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Abstract

We consider the satisfiability problem for Boolean combinations of unit two variable
per inequality (UTVPI) constraints. A UTVPI constraint is linear constraint containing
at most two variables with non-zero coefficients, where furthermore those coefficients must
be either −1 or 1. We prove that if a satisfying solution exists, then there is a solution
with each variable taking values in [−n · (bmax + 1), n · (bmax + 1)], where n is the number
of variables, and bmax is the maximum over the absolute values of constants appearing
in the constraints. This solution bound improves over previously obtained bounds by an
exponential factor. Our result can be used in a finite instantiation-based approach to
deciding satisfiability of UTVPI formulas. An experimental evaluation demonstrates the
efficiency of such an approach. One of our key results is to show that an integer point inside
a UTVPI polyhedron, if one exists, can be obtained by rounding a vertex. As a corollary
of this result, we also obtain a polynomial-time algorithm for approximating optima of
UTVPI integer programs to within an additive factor.
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1. Introduction

A unit two variable per inequality (UTVPI) constraint is a special kind of linear constraint
having at most two variables with non-zero coefficients, where furthermore those coefficients
must be either −1 or 1. For this paper, we restrict our focus to UTVPI constraints over
integer variables, also called generalized 2SAT constraints. The variables are not required
to have finite upper or lower bounds. Useful optimization problems, such as the minimum
vertex cover and the maximum independent set problems, can be modeled using UTVPI
constraints, and some applications of constraint logic programming and automated theorem
proving also generate UTVPI constraints (e.g., see [18, 1]).

A UTVPI formula is a Boolean combination of UTVPI constraints. In this paper,
we consider the problem of checking the satisfiability of UTVPI formulas. It is easily
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seen that this problem is NP-hard. However, the special case of checking satisfiability
of a conjunction of UTVPI constraints (i.e., finding a feasible integer point in a UTVPI
polyhedron) can be solved in polynomial time; for example, a modified version of Fourier-
Motzkin elimination [9, 33] (reviewed in Section 2) runs in O(n3) time.

A simple approach to checking the satisfiability of a UTVPI formula employs a combina-
tion of Boolean satisfiability solving and linear constraint solving. Truth values are assigned
to linear constraints so that the UTVPI formula is satisfied. Each such truth assignment
corresponds to a UTVPI polyhedron. If this polyhedron has a feasible integer point, that
point satisfies the original UTVPI formula as well. If not, another truth assignment must be
found. Given a UTVPI formula φ with m constraints and n variables, and assuming that in-
teger feasibility is checked using the afore-mentioned modified Fourier-Motzkin elimination
algorithm, this simple approach has a worst-case running time of O(2m · n3).1.

In this paper, we prove that a satisfying solution exists for a UTVPI formula φ if and
only if there is a solution to φ with each variable taking values in the finite range [−n·(bmax+
1), n ·(bmax +1)], where n is the number of variables in φ, and bmax is the maximum over the
absolute values of constant terms in the constraints. That such a bounded solution exists
is not surprising, since satisfiability solving of UTVPI formulas is in NP, as follows from
integer linear programming being in NP [3, 34, 19, 27]. However, the previously best known
solution bounds (in the afore-referenced papers) are Ω(n2 · (bmax + 1) · 2n). In particular,
our result eliminates the 2n term, thereby exponentially reducing the solution bound.

Our result can be used to check satisfiability of UTVPI formulas in worst-case time
2O(n log d) where d = 2n(bmax + 1) + 1, by encoding each integer variable with log d Boolean
variables. On the theoretical side, this yields a more efficient satisfiability checker for highly
over-constrained formulas, where m = Ω(n · log d).2. Such formulas are often generated in
program analysis and hardware verification.

A key step in our proof is to show that for a UTVPI polyhedron, if a feasible integer point
exists, then one exists within a unit hypercube centered at any minimal face solution (vertex).
Apart from enabling us to prove the above solution bound, this rounding result also throws
light on why a Simplex-based algorithm might find it easier to find an integer solution to
UTVPI constraints as compared to arbitrary linear constraints. Simplex-based algorithms
usually start with a basic feasible solution to a relaxation (a minimal face solution) and then
search for an integer solution using branch-and-bound, cutting planes, or a combination
(branch-and-cut). Many of these search techniques are effective for 0-1 integer programs.
Our rounding result shows that the search for an integer solution from a minimal face
solution of a UTVPI polyhedron is similar to that for finding an integer solution to a 0-1
program, and indicates why common search techniques might be effective.

As a corollary of this rounding result, we obtain a polynomial-time algorithm for ap-
proximating optima to an additive factor in UTVPI integer programs.

Our theoretical results are validated by an experimental evaluation on UTVPI formu-
las from the SMT-LIB repository as well as randomly generated UTVPI formulas, which

1. Assuming the trivial worst-case bound of O(2N ) for checking satisfiability of a Boolean formula in N

variables.
2. For a conjunction of UTVPI constraints, m is O(n2), since one can eliminate redundant constraints.

However, for an arbitrary Boolean combination, this is not the case.
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shows that a finite instantiation-based decision procedure based on our approach can be
competitive with state-of-the-art decision procedures.

1.1 Related Work

There has been much previous work on integer programming with two variables per in-
equality (see, e.g., the work by Hochbaum et al. [17, 16, 15]). The main differences between
this work (applied to UTVPI constraints) and ours are threefold. First, our focus is on
satisfiability solving of arbitrary UTVPI formulas and not linear optimization over UTVPI
polyhedra. Second, we do not require variables to be bounded. Finally, for our approxima-
tion result, the objective function can be an arbitrary linear function, without the restriction
on the form of cost coefficients imposed in previous work.

Previous results on bounding solutions have been derived in the context of showing that
integer linear programming is in NP [3, 34, 19, 27]. Even when specialized for UTVPI
integer programs, these bounds are Ω(n2 · (bmax + 1) · 2n). Our result is therefore an
exponential reduction in the solution bound for UTVPI integer programs, and, to the best
of our knowledge, has not been obtained before.

Our results rely on the modified version of Fourier-Motzkin elimination for checking
integer feasibility of a UTVPI polyhedron; this algorithm is described by Subramani [33]. An
incremental transitive closure based algorithm has been given by Harvey and Stuckey [14].
Miné [22] describes techniques to manipulate UTVPI (octagon) constraints for abstract
interpretation, using the Harvey and Stuckey algorithm to deal with integer variables.

Lahiri and Musuvathi [20] also describe an algorithm to solve UTVPI constraints based
on negative cycle detection; their algorithm is suitable for integration into a Nelson-Oppen
style framework for cooperating decision procedures [23] as it generates equalities, and it is
additionally proof and model generating.

Several satisfiability modulo theories (SMT) solvers have been proposed for solving for-
mulas in integer linear arithmetic. The solvers participating in the recent 2006 SMT-
COMP competition include Ario [31], CVC3 [7], ExtSAT [21], HTP [28], MathSAT [5], and
Yices [11]. Other decision procedures include CVC-Lite [2] and Zapato [1]. These proce-
dures are a combination of a SAT solver and a solver for a system of linear constraints; they
differ in the many optimizations to the solvers themselves and the communication between
the SAT engine and the integer linear solver such as layered solvers, theory propagation,
pre-simplification of constraints, and fast backtracking. The linear solver is typically either
Simplex, a transitive closure based algorithm, or the modified Fourier-Motzkin elimination
algorithm referenced above (when specialized to UTVPI constraints). The BarcelogicTools
SMT solver [25] pioneered the DPLL(T) approach [13, 26], which forms the basis for the
Yices solver as well [10]; however, the BarcelogicTools solver currently handles only the dif-
ference logic fragment of integer linear arithmetic. We have performed experimental results
to compare our approach against Yices, MathSAT, and Ario; a more detailed discussion of
the techniques underlying those tools is deferred to Section 4.
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1.2 Outline

The rest of the paper is organized as follows. We begin in Section 2 with useful background
definitions and results. Section 3 contains the main theoretical contributions of this paper.
We present experimental results in Section 4 and conclude in Section 5.

2. Background

We state here, in brief, some definitions and theorems used in the remainder of the paper.
Further details can be found in standard textbooks on polyhedral theory and integer linear
programming (e.g., [24, 29]).

Following standard linear programming notation, we denote the number of variables
by n and number of constraints by m. We assume that a linear constraint is specified in
the form a · x ≥ b, where a is an n-dimensional integer vector [a1, a2, . . . , an], x is an n-
dimensional vector of integer-valued variables [x1, x2, . . . , xn], and b is an integer. A system
of constraints is specified as A · x ≥ b, where A is a m × n matrix with integral entries, b

is a m×1 integer vector [b1, b2, . . . , bm]T, and x is a n×1 vector of integer-valued variables.
We use bmax to denote the L∞ norm of b; i.e., bmax = maxi |bi|.

The system A · x ≥ b can be viewed as a polyhedron in R
n with the constraints defining

half spaces. If δ = maxx∈P a · x is finite, a · x = δ is called a supporting hyperplane. A face
of a polyhedron P is either P itself or the intersection of P with a supporting hyperplane
of P.

An orthant of R
n is one of the 2n sub-spaces of R

n defined by constraining each Cartesian
coordinate axis to be positive or negative.

A feasible system of constraints is one that has a solution in R
n. We say that a system

is lattice point feasible if it has a solution in Z
n. A half-integral solution to the system is

a vector in R
n whose every component is an integer multiple of 1

2 . The terms feasible and
satisfiable are used interchangeably, as also are lattice point and integer point.

2.1 UTVPI Formulas

Definition 2.1. A constraint a · x ≥ b is said to be an absolute constraint if exactly one
of the ais is non-zero, a difference constraint if exactly two of the ais are non-zero with one
being +1 and the other −1, and a sum constraint if exactly two of the ais are non-zero with
both +1 or both −1.

a · x ≥ b is said to be a UTVPI constraint if it is either an absolute, a difference, or a
sum constraint.

A UTVPI formula is generated by the following grammar:

φ ::= true | false | xi + xj ≥ b | −xi − xj ≥ b | xi − xj ≥ b | xi ≥ b | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

Notice that a logical negation on a UTVPI constraint can be eliminated by inverting the
sense of the inequality, interchanging left and right hand sides, and adjusting the constant
term. A UTVPI constraint remains UTVPI under such rewriting. The only change is to
the sign of variable coefficients, and to the constant term, which can increase in absolute
value by at most 1.
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Example 2.1. Consider the following UTVPI formula

(¬ x1 + x2 ≥ −1) ∧
(

x2 − x3 ≥ 0 ∨ x4 ≥ 1
)

The constraint x1 +x2 ≥ −1 is a sum constraint, x2−x3 ≥ 0 is a difference constraint, and
x4 ≥ 1 is an absolute constraint. The negation can be eliminated to obtain an equivalent
UTVPI formula

−x1 − x2 ≥ 2 ∧
(

x2 − x3 ≥ 0 ∨ x4 ≥ 1
)

Note that the value of bmax has increased from 1 to 2 after eliminating the negation.

Definition 2.2. Given a UTVPI formula φ, an enumeration bound is an integer d such
that φ has an integer solution if and only if it contains an integer point in the n-dimensional
hypercube

∏n
i=1[−d, d]. The interval [−d, d] is termed as an enumeration domain.

2.2 Polyhedral Theory

Definition 2.3. A minimal face of a polyhedron is a face that does not contain any other
face of the polyhedron. A point lying on a minimal face is called a minimal face solution
(MFS).

When the minimal face is an extreme point (vertex), a MFS is called a basic feasible
solution.

Example 2.2. Consider the unbounded UTVPI polyhedron in R
2 defined only by the sum

constraint x1 + x2 ≥ 1. The only face of this polyhedron is the line x1 + x2 = 1. Thus, this
is also a minimal face of the polyhedron, and any point lying on this line is a MFS.

We write (A′, b′) ⊆ (A, b) to indicate that the polyhedral system A′ · x ≥ b′ is a
subsystem of the polyhedral system A · x ≥ b. Also, for a matrix A, let r(A) denote the
rank of A. We have the following characterization of a minimal face.

Theorem 2.1 ([29]). Let P = {x : A · x ≥ b} denote a polyhedron. A non-empty subset
F ⊆ P is a minimal face of P, if and only if F = {x : A′ · x = b′}, for some system
A′ · x ≥ b′, where (A′, b′) ⊆ (A, b), and r(A′, b′) = r(A, b).

Fourier-Motzkin (FM) elimination [9] is a well-known projection technique for polyhedra.
Starting with a polyhedron P : A · x ≥ b, a variable xj is projected using FM elimination
in the following steps:

1. Partition the system of constraints into three sets Pj , Nj , Zj as follows. For each
constraint i, 1 ≤ i ≤ m, we add it to:

Pj , if ai,j > 0;
Nj , if ai,j < 0;
Zj , otherwise.

2. Initialize the set of new constraints, Φ, to Zj .
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3. For every pair of constraints (iP , iN ), where iP ∈ Pj and iN ∈ Nj , add the following
constraint to Φ:

n
∑

k=1

(

aiP ,j · aiN ,k − aiP ,k · aiN ,j

)

· xk ≥ b̃i

where b̃i = aiP ,jbiN − aiN ,jbiP .

Clearly, the coefficient of xj in every constraint in Φ is 0. Denote the polyhedron defined
by the set Φ as P̃ : Ã · x̃ ≥ b̃. It is easy to see that P has a solution in R

n if and only if P̃

has a solution in R
n−1.

Note that if P is UTVPI, P̃ need not be UTVPI. However, it is possible to modify
the basic FM elimination procedure by adding a coefficient normalization step, so that the
resulting polyhedron remains UTVPI, and moreover, is lattice point feasible iff P is. Notice
that the only non-UTVPI constraints in P̃ are of the form 2xi ≥ b or −2xi ≥ b, obtained
by adding a sum constraint involving xi and xj with a difference constraint involving those
variables. By dividing both sides of a newly created non-UTVPI constraint by 2, and
rounding up the RHS if it is an odd multiple of 1

2 , we obtain a UTVPI constraint with the
same integral solutions as the original. In this way, we replace each non-UTVPI constraint in
P̃ with a corresponding UTVPI constraint to obtain a UTVPI polyhedron P′ : A′ · x′ ≥ b′.

We will refer to the modified FM elimination procedure as Fourier-Motzkin elimination
with coefficient normalization (FM-CN). It is easy to see that FM-CN preserves integral
solutions, i.e., P is lattice point feasible iff P′ is. One can use FM-CN to check the feasibility
of UTVPI polyhedra in time O(n3), by successively eliminating variables, checking at each
step that we do not generate a trivially false constraint. At any step, we are guaranteed to
have a system of no more than O(n2) constraints, since there are at most 2n+4 ·

(

n
2

)

= 2n2

unique UTVPI linear forms on n variables.

3. Theoretical Results

Our theoretical results are organized as follows. We begin, in Section 3.1, by showing that
if a UTVPI polyhedron has a minimal face solution (MFS), then there exists a MFS with
each component half-integral and in [−n · bmax, n · bmax]. The main theorem, presented in
Section 3.3, enables us to go from bounding a MFS to bounding integer solutions. This
theorem states that if a UTVPI polyhedron is integer feasible, then it is possible to find a
integral solution within a unit box centered at any MFS; i.e., by “rounding” a MFS. In this
section, we also describe how to extend results for UTVPI polyhedra to arbitrary UTVPI
formulas. Section 3.2 presents auxiliary results on rounding that are used to prove the main
theorem. Finally, in Section 3.4, we show that the main theorem can be used to obtain an
additive approximation result for optimizing an arbitrary linear constraint over a UTVPI
polyhedron.

3.1 Minimal Face Solutions of UTVPI Polyhedra

We begin with the following lemma.
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Lemma 3.1. Let P : A · x ≥ b represent a system of m difference constraints on n vari-
ables. Then, P has a feasible integer solution if and only if it has an integer solution in the
hypercube

∏n
i=1[0, (n − 1) · bmax].

Proof. Consider the dual constraint graph as outlined by Cormen et al. [8]. A solution to
the system is obtained by assigning to each variable, the shortest path from the source. The
length of any shortest path is bounded by (n − 1) · bmax. The result follows.

Example 3.1. We illustrate Lemma 3.1 by the system comprising the two constraints:
x1 − x2 ≥ 3, x2 − x3 ≥ 2. Here n = 3 and bmax = 3, so (n − 1)bmax = 6. The solution
x1 = 5, x2 = 2, x3 = 0 is one where each xi is in [0, 6].

The following lemma considers bounding a MFS of a UTVPI polyhedron in the non-
negative orthant.

Lemma 3.2. Let P : A · x ≥ b, x ≥ 0 denote an arbitrary UTVPI polyhedron in the non-
negative orthant with m constraints and n variables. Then, if a MFS exists, then there is a
MFS with each component half-integral and at most n · bmax.

Proof. Suppose polyhedron P has a minimal face solution. Hochbaum et al. [17] have shown
that this MFS must be half-integral. We focus here on showing the n · bmax bound.

By definition, the minimal face corresponding to this MFS satisfies a system A′ ·x = b′,
where (A′ b′) ⊆ (A b), and r(A′) = r(A) = k for some 1 ≤ k ≤ n. Accordingly, there
are k independent variables and n − k dependent variables in the system; without loss
of generality, we assume that the first k variables are independent and set the dependent
variables to 0. This results in a system P1 : A′′ · x′′ = b′′, x′′ ≥ 0, where the components
of b′′ are also components of b, and x′′ = [x1, x2, . . . , xk]

T .
The system P1 contains 3 types of constraints (equations), viz., absolute, difference and

sum. We consider each of these types in turn:

1. An absolute constraint is of the form xi = b. Since x′′ ≥ 0, the value of xi must be in
[0, bmax].

2. A sum constraint can be written in the form xi + xj = b, where b ≥ 0. Since x′′ ≥ 0,
it follows that 0 ≤ xi, xj ≤ b ≤ bmax.

3. From the two cases above, we conclude that the value of any variable appearing in
an absolute or sum constraint must lie in [0, bmax] (and moreover, there exists such a
half-integral value).

W.l.o.g, let x1, x2, . . . , xl, l ≤ k, be variables appearing in the absolute and sum
constraints, and let x∗

1, x
∗
2, . . . , x

∗
l be the corresponding half-integral values in [0, bmax]

satisfying these constraints. Substituting these values into the difference constraints
might create new absolute constraints, but no new difference or sum constraints.
The constant term in new absolute constraints generated thus is half-integral and
of absolute value at most 2bmax. The substitution process can be iterated at most
k − 1 times leading to absolute constraints with half-integral constant terms at most
k · bmax. Thus, a variable appearing in any of the absolute constraints generated in
this iterative process takes half-integral values in [0, k · bmax].
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When the above iterative substitution process terminates, the only constraints possi-
bly left are some of the original difference constraints, each with an integral constant
term of absolute value at most bmax. Since these constraints are satisfiable, we can
apply Lemma 3.1 to conclude that there exists a solution to these constraints with
each variable taking integral values in [0, (k − 1) · bmax] (since at most k variables
appear in these constraints).

Since k ≤ n, we conclude that there exists a solution to P1 with each component at most
n · bmax.

We now generalize the result to an arbitrary UTVPI polyhedron.

Theorem 3.1. Let P : A · x ≥ b denote an arbitrary UTVPI polyhedron with m constraints
and n variables. If a MFS exists, there exists a MFS with each component half-integral and
in the interval [−n · bmax, n · bmax].

We first illustrate the above theorem with an example.

Example 3.2. Recall Example 2.2, in which we had the unbounded UTVPI polyhedron in
R

2 defined only by the sum constraint x1+x2 ≥ 1, with the single (minimal) face x1+x2 = 1.
For this example, n = 2 and bmax = 1.

The point (100,−99) lies on this face and hence is an MFS. However, we also have the
half-integral MFS ( 1

2 , 1
2), each of whose components lies in the interval [−2, 2].

The proof of the theorem follows.

Proof. (Theorem 3.1) Suppose x∗ is a MFS of P. Let j1, j2, . . . , jk be the set of all column
indices, 1 ≤ j1, j2, . . . , jk ≤ n, such that x∗

jl
< 0 for all l, 1 ≤ l ≤ k. Construct a matrix A′

by multiplying the jlth column of A by −1 for all l, leaving other columns unchanged. We
observe that:

1. The polyhedron P′ : A′ · x ≥ b, x ≥ 0 is also UTVPI.

2. If we construct x′∗ from x∗ by negating x∗
jl

for all l, 1 ≤ l ≤ k, x′∗ satisfies P′. Moreover,
we argue that it is a MFS of P′ as follows:

Let (Ã, b̃) ⊆ (A,b) be the constraints satisfied with equality at x∗, and (Ã′, b̃′) ⊆ (A′,b′)
be the constraints satisfied with equality at x′∗. Then, r(Ã) = r(Ã′), since Ã and Ã′

correspond to the same rows (of A and A′ respectively). Also, note that r(A) = r(A′).
Finally, since (Ã, b̃) define a minimal face of P, r(Ã) = r(A) [29].

Thus, r(Ã′) = r(A′), and so x′∗ is a MFS of P′.

Using an identical argument, we conclude that, from a MFS of P′, we can construct a MFS
of P by negating values to xj1 , xj2 , . . . , xjk

.
Since P′ has a MFS, by Lemma (3.2) it must have a MFS with each component half-

integral and in [0, n · bmax]. It follows that P has a MFS with each component half-integral
and in [−n · bmax, n · bmax].

One can construct examples where an end point of the enumeration domain stated in
Theorem 3.1 is attained. For instance, if the system of constraints comprises the equalities
x1 = bmax, xi − xi−1 = bmax for 2 ≤ i ≤ n − 1, and xn + xn−1 = −bmax, the only MFS has
xj = j · bmax for 1 ≤ j ≤ n − 1 and xn = −n · bmax.
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3.2 Rounding and Semi-Rounding

Definition 3.1. A rational number x is said to be odd half-integral if it is an odd multiple
of 1

2 .

Definition 3.2. A vector z is said to be a rounding of a vector x if z is integral and
||z − x||∞ ≤ 1

2 .

Definition 3.3. A vector z is said to be a semi-rounding of a vector x if all of the following
conditions hold: (1) ||z − x||∞ ≤ 1

2 ; (2) all components of z are half-integral; and (3) if a
component of x is integral, so is the corresponding component of z.

For example, the two-dimensional vectors (1, 1
2) and (1, 1) are both semi-roundings of

the vector (1, 1
3), but only (1, 1) is a rounding of (1, 1

3),

Lemma 3.3. Let a · x ≥ b be a UTVPI constraint. Let x∗ be a half-integral vector such
that a · x∗ > b, and let w∗ be an arbitrary semi-rounding of x∗. Then, a · w∗ ≥ b.

Proof. The proof proceeds by case splitting on the number of variables in the constraint.

1. Suppose the constraint involves only one variable. Then, it is either of the form xi ≥ b

or −xi ≥ b. Correspondingly, we either have x∗
i > b or −x∗

i > b. Since x∗
i is half-

integral, in both cases the LHS exceeds b by at least 1
2 . Thus, any semi-rounding w∗

i

of x∗
i satisfies the constraint.

2. Suppose the constraint has two variables, xi and xj . Then, since x∗
i and x∗

j are both
half-integral, one of the following two cases must hold:

(a) The LHS is integral, and exceeds b by at least 1. But any semi-rounding of x∗
i

and x∗
j can decrease the LHS by at most 1, and hence satisfies the constraint.

(b) The LHS is odd half-integral, i.e., one of x∗
i and x∗

j is integral and the other odd

half-integral. Thus, the LHS exceeds b by at least 1
2 . In this case, any semi-

rounding of x∗
i and x∗

j can decrease the LHS by at most 1
2 , and will satisfy the

constraint.

Since every rounding z of x∗ is also a semi-rounding of x∗, we obtain the following
corollary:

Corollary 3.1. Let a · x ≥ b be a UTVPI constraint. Let x∗ be a half-integral vector such
that a · x∗ > b, and let z be an arbitrary rounding of x∗. Then, a · z ≥ b.

We now state a useful property of Fourier-Motzkin elimination with coefficient normalization.

Proposition 3.1.

Let P : A · x ≥ b denote a UTVPI polyhedron in R
n+1 and x∗ = (x∗

1, x
∗
2, . . . , x

∗
n+1) denote

a half-integral feasible solution to P. Further, suppose that P is lattice point feasible.
Let P′ : A′ · x′ ≥ b′ be obtained from P by projecting out variable xn+1 using Fourier-

Motzkin elimination with coefficient normalization and denote (x∗
1, x

∗
2, . . . , x

∗
n) by x′∗. Then,

there exists a semi-rounding w′∗ of x′∗ such that w′∗ is a solution to P′.
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The statement of this lemma is rather technical; to clarify it, we first give the following
example, and then continue with the proof.

Example 3.3. Let P be the UTVPI polyhedron defined by the following four constraints:

x1 + x2 ≥ 2 −x1 − x2 ≥ −3

x1 − x2 ≥ −1 −x1 + x2 ≥ 0

Pictorially, P is the square in the positive quadrant of R
2 with vertices (1

2 ,
3
2),(1,1),(1,2),( 3

2 ,
3
2).

Two of the vertices of P are lattice points.

If we project out x2 using FM-CN, we obtain the system defined by the two inequalities:

x1 ≥

⌈

1

2

⌉

= 1

−x1 ≥

⌈

−3

2

⌉

= −1

This corresponds to the single-point polyhedron P′ defined by x1 = 1.

Let x∗ = (1
2 , 3

2). Then, x′∗ = 1
2 . Clearly, x′∗ is not in P′. However, we can obtain a

semi-rounding w′∗ = 1 of x′∗ that does lie in P′.

Proof. (Proposition 3.1)
First, note that since P is lattice point feasible, so is P′.

If x′∗ is already a solution to P′ then the theorem holds trivially.

So suppose that x′∗ does not satisfy P′. The only reason this occurs is because x′∗ is
cut off by coefficient normalization, i.e., due to the presence of one or both of the following
situations:

1. There exists at least one variable xi such that P has constraints of the form:

xi − xn+1 ≥ b+
i (1)

xi + xn+1 ≥ b+
i

′
(2)

which result in the following constraint in P′:

xi ≥

⌈

b+
i + b+

i

′

2

⌉

(3)

where, b+
i + b+

i

′
is odd.

Since x′∗ does not satisfy P′, the following equality also holds:

x∗
i =

b+
i + b+

i

′

2
(4)

Let I be the index set of all such variables xi.
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2. There exists at least one variable xj such that P has constraints of the form:

− xj + xn+1 ≥ b−j (5)

−xj − xn+1 ≥ b−j
′

(6)

which result in the following constraint in P′:

xj ≤

⌊

−b−j − b−j
′

2

⌋

(7)

where, b−j + b−j
′
is odd.

Since x′∗ does not satisfy P′, the following equality also holds:

x∗
j =

−b−j − b−j
′

2
(8)

Let J be the index set of all such variables xj .

Note that for some i ∈ I, and j ∈ J , if i = j, then we must have
b+i +b+i

′

2 =
−b−j −b−j

′

2 . But
that would mean that P′ is infeasible, since constraints (3) and (7) would contradict each
other. Hence, we can assume hereafter that the two index sets I and J are disjoint.

We now give a rounding algorithm that generates a semi-rounding w′∗ of x′∗ that satisfies
P′. The rounding algorithm is as follows:

1. Initialize the set of variables to be rounded up, U , to be {xi|i ∈ I}. Similarly, initialize
the set of variables to be rounded down, D as {xj |j ∈ J}.

2. U0 := U , D0 := D, t := 0.

3. Compute Ut+1 and Dt+1 as follows. For every xi ∈ Ut and xj ∈ Dt,

(a) Include in Ut+1 any variable xk such that the following constraints in P′, which
are valid for P, hold with equality at x′∗:

xk − xi ≥ bki (9)

xj + xk ≥ bjk (10)

(b) Include in Dt+1 any variable xk such that the following constraints in P′, which
are valid for P, hold with equality at x′∗:

− xk − xi ≥ b′ki (11)

xj − xk ≥ b′jk (12)

4. If Ut+1 ⊆ U and Dt+1 ⊆ D, stop.

Otherwise, perform the assignments U := U ∪Ut+1, D := D ∪Dt+1, t := t + 1, and go
to step (3).
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It is easy to prove by induction on t, that for any xk ∈ U , k 6∈ I, there either exists i ∈ I

and an integer bki such that

x∗
k − x∗

i = bki (13)

or a j ∈ J and an integer bjk such that

x∗
j + x∗

k = bjk (14)

Similarly, for each xk ∈ D, k 6∈ J , there either exists i ∈ I and an integer b′ki such that

−x∗
k − x∗

i = b′ki (15)

or a j ∈ J and an integer b′jk such that

x∗
j − x∗

k = b′jk (16)

Suppose the two sets U and D are disjoint. Then, to obtain a semi-rounding w′∗ of x′∗,
we round up every variable in U and round down every variable in D.

To complete the proof, the following two sub-goals remain to be established:

1. U ∩ D = ∅.

2. w′∗ satisfies P′.

Assuming the first sub-goal, consider the second sub-goal first. We observe that:

• By Lemma 3.3, any constraints in P′ that are not satisfied with equality at x′∗ will
continue to be satisfied by w′∗.

• From Equations (13)–(16), we note that for all xk ∈ U ∪ D, x∗
k is odd half-integral,

since it is an integral offset from x∗
i or x∗

j for some i ∈ I or j ∈ J .

Thus, for all xk ∈ U ∪ D, there cannot be any absolute constraint involving xk in P′

that holds with equality at x′∗. Thus, by Lemma 3.3, the semi-rounding produced by
the above algorithm satisfies these absolute constraints.

• Steps 3(a) and 3(b) of the rounding algorithm ensure that all two-variable constraints
of P′ satisfied with equality at x′∗ continue to be satisfied by the generated semi-
rounding. For example, if xk − xi ≥ bki is satisfied with equality at x′∗, and x∗

i is
rounded up, so is x∗

k, so the constraint continues to be satisfied.

Thus, if the two sets U and D are disjoint, we can conclude that w′∗ satisfies P′. We
will now show that the former is indeed the case.

The proof is by contradiction. Suppose U ∩D 6= ∅. Let xk be a variable present in both
sets. As we noted before, for any i ∈ I and j ∈ J , i 6= j, so we can assume that k is neither
in I nor in J . We have the following cases, each of which leads to a contradiction:

1. Equations (13) and (16) hold. Then, for some integer bji, we have

x∗
j − x∗

i = bji (17)
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The above equation corresponds to the following inequality derived by adding Inequal-
ities (9) and (12), which is valid for both P and P′:

xj − xi ≥ bji (18)

Further, from Equation (17) and Inequalities (1), (2), (5), and (6), we can conclude
that

− bji = x∗
i − x∗

j ≥ b+
i + b−j (19)

−bji = x∗
i − x∗

j ≥ b+
i

′
+ b−j

′
(20)

Also from Equations (4) and (8), we know that

−bji = x∗
i − x∗

j =
b+
i + b−j + b+

i

′
+ b−j

′

2
(21)

From (19), (20), and (21) above, we infer that b+
i + b−j = b+

i

′
+ b−j

′
= −bji.

Thus, the inequalities in (19) and (20) hold with equality. Also, from Inequalities (1)
and (5), xi − xj ≥ b+

i + b−j is valid for P. Thus, we can conclude that Inequality (18)
holds with equality for P. This further implies that Inequalities (1), (2), (5), and (6)
hold with equality for P.

Since there is a unique solution to Constraints (1), (2), (5), (6) and (18) that satisfies
them with equality, in every feasible solution of P, xi = x∗

i , xj = x∗
j , and xn+1 = x∗

n+1.
Since at least one of x∗

i and x∗
j is odd half-integral, this contradicts the premise that

P has a lattice point solution.

2. Equations (14) and (15) hold. This case is identical to Case (1) above.

3. Equations (14) and (16) hold. Then, we have

x∗
j =

bjk + b′jk

2
(22)

This implies that
bjk+b′

jk

2 =
−b−j −b−j

′

2 .

Further, Equation (22) corresponds to the following valid cut for P′ (i.e., it preserves
lattice point solutions), obtained by adding (10) and (12):

xj ≥

⌈

bjk + b′jk

2

⌉

(23)

However, Constraints (7) and (23) contradict each other, implying that P′ is not
lattice point feasible, which contradicts the theorem’s premise.

4. Equations (13) and (15) hold. This case is identical to Case (3) above.

Thus, U ∩D = ∅ and we obtain a semi-rounding w′∗ of x′∗ as required. This completes
the proof.
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3.3 Main Theorems

We now arrive at the key result of this paper.

Theorem 3.2. Let P : A · x ≥ b denote a UTVPI polyhedron and x∗ denote a half-integral
MFS. If P is lattice point feasible, then it contains a lattice point z such that ||z − x∗||∞ ≤ 1

2 ,
i.e., z is a rounding of x∗.

Proof. We prove the theorem by induction on the length of x.
Base Case: Let x = x ∈ R. If x∗ is a MFS, there exists a constraint x ≥ b that holds

with equality for x∗. Thus, the theorem holds trivially for z = x∗.
Induction Step: Let us assume that the theorem holds for lengths up to n; i.e., for all

polyhedra P defined in terms of vectors x of length up to n.
Consider the case when x ∈ R

n+1. Let x∗ = (x∗
1, x

∗
2, . . . , x

∗
n+1) be a half-integral MFS of

P. If x∗ is integral, we set z to x∗ and we are done. So, let us assume that x∗ has some odd
half-integral entries. Note that if two variables xi and xj appear together in a constraint of
P that holds with equality, either both x∗

i and x∗
j are integral or both are odd half-integral.

Project variable xn+1 out of P using Fourier-Motzkin elimination with coefficient nor-
malization (FM-CN). Let P′ : A′ · x′ ≥ b′ be the resulting system, where x′ ∈ R

n.
Suppose there exists a lattice point solution y = (y1, y2, . . . , yn+1) of P. Thus, y′ =

(y1, y2, . . . , yn) is a lattice point solution of P′.
Consider x′∗ = (x∗

1, x
∗
2, . . . , x

∗
n). We will show that there exists a rounding z′ =

(z1, z2, . . . , zn) of x′∗ which satisfies P′. We consider the following three cases:

Case 1: x′∗ is in the interior of P′, i.e., none of the constraints in A′ · x′ ≥ b′ hold with equality.
By Corollary 3.1, any rounding of x′∗ yields a lattice point solution z′ of P′.

Case 2: Suppose that x′∗ is a solution of P′ that satisfies some constraints with equality. Sup-
pose that for some (A′′, b′′) ⊆ (A′, b′), A′′ · x′∗ = b′′, and the remaining constraints
are strict, i.e., not satisfied with equality. Since x′∗ is a MFS of A′′ · x′ ≥ b′′, by the
induction hypothesis, we can conclude that there exists a lattice point rounding z′ of
x′∗, such that z′ is a solution of A′′ · x′ ≥ b′′. Since, by Corollary 3.1, any rounding
of x′∗ satisfies the strict constraints, z′ is also a lattice point solution of P′.

Case 3: It is possible that after coefficient normalization, x′∗ does not satisfy P′. By Proposi-
tion 3.1, there exists a semi-rounding w′∗ of x′∗ that satisfies P′. Thus, either Case (1)
or Case (2) applies with x′∗ replaced by w′∗, and we can obtain a rounding z′ of w′∗

that is a lattice point solution of P′. Finally, note that a rounding of w′∗ is also a
rounding of x′∗, since integral components of x′∗ are preserved in w′∗. This completes
Case (3).

Thus, we can obtain a lattice point solution z′ of P′ that is a rounding of x′∗.
Since P is UTVPI, and P′ is obtained from P using FM-CN, a lattice point solution

of P′ can be extended to one of P. Thus, there exists an integral zn+1 such that z =
(z1, z2, . . . , zn, zn+1) is a solution of P.

To complete the proof, we show that there exists such an integral zn+1 that is moreover
a rounding of x∗

n+1. Since x∗ is a MFS of P, there exists a subset of constraints (Ã, b̃) of
(A,b) that hold with equality at x∗. The value of xn+1 is constrained only by the values
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of other variables xj such that there exists an equation in Ãx = b̃ in which xn+1 and xj

appear together. Let J be the index set of all such variables xj . We now show that there
exists a rounding zn+1 of x∗

n+1 that satisfies P1 : Ãx ≥ b̃. There are two cases:

1. If x∗
n+1 is integral, so is x∗

j for all j ∈ J . Thus, zn+1 = x∗
n+1 satisfies P1, and we are

done.

2. If x∗
n+1 is odd half-integral, so is x∗

j for all j ∈ J . In this case, we claim that there
exists a consistent way to round x∗

n+1, either up or down, so that the result satisfies
P1. Suppose not, i.e., there exist constraints that force x∗

n+1 to be rounded up as well
as down. There are four instances in which this might occur:

(a) There exist constraints xn+1 − xi ≥ b and xj − xn+1 ≥ b′ in P that hold with
equality at x∗; furthermore, zj = bx∗

jc and zi = dx∗
i e. Thus, we have x∗

j − x∗
i =

b + b′, but zj − zi < b + b′. Since xj − xi ≥ b + b′ is a valid inequality for P, this
means that z does not lie in P, a contradiction.

(b) There exist constraints −xn+1 − xi ≥ b and xj + xn+1 ≥ b′ in P that hold with
equality at x∗; furthermore, zj = bx∗

jc and zi = dx∗
i e. This case is identical to

Case (2a) above.

(c) There exist constraints xj − xn+1 ≥ b and xj + xn+1 ≥ b′ in P that hold with
equality at x∗, with zj = bx∗

jc. Thus, 2x∗
j = b + b′. Since, x∗

j is odd half-integral,
b+b′ must be an odd integer. Moreover, 2zj < b+b′. However, since 2xj ≥ b+b′

is a valid inequality for P, this means that z does not lie in P, a contradiction.

(d) There exist constraints xn+1 − xi ≥ b and −xn+1 − xi ≥ b′ in P that hold with
equality at x∗, with zi = dx∗

i e. This case is identical to Case (2c) above.

Thus, there exists a consistent way to round x∗
n+1 either up or down and satisfy every

constraint in P1. Let zn+1 be this rounding.

Applying Corollary 3.1, any rounding of x∗ satisfies the constraints in (A,b) \ (Ã, b̃).
Thus, we can obtain a rounding z of x∗ that is a lattice point solution of P.

From Theorem (3.1) and Theorem (3.2), we can conclude the following theorem.

Theorem 3.3. Let P : A · x ≥ b denote a UTVPI polyhedron with m constraints and n

variables. Then, P has enumeration bound n · bmax.

The above result is easily generalized for arbitrary UTVPI formulas.

Theorem 3.4. Let φ denote a UTVPI formula with m constraints, n variables, and let
bmax be the maximum over the absolute values of constant terms appearing in φ. Then, φ

has enumeration bound n · (bmax + 1).

Proof. If φ has a satisfying integer solution, that solution must satisfy one of the terms
in the disjunctive normal form (DNF) of φ. Each term in the DNF representation of φ is
a UTVPI polyhedron in which the constant term in any constraint has absolute value at
most bmax + 1 (we use bmax + 1 in place of bmax to account for eliminating negations on
constraints). It follows that there is a solution to φ in [−n · (bmax + 1), n · (bmax + 1)].
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3.4 Approximation Results for Optimization

Consider the problem of optimizing an arbitrary linear function over a UTVPI polyhedron
P. This problem is NP-hard (minimum vertex cover is a special case). As a corollary of
Theorem (3.2), we obtain the following theorem showing that one can approximate the
optimal value to within an additive factor.

Theorem 3.5. Let P = {x : A · x ≥ b} denote a UTVPI polyhedron that contains a lattice
point. Let the integer linear program be max c · x : x ∈ P.

If the optimum value is finite, solving the LP-relaxation and rounding the resulting
solution yields a feasible lattice point that approximates the optimum to within an additive

factor of ±
Pn

j=1
|cj |

2 . If the LP-relaxation is unbounded, so is the integer program.

Proof. If the optimum value v∗ of the LP-relaxation is finite, it is attained at a MFS x∗.
The MFS x∗ must be half-integral [17]. Since P is lattice point feasible, by Theorem 3.2,
there exists a lattice point z in P such that such that ||z − x∗||∞ ≤ 1

2 . It follows that c · z

is within ±
Pn

j=1
|cj |

2 of v∗, and hence of the integer optimum.
If the LP-relaxation is unbounded, so must be the integer program, since P is lattice

point feasible [24].

Moreover, an approximate solution can be obtained in polynomial time in the following
three steps:

1. Check whether P is lattice point feasible using Fourier-Motzkin elimination with coeffi-
cient normalization. If P is lattice point infeasible, stop.

2. If P is lattice point feasible, solve its LP-relaxation. If it is unbounded, we conclude that
the original IP is also unbounded. Otherwise, the optimum is attained at a MFS x∗.

3. Round x∗ to obtain an integer solution that is within ±
Pn

j=1
|cj |

2 of the optimum. The
rounding is performed as follows. For each variable xi that has an odd half-integral
value x∗

i , we check whether adding the constraint xi = dx∗
i e to P preserves lattice point

feasibility. If not, we set xi to bx∗
i c and iterate, picking another variable to round, until

we have obtained a feasible integer solution.

It is easy to see that each step can be performed in polynomial time. Notice that if lattice
point feasibility is preserved by setting xi either to dx∗

i e or to bx∗
i c, the direction of rounding

can be chosen heuristically to obtain a tighter approximation.
Our approximation theorem is general, in that it applies to any UTVPI integer program,

including non 0-1 programs with arbitrary coefficients in the objective function. However,
the approximation factor is additive, and the result is more likely to be useful for non 0-1
programs. In contrast, the results of Hochbaum et al. [17] guarantee a 2-approximation for
UTVPI integer programs expressed as a minimization problem where the objective function
is required to have non-negative coefficients.

4. Experimental Evaluation

We now present experimental results demonstrating that a decision procedure based on
the solution bound derived in this paper can be competitive with other state-of-the-art
procedures.
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4.1 Implementation

We implemented a SAT-based decision procedure based on finite instantiation. The proce-
dure operates in three steps.

First, given a UTVPI formula φ, it computes the enumeration bound n · (bmax + 1).
Second, it translates the input UTVPI formula to a Boolean formula by replacing each
integer variable by a finite-precision, signed bit-vector that can take any value in the range
[−n · (bmax + 1), n · (bmax + 1)]. Arithmetic and relational operators are then encoded as
arithmetic circuits and comparators. Our implementation encodes addition using ripple
carry adders and relational operators using the standard comparators for signed integer
equality and less-than comparison (e.g., in the latter case, the sign bit is compared first
and then the remaining bits); changing the encoding of arithmetic circuits was found not
to have any significant impact on run time.

Let φbool denote the resulting Boolean formula. Clearly, φbool is satisfiable if and only
if φ is satisfiable. Thus, the final step consists of invoking a SAT solver on φbool. Notice
that the translation to SAT takes polynomial time and that the size of φbool is polynomial
in that of φ.

Note that the derived solution bounds can be used in other ways. For instance, the
numeric bounds can be imposed on variables and conjoined with the rest of the formula
before invoking a theorem prover on it.

Our decision procedure was implemented in UCLID [6], which is written in Moscow ML,
a dialect of Standard ML. For our experiments, UCLID invokes the MiniSat SAT solver [12].
Note that any alternative SAT solver can be employed just as easily.

4.2 Setup

Our benchmarks include the “RTCL” family of SMT-LIB benchmarks, 36 in all, most
of which are unsatisfiable. Even though all but two of these benchmarks do not contain
sum constraints (i.e., all but two are purely difference logic formulas), we retained the full
set of benchmarks for completeness. However, as mentioned later in this section, these
benchmarks are very easy to solve. Therefore, our experimental evaluation also includes a
set of randomly generated UTVPI formulas.

We generated the random UTVPI formulas as “circuits” involving Boolean operators
where the inputs to the circuit are UTVPI constraints rather than being Boolean variables.
Each formula was generated based on 3 parameters: the maximum number of variables, an
upper bound on the size of the constant term, and the maximum depth of the circuit. We
varied the maximum number of variables over the set {500, 1000}, the constant term upper
bound over the set {16, 256, 4096, 65536}, and the maximum circuit depth over {14, 15}.
(The parameter ranges were selected so that the run-times of the solvers varied from a few
seconds to several minutes.) For each choice of these three parameters, we generated a
formula using one of two different random seeds; the seed was used in generating, at each
level in the circuit, either a randomly chosen Boolean operator or a UTVPI constraint. The
variables and constant term in each UTVPI constraint were randomly generated as well.
This procedure generated a total of 32 formulas of which 12 are unsatisfiable. 3.

3. All random benchmarks are available in SMT format at http://www.cs.cmu.edu/~uclid/utvpi-smt.tgz

83

http://www.cs.cmu.edu/%7Euclid/utvpi-smt.tgz


S. A. Seshia et al.

We compared UCLID against the top three decision procedures in integer linear arith-
metic category of the recent SMT-COMP 2006 competition: Yices [11], MathSAT [5], and
Ario [31]. Experiments were run on a Linux workstation with a 2.8 GHz Xeon processor
and 2 GB of RAM. A timeout of 1800 seconds was imposed on each run.

4.3 Comparison with Yices

We give a detailed comparison with Yices, the winning solver in the 2006 SMT-COMP
competition, as statistics on its usage were easily generated for further analysis. Yices uses
a Simplex-based solver for integer linear constraints within a DPLL(T) framework [10].

Figure 1 compares UCLID’s total time (time for both encoding and SAT solving) to
that taken by Yices. In each plot, the y-coordinate of a point is the time taken by UCLID,
and the x-coordinate is the time taken by Yices. We also plot the diagonal line y = x in
each plot. Thus, points below the diagonal correspond to benchmarks on which UCLID
outperforms Yices, while points above it correspond to benchmarks on which UCLID is
outperformed. The points corresponding to Random benchmarks are indicated by a star
while those corresponding to RTCL SMT-LIB benchmarks are indicated by a circle.

On all but two RTCL benchmarks (these being both difference logic formulas), Yices
outperforms UCLID. Note that these benchmarks are extremely easy to solve, with run-
times for both solvers being less than a second on each.
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Figure 1. Experimental comparison of UCLID versus Yices for UTVPI formulas.

Note the log scale on both axes. The timeout is 1800 seconds.

Next, consider the results on randomly generated benchmarks.
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Observe that there are two distinct clusters of benchmarks. The first cluster, on the left,
comprises 24 benchmarks on which Yices outperforms UCLID, in many cases by two orders
of magnitude. These benchmarks include all 12 unsatisfiable formulas. On re-running Yices
again on these examples with the “statistics generation flag” turned on, we observed that
the number of conflicts reported for these benchmarks is extremely small, ranging from 1
to a few hundred. UCLID’s run-time on these benchmarks is on the order of a few seconds
to a few minutes; the encoding times and SAT times are comparable in most cases.

The cluster on the right, comprising the remaining 8 satisfiable formulas, behaves quite
differently. Yices times out on each of these formulas. UCLID is able to finish within the
timeout on 5 of these, with the largest run-time being 622 seconds of which 480 seconds is
spent in SAT solving. As we did for the preceding cluster, we re-ran Yices with statistics
generation turned on. This time, we found that the number of conflicts was about 50, 000
while the number of decisions ranged close to 10 million. We also learned that Yices’
Simplex-based solver [10] performs a lot of pivoting operations for these benchmarks.4.

To summarize, while Yices outperforms UCLID on the majority of Random benchmarks,
there are some examples where UCLID’s enumerative approach works significantly better.
The Yices run-times appear to track the number of decisions and conflicts, indicating that
the main difficulty lies in enumerating a polyhedron with a feasible integer point. The large
number of pivots on some benchmarks indicates that, for those instances, finding a feasible
integer solution once the right polyhedron is enumerated can also be non-trivial. UCLID’s
SAT-based finite instantiation approach focuses the search on models within the solution
bound, and the SAT solver can learn clauses that not only rule out infeasible combinations
of UTVPI constraints, but also more complex relations amongst values to variables. It
would be interesting to combine the two approaches, mixing a UCLID-style search over
models with a Yices-style search for a lattice point feasible polyhedron.

4.4 Comparison with other solvers

We now describe the experimental results comparing UCLID’s performance to that of Math-
SAT [5] and Ario [31] on both RTCL and Random benchmarks.

The MathSAT solver for linear arithmetic uses an incremental and layered approach [4],
wherein satisfiability of partial assignments to Boolean-valued predicates (linear constraints)
is checked by solvers in theories of increasing expressiveness (in order, equalities, difference
logic, linear arithmetic over reals, and finally integer linear arithmetic). The Ario solver
integrates a SAT engine and two linear arithmetic solvers: one dedicated to solving UTVPI
constraints, while the other handles non-UTVPI linear constraints [32]. The solver for
UTVPI constraints uses a transitive-closure algorithm and is tightly integrated with the
SAT engine to provide implications and conflict-induced learned constraints.

The comparison of UCLID’s run-times with MathSAT and Ario SMT solvers is shown in
Figures 2 and 3 respectively, using the same format as in Figure 1. In both cases, UCLID’s
enumerative approach outperforms the competing solver on most of the Random and RTCL
benchmarks. MathSAT’s performance on the majority of these benchmarks is significantly
better than that of Ario; the latter is the only solver that takes more than a few seconds

4. Personal communication with B. Dutertre and N. Shankar.
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Figure 2. Experimental comparison of UCLID versus MathSAT for UTVPI

formulas. Note the log scale on both axes. The timeout is 1800 seconds.

on some of the RTCL benchmarks. Ario did not finish within the timeout on any of the
unsatisfiable Random benchmarks, while there was no such pattern in the case of MathSAT.

It is rather surprising that Ario’s dedicated UTVPI solver does not help very much;
one reason might be the overhead of communication between the UTVPI and SAT engines
for unsatisfiable formulas over many UTVPI constraints. We believe that Yices’ careful
design of the Simplex-based solver is a major reason for its superior performance on these
benchmarks compared to MathSAT and Ario. In particular, one innovative idea in Yices
that seems effective is the decomposition of the linear arithmetic formula into a homogeneous
system of linear equations and a formula only over single-variable inequalities [10]. This
simplification technique results in far fewer changes to the Simplex tableau as the search
over Boolean (abstract) models proceeds, and also permits a significant reduction in the
size of the tableau using Gaussian elimination.

5. Conclusion

We have proposed a new approach to deciding the satisfiability of Boolean combinations of
UTVPI constraints. The central insight is that it is sufficient to search for bounded solutions,
where each variable is restricted within the finite range [−n · (bmax +1), n · (bmax +1)]. The
solution bound we derive improves over previous results by an exponential factor. The key
step in our derivation is a novel result for UTVPI polyhedra on finding integer solutions
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Figure 3. Experimental comparison of UCLID versus Ario for UTVPI formulas.

Note the log scale on both axes. The timeout is 1800 seconds.

by rounding minimal face solutions. Experiments demonstrate the efficacy of a SAT-based
decision procedure based on our theoretical results.

It would be interesting to extend our results to Boolean combinations of linear con-
straints that comprise mostly UTVPI constraints. Previous work [30] has shown that, for
Boolean combinations of mostly difference constraints, the exponential term in the solution
bound depends only on the number and coefficients of the non-difference constraints. It is
still open as to whether a similar result can also be obtained for formulas of mostly UTVPI
constraints.
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