocated by Nu-SMOD are comparable to SMOD as seen
in Figure 9(a). Moreover, SMOD is 1-2 orders of magnitude slower on the completed
benchmarks as compared to Nu-SMOD, as shown in the scatter plot (on logarithmic scale)
in Figure 9(b).
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4.2 Allocation and Role of RCP in SDSAT

In the second set of experiments, we present the results of allocation phase and compare
the effectiveness of refinement in SDSAT with and without RCP as shown in Table 1.
In our experience, the number of refinements did not distinguish the role of RCP. We
observed performance improvement using RCP with more refinements as well as with fewer
refinements. Thus, instead of using the number of refinements, we introduce two metrics to
measure its effectiveness: refinement overhead and refinement penalty.

We define refinement overhead as the time taken in the corresponding graph algorithm
per refinement, and refinement penalty as the time taken by Boolean SAT per refinement.
The former metric measures the cost in detecting the inconsistency, whereas the latter
measures the cost of Boolean search after refinement, evaluating its effectiveness. Ideally,
we would like to have a low number for both the metrics.

In Table 1, Column 1 shows the benchmark suites with the number in brackets indicat-
ing the number of problems considered. Columns 2-3 show the results of allocation phase:
Column 2 shows the average size of range bits per variable computed, and Column 3 shows
the average time taken. Columns 4-5 show the results of incremental negative cycle de-
tection without RCP: Column 4 shows the average refinement overhead (in milliseconds),
and Column 5 gives the average refinement penalty (in milliseconds). Similarly, Columns
6-8 show the result of incremental negative cycle detection with RCP: Column 6 shows
the average refinement overhead (in milliseconds), Column 7 shows the average refinement
penalty (in milliseconds), and Column 8 shows the average percentage of refinements due
to RCP.
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Note first that the time overhead in the allocation phase is not very significant. The
bits allocated for the ranges average around 10 bits per variable. Though the solution space
is reduced, the bit blasted translation of the formula could be quite large if we were to
apply a small domain encoding [18]. Note that in the presence of RCP, the refinement
overhead is not affected significantly. Moreover, a lower refinement penalty with RCP
indicates improvement in the quality of refinements and Boolean search. We also observe
that, except for diamonds, on average 50% refinements are due to range violations discovered
during RCP.

Table 1. SDSAT: Allocation and role of RCP
Allocation -ve cycle w/o RCP -ve cycle with RCP

Bench Avg. Range Avg.Time Ref ovhd Ref pnlty Ref ovhd Ref Pnlty Range
bits per var taken (s) (ms) (ms) (ms) (ms) viol.(%)

DTP (59) 13 0.46 0.2 0.3 0.2 0.18 48

diamonds(36) 0.99 0.14 0.1 0.12 0.006 0.02 100

mathsat (147) 9.97 0.94 32 713 32 371 48

DLSAT (31) 11.9 3 0.2 1.6 0.3 0.9 45

sal (99) 10.9 3.34 1 36 1 19 49

4.3 Comparison with other Difference Logic Solvers

In the third set of experiments, we compare our approach SDSAT (the solve phase) with
other available state-of-the-art tools (at the time of experimentation), including UCLID [19],
MathSAT (version 3.2.1, release 2005) [11], ICS [4], TSAT++ (version 0.5, release 2004 [10],
and Barcelogic (release 2005) [23].

Since allocation phase has a constant time overhead, we use the solver phase run-time
for comparison to understand the results better. We used a common platform and 1 hour
time limit for each of the benchmarks. We present the cumulative results in Table 2. Due
to unavailability of appropriate translators, we could not compare on Uclid benchmarks
for this experiment. Pairs of the form (n t) represent that the particular approach timed
out in n number of cases for that benchmark suite. Overall, we observe that SDSAT
and Barcelogic have better performance compared to other lazy and eager approaches by
several orders of magnitude. Comparing SDSAT with Barcelogic, we see an improvement
in some suites, in particular, diamonds and mathsat. Especially for diamonds, SDSAT is
able to detect unsatisfiability in less than 1 sec for 32 out of 36 problems. Though there
are many negative cycles in these diamonds problems, RCP is able to take advantage of
the significantly reduced ranges as shown in Column 2 in Table 1. On the whole, SDSAT
times out in 7 cases as compared to 10 cases for Barcelogic. Thus, overall our approach is
relatively more robust than the pure lazy approaches which can also benefit using our ideas.

Comment: We are aware of the newer version of the solvers such as yices-1.0 [13],
MathSAT-3.4 [11] and Barcelogic 1.1 [23] that were developed after our experimenta-
tion. These versions have improved data structures with incremental solving capabilities to
perform even better than we report. We believe that our approach is orthogonal to these
methods, and can be combined with them to further improve our results. However, due to
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Table 2. Performance comparison (in sec) of state-of-the-art difference logic solvers

Bench TSAT++ UCLID MathSAT ICS Barcelogic SDSAT

642 122590 120 188592 10 202
DTP (59)

(34 t) (48 t)

6571 32489 24302 51783 679 41
diamonds (36)

(9 t) (1 t) (11 t)

62863 73751 41673 51789 37696 31279
mathsat (147)

(15 t) (20 t) (9 t) (13 t) (8 t) (6 t)

276 97334 429 12671 13 46
DLSAT (31)

(27 t) (2 t)

135909 156399 57401 107313 18721 22178
sal (99)

(34 t) (43 t) (15 t) (28 t) (2 t) (1 t)

the unavailability of the source codes of these solvers and practical difficulty in reproducing
their results, we did not integrate our approach. The results we report here are the same
as that appeared in [30].

5. Conclusions

We proposed a novel difference logic solver SDSAT that takes advantage of the small domain
property of difference logic to perform a lazy search of the state space. The solver tightly
integrates the strengths of both lazy and eager approaches and provides robust performance
over a wide range of benchmarks. It first allocates non-uniform adequate ranges efficiently
and then uses the graph-based algorithms to search lazily for a satisfying model within
the allocated ranges. It combines a state-of-the-art negative cycle detection algorithm with
range constraint propagation to prune out infeasible search space very efficiently. Moreover,
it also benefits from incremental propagation and cycle detection using a cutpoint-relaxation
algorithm. Experimental evidence presented here bears out the efficacy of our ideas, which
can be combined with other more recent improvements.
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Appendix A: Runtime Analysis of Nu-SMOD

The runtime of our algorithm Nu-SMOD depends on the size of the constants, i.e., the
edge weights present in the graph. In the following, we denote n (=|V|) to be the number
of nodes and m (=|E|) to be the number of edges in the graph G(V, E). The worst case
runtime of the basic algorithm is O(mn). This is because of the following reason: At level
1, |L1(x)| ≤ 1 for ∀x ∈ V . Since size of fanins of x is O(m),

|Lk(x)| ≤ Σf∈fanin |Lk−1(f)| ≤ m * max f∈fanin |Lk−1(f)|.
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Thus, |Lk(x)| ≤ mk−1 . Since there are n levels, we can propagate Σk |Lk(x)| ∼ mn−1

values for x and mn in total. So, the worst case running time is O(mn). In practice, the
worst case running time is generally not nseen. The reasons are as follows: First, if the same
value is propagated to a node from multiple fanin edges, it won’t be propagated further. If
the edge weights are bounded, we see more of such overlapping. Second, for not very dense
graphs, number of fanin edges will be much smaller than the worst case bound, i.e., O(m).

Here we derive a more reasonable bound on running time and ranges by assuming an
upper bound N on the edge weights. We know ∀x, L1(x) ⊆ {0} and |L1(x)| ≤ 1. Since, N
is an upper bound on the absolute values of the edge weights, ∀x L2(x) can have at most
2N +1 values (i.e., -N to N ). Similarly ∀x L3(x) can have at most 4N +1 values (i.e., -2N to
2N ). In general, ∀x Lk+1(x) can have at most 2kN+1 values (i.e., -kN to kN ). Since highest
level is n, the Ln(x) is at most 2(n-1)N+1. If we do not propagate the same value again,
for each x, we propagate at most 2(n-1)N+1, i.e, O(nN) values and in total we propagate
O(n2N) values. Thus, runtime complexity of Nu-SMOD-1 (Figure 4) is polynomial in the
number of nodes n and size of the maximum constant. This also holds for Nu-SMOD if we
consider all nodes as cutpoints. Note, every non-cutpoint y gets one reverse dfs value Q[y].
As the reverse path from a cutpoint to a non-cutpoint is a simple path (i.e., no cycle), the
complexity of reverse dfs is O(nm) by keeping a queue similar to bfm. Thus, overall the
runtime complexity of Nu-SMOD is polynomial in the number of nodes n and edges m, and
size of the maximum constant, N .

Appendix B: Theorem 1

Theorem 1. Ranges allocated by Nu-SMOD are adequate.

Proof: We now show that the ranges allocated by Nu-SMOD are adequate, i.e., any satisfi-
able sub-graph Gd(V d, Ed) of G(V, E) (V d⊆V, E d⊆E ) has a satisfying assignment from the
allocated set of ranges. We further assume Gd is connected. If not, then each component
is a satisfiable sub-graph of G and ranges can be assigned to variables in each component
independently of the other. We construct the adequacy proof by devising an assignment
procedure ASSIGN as shown in Figure 6, which will generate a satisfying solution from the
allocated set of ranges.

We first construct a set S of root nodes (those nodes in V d∩ C that cannot be reached
from any other node in V d∩ C) in Gd (line 1). If set S is empty, either V d∩C is empty
or all nodes are in some cycle. In the former case, we skip to line 7, else we pick any node
in V d∩C and continue. We initially assign all the nodes not in S to +∞ (a large positive
value, line 2). We denote the value assigned to a node x as vx. Starting from each node in
S (with initial value 0 as in line 4), we call bfm (similar to Bellman-Ford-Moore Shortest
Path algorithm [27]) procedure to assign tight values on the nodes that can be reached.
The edge (x, y, c) is said to be stable if the current value of x and y is said to satisfy the
constraint (x+ c ≥ y). Note that the value of the node can change only if the current value
is lower than the previously assigned value (line 11). Such an operation is also called an edge
relaxation [27]. Only under such a scenario, the node is en-queued (line 12). Those nodes
whose value are still +∞, are given reverse dfs Q values (line 7). To show that the given
assignment procedure ASSIGN generates a satisfying solution from the ranges allocated,
we need to prove the following lemmas.
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Lemma 1. The procedure ASSIGN terminates.

Lemma 2. All inequalities corresponding to edges of D are satisfied.

Lemma 3. Each assigned value vx belongs to R(x).

Before we prove the above lemmas, we introduce some useful definitions.

Definition: A path P = (x1, x2, . . . , xk+1) is a sequence of edges {(x1, x2, c2), . . . ,
(xk, xk+1, c)} starting from x1 and ending in xk+1, with length k. A path is simple if all
nodes are distinct. We obtain sub-path P ′ = (xi, ..., xj) of P by removing the edges in
the path P from x1 to xi and xj to xk+1. Given an edge (x, y, c), x is said to be tightly
assigned with respect to y if vx = vy + c. Given a path P = (x1, x2 . . . , xn) we say the path
is tightly-assigned if for every edge (xi, xj , c), xj is tightly assigned with respect to xi.

Lemma 1.1. Each y ∈ V d is updated at least once, i.e., vy 6= +∞.

Proof: As Gd is connected, there is a path from some node in x ∈ S to y or a path from
y to some node x ∈ S. Therefore, vy will be updated at least once at line 11 or line 7 of
Figure 6.

Lemma 1.2. The value assigned to a node by the bfm procedure (Figure 6: lines 8-14)
belongs to some tightly assigned path P starting from x ∈ S. Furthermore, path P is
simple.

Proof: Every time bfm updates the value of a node, it gives a tightly assigned value (line
11, Figure 6) with respect to the previous node in the path and therefore, every assignment
along path P is tightly assigned.

To show that path P is simple, it is easy to see that if the sub-graph Gd were a DAG
(directed acyclic graph) then every assignment to a node is made along some simple path
starting from x ∈ S. Since Gd is a consistent sub-graph, the only cycles permissible in Gd

are non-negative cycles. We show that path P is simple by contradiction. Assume that vy

is updated along some non-simple path P=(x,. . .,z,. . .,z,. . . ,y) starting at node x ∈ S, i.e.,
there exist some node z which has been updated at least twice by bfm. As tight values are
assigned to nodes along the path, second update of vz is possible only if the accumulated
weight of the sub-path (z,. . . ,z) is strictly negative. But this contradicts that Gd has only
non-negative cycles. Therefore, we conclude that every update to y is made along some
tightly-assigned simple path starting from some x ∈ S.

Lemma 1. The procedure ASSIGN terminates.

Proof: From Lemma 1.2, the number of updates on vy (line 11, Figure 6) is at most equal
to the number of simple paths to y from the nodes in S. Since the set S is finite, the
number of simple paths to y and hence, the number of calls to bfm is also finite. Therefore,
the procedure bfm terminates. One can also argue the termination of bfm based on the
termination of Bellman-Ford-Moore algorithm for a satisfiable sub-graph.

Lemma 2. The values assigned by ASSIGN satisfy all the inequalities represented by Gd.
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Proof: Consider the edge (u, v, c) corresponding to predicate u+c ≥ v. We consider three
cases depending on whether this edge was visited during bfm, and if not, whether v belongs
to K = V d∩C or not.

Case 1 : The edge was visited.

We prove by contradiction. Assume, some inequality u + c ≥ v corresponding to the
edge (u, v, c) ∈ Ed is not satisfied, i.e., fvu + c < fvv where fvu, fvv denote final values
of u and v, respectively. Note, any calls to update vv (line 11, Figure 6) only decrease vv;
therefore, vv ≥ fvv. Since fvu 6= ∞ (by Lemma 1.1), bfm(v) should have been invoked
when vu gets updated with fvu as (fvu + c) < vv; thus, vv = fvu + c and together with
inequality vv ≥ fvv, we get a contradiction. Therefore, the inequality for each visited edge
(u, v, c) is satisfied.

Case 2 : The edge was not visited and v /∈ K.

Note, u /∈ K. In this case, vu = Q[u] and vv = Q[v]. As values allocated by reverse dfs
satisfy all inequalities along the simple path from non-cupoint to cutpoints, Q[u]+c ≥ Q[v].

Case 3 : The edge was not visited and v ∈ K.

Note, u /∈ K. In this case, vu = Q[u] and vv ∈ Rf (v) (Lemma 3). Note, assignment of
reverse dfs values ensures that Q[u] + c ≥ M . But, since M=max(∪∀x∈CRf (x)), clearly,
Q[u] + c ≥ vv as M ≥ vv.

Lemma 3. For any node y in a tightly assigned simple path P beginning with x ∈ S whose
value is 0, vy∈ Rf (y) = ∪1≤k≤|V |L

k(y). Furthermore, if y is the kth node in the path then

vy ∈Lk(y).

Proof: It suffices to show that vy ∈Lk(y) and 1 ≤ k ≤ |V | as Lk(y) ⊆ Rf (y) for 1 ≤
k ≤ |V |. Since a simple path in Gd cannot have more than |V d| nodes, it is easy to see
1 ≤ k ≤ |V d| ≤ |V |.We prove vy∈Lk(y) by induction on the length of P .

Basis: Length of P = 1, i.e., P = (x, y) with edge (x, y, c). The tightly assigned value
of y, vy = vx + c = c. As per line 7 of Figure 6, vy ∈ L2(y).

Induction: Given a node z in a tightly assigned simple path P = (x, . . . , z) of length
k − 1(k > 1) such that vz∈ Lk(z). Consider the path P ′ = (x, . . . , z, y) obtained by adding
edge (z, y, d) to path P. Since y is tightly assigned with respect to z (Lemma 1.2), vy = vz+d.
From line 7 in Figure 4, vy ∈ Lk+1(y). �

Appendix C: Theorem 2

Theorem 2. Reduced ranges obtained by RCP (Range Constraint Propagation) are adequate
for subgraph Gd.

Proof: We show by induction that if Gd is satisfiable from some allocated range, then it is
also satisfiable from the reduced ranges obtained after RCP.

Basis: Let α be a satisfying solution for subgraph Gd. The invariant L(x) ≤ α(x) ≤ U(x)
is satisfied ∀x ∈ V d as all ranges are adequate for Gd (Theorem 1).

Induction: Assume we have applied RCP on n edges of the satisfiable subgraph Gd and
that the reduced ranges are adequate, i.e., there exists a satisfying solution α such that
all the invariants L(x) ≤ α(x) ≤ U(x) are satisfied ∀x ∈ V d where L and U denote the
limits after applying RCP on n edges. Now, we apply RCP on the (n + 1)th added edge,
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i.e., RCP(x + c ≥ y). We now show that α remains a satisfying solution from the newly
reduced ranges. Let L′(x), U ′(x) denote the changed limits as per Eq (2) after this step.
Since α is a satisfying solution, α(x) ≥ L(x) and α(y) ≤ U(y). Moreover, since α satisfies
the constraint x + c ≥ y, α(x) ≥ L(y) − c and α(y) ≤ U(x) + c. From definitions of L′ and
U ’, we obtain α(x) ≥ L′(x) and α(y) ≤ U ′(y). Thus, the reduced ranges obtained by RCP
are adequate for subgraph Gd. �
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