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Abstract

The last few years have seen the advent of a new breed of decision procedures for
various fragments of first-order logic based on propositional abstraction. A lazy satisfiability
checker for a given fragment of first-order logic invokes a theory-specific decision procedure
(a theory solver) on a (partial) model for the abstraction. If the model is found to be
consistent in the given theory, then a model for the original formula has been found.
Otherwise, a refinement of the propositional abstraction is extracted from the proof of
inconsistency and the search is resumed. We describe a theory solver for integer difference
logic that is effective when the formula to be decided contains equality and disequality
(negated equality) constraints so that the decision problem partakes of the nature of the
pigeonhole problem. We propose a reduction of the problem to propositional satisfiability
by computing bounds on a sufficient subset of solutions, and present experimental evidence
for the efficiency of this approach.
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1. Introduction

Decision procedures for fragments of first-order logic have been the subject of intense
scrutiny in the last few years. On the one hand, emerging applications like model checking
of infinite state systems rely on such decision procedures for tasks like predicate abstrac-
tion [1]. On the other hand, algorithmic advances have significantly increased the range of
problems that can be tackled, and hence have stimulated interest.

In particular, dramatic increase in performance of propositional satisfiability (SAT)
solvers has led to the development of decision procedures that rely on the propositional
abstraction of formulae from more expressive logics like the logic of linear arithmetic con-
straints, Presburger arithmetic, or the logic of equality and uninterpreted function symbols
(EUF). The propositional abstraction of a formula is obtained by replacing the atomic
formulae of the specific theory (e.g., x − y ≤ 5 or f(x) = f(y), where f is an uninter-
preted function symbol) with fresh propositional variables. Each model of the abstraction
maps to a conjunction of literals in the original formula that can be checked for consis-
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tency with theory-specific procedures. If such a procedure establishes consistency, then the
given formula is satisfiable and the enumeration terminates. Otherwise, from the proof of
inconsistency a refinement of the propositional abstraction is extracted and the search is
resumed.

There are several ways to combine the propositional reasoning engine with the theory-
specific procedures. One broad classification is into lazy and eager approaches. A lazy solver
produces an initial propositional approximation that is concise and possibly quite coarse; it
relies on refinements during the enumeration of solutions. By contrast, an eager solver adds
constraints to the initial propositional abstraction that embody known relationships among
the literals. An example is given by the constraints that encode transitivity of equality. The
most effective solvers often adopt elements of both approaches and tailor their strategies to
the theory (theories) at hand.

In this paper we focus on Integer Difference Logic (IDL), in which arithmetic atomic
formulae constrain the difference between the values of pairs of integer variables. This logic
finds extensive application to problems involving timing and scheduling constraints, resource
allocation, and program analysis. IDL is closely related to Real Difference Logic (RDL), to
the point that a decision procedure for the latter based on propositional abstraction also
works for the former, as long as the coefficients are integers. It is sufficient to rewrite
each equality constraint (of the form x − y = n) as the conjunction of two inequalities.
However, if an equality constraint is negated, then the conjunction turns into a disjunction,
which requires case splitting in the enumeration of the propositional solutions. In contrast,
we propose an approach that does not decompose equalities and their negations; rather, it
converts the problem of checking satisfiability of a conjunction of arithmetic atomic formulae
into a set of propositional satisfiability checks—whose cardinality is bounded by the number
of strongly connected components (SCC) of a suitable constraint graph.

The conversion to propositional satisfiability that we propose is based on the ability to
bound the values of the integer variables that appear in the formula. While in general such
variables are not bounded, we show that to decide satisfiability of a set of constraints whose
graph is a single SCC it is sufficient to consider a subset of the solutions for which bounds
are easily established. We also show how the general case can be efficiently solved given
solutions for the individual SCCs of the constraint graph. Experiments show that our new
approach, which combines techniques typical of both the lazy and the eager approaches,
greatly improves the efficiency of our decision procedure for problem instances in which
disequalities play a significant role, and makes it very competitive with respect to state-of-
the-art tools.

This paper is an extended verision of [17] and is organized as follows: Section 2 reviews
background and introduces notation. Section 3 and Section 4 discuss the minimizing the
abstract models and the bounds on solutions, while Sect. 5 deals with the implementation
of our theory solver. After a survey of related work in Sect. 6, experiments are presented
in Sect. 7, and conclusions are offered in Sect. 8.

2. Preliminaries

Let P be a set of propositional variables and X a set of integer-valued variables. We define
inductively integer difference logic (IDL) formulae as follows.
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• p ∈ P is a (propositional atomic) IDL formula.

• x− y ≤ n and x− y = n are (arithmetic atomic) IDL formulae, for x, y ∈ X, n ∈ Z.

• If ϕ and ψ are IDL formulae, so are ϕ ∧ ψ and ¬ϕ.

The following abbreviations are also defined:

x− y < n
.
= x− y ≤ n− 1 x− y 6= n

.
= ¬(x− y = n)

x = y
.
= (x− y = 0) x 6= y

.
= ¬(x = y) .

A literal is an atomic formula, or the negation of an atomic formula. A clause is the
disjunction of a set of literals, and a formula in conjunctive normal form (CNF) is the
conjunction of a set of clauses. Note that x − y = n could be defined as an abbreviation
((x− y ≤ n) ∧ (x− y ≥ n)). We choose not to do so to stress that our algorithm does not
split equalities or disequalities (as mentioned in Sect. 1) and also to keep the definition of
clausal formulae simple.

A (partial) interpretation for an IDL formula ϕ is a pair of (partial) functions α : X → Z
and β : P → {false, true}. If (partial) interpretation (α, β) is such that replacing each
variable x ∈ X with α(x), and every variable p ∈ P with β(p) in ϕ produces a true
statement, it is called a (partial) model. A formula is satisfiable if it has a model, and is
valid if every interpretation is a model. If a conjunction of literals ϕ is not satisfiable, then
a (minimal) explanation for the unsatisfiability of ϕ is the conjunction of a (minimal) subset
of the literals in ψ that is not satisfiable.

Propositional logic is the fragment of IDL obtained by omitting the rule that defines
arithmetic atomic formulae. Efficient algorithms to decide the satisfiability of proposi-
tional logic formulae are based on the DPLL procedure [7, 6], and exploit techniques like
clause recording, conflict analysis, nonchronological backtracking, and fast Boolean con-
straint propagation [26, 22].

In recent times, decision procedures for IDL, and other fragments of quantifier-free first-
order logic, have been based on the DPLL procedure as well. Given a set of propositional
variables B such that B ∩ P = ∅, one obtains a propositional formula ϕb from an IDL

formula ϕ by replacing each arithmetic atomic subformula of ϕ with a distinct variable from
B. The resulting formula ϕb is unsatisfiable only if ϕ is unsatisfiable. Each model of ϕb

corresponds to a conjunction of literals of ϕ. Given a decision procedure for the conjunction
of arithmetic atomic propositions in IDL (a theory solver), one therefore derives a complete
decision procedure for IDL by enumerating the models of ϕb, extracting from each of them
the corresponding conjunction of arithmetic atomic propositions and their negations, and
checking these conjunctions for satisfiability using the theory solver. In the following, we
refer to the conjunction of a set of arithmetic literals as a set of IDL constraints.

The theory solver rewrites the IDL constraints to be checked according to their form:

1. x− y ≤ n: unchanged;

2. x = y: unchanged;

3. x− y = n, with n 6= 0: split into (x− y ≤ n) ∧ (y − x ≤ −n);
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4. ¬(x− y ≤ n): rewritten as y − x ≤ −n− 1;

5. ¬(x = y): rewritten as x 6= y;

6. ¬(x− y = n), with n 6= 0: rewritten as x− y 6= n.

Constraints of type 1, 3, and 4 are inequalities (I). Constraints of type 2 are equalities
(Q), and finally, constraints of type 5 and 6 are disequalities (D). Specifically, constraints
of type 5 form the set D0 ⊆ D. Let C = I ∪Q ∪D.

An edge integer-labeled directed graph is a triple G = (V,E, λ), where V is a set of
vertices, E ⊆ V × V is a set of edges, and λ : E → Z is an edge labeling function. A
strongly connected component (SCC) of G is a maximal subgraph G′ of G such that every
two nodes of G′ are connected by a path in G′. An SCC is trivial if it consists of one vertex
and no arcs. The SCCs of G define a partition of V . The SCC quotient graph Ĝ = (V̂ , Ê)
of G is a directed acyclic graph with one vertex for each SCC of G and an edge (A,B) ∈ Ê
if and only if there exist x ∈ A and y ∈ B such that (x, y) ∈ E.

Given a distinguished source vertex s ∈ V , distances of all vertices from s are well defined
provided there exists no negative cycle in G; that is, no cycle such that the sum of the labels
on the edges along the cycle is negative. The Bellman-Ford algorithm [5] reports negative
cycles if they are present, and computes the distance δ(x) of each vertex in V from the source
s otherwise. The slack of an edge (x, y) ∈ E is given by σ((x, y)) = λ((x, y))− (δ(y)−δ(x)).
It is easy to see that for all e ∈ E, σ(e) ≥ 0 and that σ((x, y)) = 0 if and only if (x, y) is
on a shortest path from s to y in G. Distances and slacks obviously depend on the choice
of source vertex.

Given a (finite) set I of inequality constraints (i.e., of the form x−y ≤ n), their constraint
graph G = (V,E, λ) is a labeled directed graph defined as follows:

• V ⊆ X is the set of variables appearing in the constraints in I.

• There is an arc (x, y) ∈ E with λ((x, y)) = n if and only if there is a constraint
y − x ≤ n in I.

It is well known [5] that I is satisfiable if and only if G contains no negative cycle. In fact,
adding both sides of the constraints forming a cycle of length w, one gets 0 ≤ w, which is
not satisfiable when w < 0. If, on the other hand, no negative cycle exists in G, then one
can find a model for I by solving a single-source shortest-path problem on an augmented
graph Ga, obtained from G by adding a new reference vertex xr and arcs labeled 0 from xr

to all the other vertices. Let δ(x) be the distance of x ∈ V from xr in Ga. Then δ is a model
for I. It is also well known that, given a model of I, α : V → Z, and a constant, c ∈ Z,
the interpretation α′ : V → Z defined by α′(x) = α(x) + c is also a model of I, because
α′(x)− α′(y) = α(x)− α(y). This observation allows an easy encoding of range constraints
in IDL. A set of constraints {li ≤ xi ≤ ui} is translated to {xi − y ≤ ui} ∪ {y − xi ≤ −li},
where y is a fresh variable. The solution α obtained from the constraint graph is then
translated so that α′(y) = 0. One fresh variable suffices for multiple range constraints.

Since integer labels imply integer distances, if the right-hand sides of the constraints
are integer-valued, and the constraints are satisfiable when the variables range over the real
numbers, then an integer-valued solution is also guaranteed to exist. Loosely speaking, the
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satisfiability problem for inequalities is the same for IDL and real difference logic (RDL).
Adding equality constraints to the inequalities does not change this state of affairs: Given
a constraint x − y = n, one replaces x by y + n; if no immediate inconsistencies arise,
one continues with the construction of the constraint graph. In contrast, if disequality
constraints (i.e., negations of equalities) are allowed, an unsatisfiable conjunction of IDL

constraints may be satisfiable when regarded as an RDL formula. An example is given by∧
1≤i≤p(1 ≤ xi ≤ h) ∧

∧
1≤i<j≤p(xi 6= xj), which exemplifies the pigeonhole principle.1.

3. Minimizing the Abstract Models

Given the set of clauses ϕb and a complete model for them produced by the propositional
reasoning engine, we consider now the problem of identifying a minimal (partial) model such
that at least one literal for each clause is true. The intent of finding such minimal model is
twofold: to alleviate the task of the theory solver and to make the exploration of the models
of ϕb more efficient. A greedy solution to our problem is easily obtained by considering each
variable in turn and removing it from the model if no clause becomes unsatisfied as a result.
We now describe how such a solution can be implemented efficiently in the context of the
algorithm that enumerates the solutions to the propositional abstraction. That is, we show
how we can take advantage of the information gathered by the propositional SAT solver to
significantly speed up the choice of the minimal model.

Two observations from [25] provide the foundation for our method. The first is that
no variable that received its value by implication (rather than decision) by the SAT solver
can be removed from the model. This fact greatly reduces the number of variables that are
candidates for removal. The second observation concerns the list of watched literals and
assumes that only two literals are watched by the SAT solver [22]. It can then be shown
that when a complete model is found, at least one watched literal in every clause is true.
Therefore, when considering a variable for removal it is sufficient to check if it provides
the only true literal in the clauses in which the satisfied literal of the variable is watched.
The clauses in which that literal is not watched can be safely ignored. Moreover, conflict
clauses recorded by the SAT solver do not need to be examined because they are known to
be satisfied whenever the original clauses are satisfied.

When a clause in which the candidate literal is watched is examined, a substitute literal
that is true is sought so as to maintain the invariant. If there is no substitute and the other
watched literal is false, the candidate is rejected. On the other hand, if this process manages
to empty the watched-literal list of the candidate (except possibly for conflict clauses), the
candidate is removed from the model.

The effect of the minimization procedure is to alter the watched-literal lists of the solver.
However, the enumeration process can resume from the modified lists without any adverse
consequence. The algorithm that we have described runs in polynomial time, but only
guarantees a minimal set of variables. Reduction from set covering shows that deciding
whether a model of size k exists for a set of propositional clauses is NP-complete.

The order in which literals are considered for removal depends on the constraints they
represent. The check for consistency of a set of constraints tends to be easier if disequal-

1. This does not contradict what was observed in Sect. 1 because x 6= y translates into (x < y) ∨ (y < x)
for RDL, but translates into (x ≤ y − 1) ∨ (y ≤ x − 1) for IDL.
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ity constraints are the first candidates for elimination. They are followed by inequality
constraints, and finally equality constraints, in that order.

4. Bounds on Solutions

In this section we show how bounds to the solutions of a set of constraints are computed
and how those bounds are used in checking for consistency of (partial) interpretations of ϕb.
Two cases must be distinguished depending on whether the interpretation to be checked is
known to be a model of ϕb: If it is not known to be a model, a cheap check is applied, which
can only report inconsistency. Otherwise, a more expensive, complete check is applied in
addition, which decides consistency and computes a model of ϕ if it exists.

4.1 Bound Computation

It was recalled in Sect. 2 that from a solution α to a set of inequality constraints, one can
derive a family of solutions {α+ c}. In general, however, not all solutions are obtained one
from the other by translation. Consider the constraints {(x − y ≤ 1), (y − x ≤ 0)}. The
two interpretations α1(x) = 0, α1(y) = 0 and α2(x) = 1, α2(y) = 0 satisfy the constraints,
though there is no c such that α1 = α2 + c. Such solutions are called independent. In
general, there may be several families of independent solutions, and therefore, multiple
distinct solutions that assign a given value to a distinguished variable. The following result
characterizes these sets of solutions and forms the basis for our treatment of disequality
constraints in IDL.

Theorem 1. Let I be a set of inequality constraints. Let G = (V,E, λ) be the constraint
graph associated to I. Suppose that G contains no negative cycle and consists of one SCC.
Let δab be the distance from a to b in G. For x ∈ V and n ∈ Z, let Sn

x be the set of solutions
α : V → Z to I such that α(x) = n. Then, for each vertex y ∈ V , there exist bounds
yl = n− δyx and yu = n+ δxy, such that for every solution in Sn

x , yl ≤ α(y) ≤ yu.

Proof. By definition of SCC, every vertex in V is reachable from x in G; likewise, x is
reachable from any vertex in G. Let δxy be the distance of y from x (the length of a shortest
path). Such a distance is defined because there are no negative cycles in G. Adding both
sides of all the constraints along the path yields y − x ≤ δxy. Therefore, for every solution
α ∈ Sn

x , it must be α(y) ≤ n+δxy. Said otherwise, yu = n+δxy. For the lower bound, if δyx

be the distance of x from y in G, then, for every solution α ∈ Sn
x , it must be α(y) ≥ n−δyx;

that is, yl = n− δyx.

Satisfaction of disequalities is not affected by translation. Therefore, a set of constraints
including both inequalities and disequalities is satisfiable if and only if there exists a solution
α such that α(x) = n. This allows us to limit the search to the set Sn

x for an arbitrarily
chosen n. Theorem 1 asserts that solutions in this set are bounded. The way this result
is exploited depends on whether the set of constraints corresponds to a model of ϕb. The
next two subsections discuss the two cases.
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4.2 Inconsistency Check for Partial Interpretations

Given a partial abstract interpretation that is not known to be a model of ϕb, we want
to check the corresponding constraints for inconsistency to prune the search space (as in
theory propagation) or to possibly avoid the more expensive check of Section 4.3. A set
of constraints is assumed to be given along with ranges for every variable in them. It is
also assumed that the graph has one SCC. If that is not the case, each SCC is checked in
turn: The constraints are inconsistent if at least one SCC is inconsistent. Though the check
described in the next section could be applied in this case, we are interested in a cheaper
criterion.

The quick check for inconsistency is based on two observations: The first is that if
all variables in the SCC have the same range, then the disequalities define a graph whose
chromatic number must not exceed the size of the range for the constraints to be satisfiable.
(The chromatic number is the least number of colors needed to assign different colors to
adjacent vertices in the graph.) The second observation is that the chromatic number of a
graph is bounded from below by the size of a clique of the graph and from above by the
number of vertices. From these observations, it is easy to prove the following theorem.

Theorem 2. Let D0 be a set of disequality constraints of the form xi − xj 6= 0. Let
X = {x1, . . . , xn} be the set of variables in D0. Let L = {l1, . . . , ln} ∈ Zn and U =
{u1, . . . , un} ∈ Zn be the bounds on the variables in X (li ≤ xi ≤ ui). For yl, yu ∈ Z, let
Γ = {γ1, . . . , γp} be the subset of X such that

Γ = {xi ∈ X | yl ≤ li ∧ ui ≤ yu} .

Let ρ = yu − yl + 1. Let GD = (V,E) be the disequality graph associated to D0, such that
V = {v1, . . . , vn} and {vi, vj} ∈ E if and only if xi − xj 6= 0 ∈ D0 or xj − xi 6= 0 ∈ D0. If
GD contains a clique of size greater than ρ then D0 is inconsistent.

Example 1. Consider the set of disequality constraints D0 = {(x − y 6= 0), (y − z 6=
0), (z − x 6= 0)} with variables y, z that have the same range, 0 ≤ y, z ≤ 1, and variable
x that has range 0 ≤ x ≤ 0 which is a subset of the common range. Let yl = 0 and
yu = 1; then Γ = {x, y, z}. A clique consisting of variables x, y, z is present in GD. Since
|Γ| = 3 > 2 = ρ, the constraints are inconsistent. An explanation of inconsistency consists
of the disequality constraints {(x − y 6= 0), (y − z 6= 0), (z − x 6= 0)} and the inequality
constraints that generated the range, 0 ≤ y, z ≤ 1, 0 ≤ x ≤ 0.

The check based on Theorem 2 results in one of three outcomes: A suitable clique has
been found and inconsistency is declared; a large enough clique was not found because
of the heuristic nature of the algorithm; a large enough clique is known not to exist. In
the first case, an explanation of inconsistency is derived from the disequalities forming the
clique and the inequalities responsible for the bounds. In the last two cases, the result is
inconclusive, because the chromatic number of a graph can be arbitrarily larger than the
size of the largest cliques. However, if a large enough clique does not exist in the graph, and
the interpretation is not known to be a model, we avoid a full check for inconsistency, which
is rather expensive and likely to fail. (If the interpretation is a model, on the other hand,
the consistency check must be performed for the whole decision procedure to be sound.)
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4.3 Consistency Check for Abstract Models

If the constraints correspond to a model of ϕb, we want to decide consistency and compute
a model of ϕ in case the answer is affirmative. For this, we resort to finite instantiation.
Specifically, we can encode each integer variable with enough binary variables to span its
range and translate the satisfiability problem for a conjunction of inequality and disequality
constraints into a propositional satisfiability problem.

Theorem 1 applies when the constraint graph consists of one SCC. If that is not the
case, we examine the SCC quotient graph one SCC at the time. If there is no negative cycle
in the constraint graph G, the only reason for unsatisfiability is the inability to satisfy the
disequalities within some SCC of G. Therefore, if the finite instantiation of each SCC is
satisfiable, the entire set of constraints is satisfiable. This can be shown as follows.

Let G be the constraint graph. Extend G by adding one edge for every disequality
constraint x− y 6= n (where n may be 0) such that x and y belong to different SCCs. Let
� be the preorder defined by u � v if there is a path in G from u to v. (The preorder
is updated after each edge addition.) If x � y, add y − x ≤ −n − 1 to E; if y � x, add
x − y ≤ n − 1. If x and y are not comparable in the preorder, add either y − x ≤ −n − 1
or x − y ≤ n − 1, but not both. Note that adding these edges does not create cycles, and
therefore does not change the SCCs of G. (See Sect. 5.)

Let Ĝ = (V̂ , Ê) be the SCC quotient graph of the extended G. Consider the vertices in
V̂ starting from the minimal SCCs (those with no predecessors) and proceeding in a chosen
topological order. Let Ai be the i-th SCC in that order and let αi be a solution for the
constraints corresponding to its edges. Inductively assume that βi−1 is a solution for the
constraints in the subgraph induced by

⋃
0<j<iAj . Let k be the maximum amount by which

any constraint corresponding to an edge into Ai is violated. (Let k = 0 if no such violation
exists.) Finally, let α′

i = αi − k. Then, βi = βi−1 ∪α
′ is a solution for the constraints in the

subgraph induced by
⋃

0<j≤iAi.

5. Algorithm

We assume a decision procedure for IDL based on propositional abstraction. The given
IDL formula ϕ is translated into a propositional formula ϕb as described in Sect. 2. A
propositional reasoning engine enumerates the models to ϕb and calls the theory solver to
determine whether that abstract model corresponds to a consistent interpretation of the
integer-valued variables.

The theory solver for IDL is relatively efficient. Therefore, it is advantageous to call it also
on a partial interpretations to terminate the fruitless search of part of the state space, or to
learn so-called theory consequences [23]. Our implementation follows this approach, though
the equality constraints (x− y = n 6= 0) are split and the full check for inconsistencies due
to disequalities is applied only to abstract models. (See lines 38–42 of Fig. 1.) We omit the
details of the incremental implementation of the Bellman-Ford algorithm. The interested
reader is referred to [30].
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5.1 The Theory Solver

The theory solver is called with a collection of arithmetic literals whose corresponding
propositional literals are true in a (partial) interpretation of the propositional formula ϕb;
it then decides whether there is an interpretation to the integer-valued variables that satisfies
the conjunction of all those literals. The first step is to obtain a set of arithmetic atomic
formulae (without negations) from the given set of literals. The given literals are rewritten
and divided into Q, I, and D as described in Sect. 2.

The theory solver, whose pseudocode is shown in Figures 1 and 2, adopts the layered
approach of MathSAT [4]. For IDL, it considers three main layers: equalities, inequalities,
and disequalities. Let X= ⊆ X be the set of integer-valued variables appearing in the
equalities in Q. The theory solver creates an undirected equality graph Q = (X=,Γ), where

Γ = {{xi, xj} : xi = xj ∈ Q} .

The vertices of Q are in the same class if they are made equivalent by the equality constraints.
The feasibility of Q withD0 is checked by comparing the equivalence class of the two vertices
of each disequality constraint in D0. If two vertices are in the same class, an explanation
of infeasibility is returned. If the set of equality constraints is feasible, the variables in the
same class are merged into a single variable, and some simplified constraints in D and I are
dropped from the set.

The algorithm continues by checking the feasibility of the set of inequality constraints.
Let V ⊆ X be the set of integer-valued variables appearing in I. The theory solver creates a
constraint graph G = (V,E, λ) from I as explained in Sect. 2. The Bellman-Ford algorithm
is run on G. If a negative cycle is found, the set I is infeasible; a negative cycle with a
subset of Q provides the explanation of infeasibility. Equality constraints are involved in
the explanation if the constraints on the negative cycle were obtained by simplification in
the equality layer. If there is no negative cycle in G, the set I ∪ Q is feasible; therefore a
solution δ : V → Z is returned by the Bellman-Ford algorithm.2.

The (simplified) set I combined with D is considered in the next step. Let G0 be the
subgraph of G such that the edges with non-zero slacks for solution δ are removed from
G. Since the slacks of the edges of G0 are zero, the difference between the values of two
variables in the same SCC of G0 is the same in all solutions to the constraints. In fact, each
cycle in G0 is of length 0 [19]; hence, if x and y are on one cycle of G0 and the distance
from x to y along the cycle is k, then the distance from y to x is −k. It follows that every
solution to I must satisfy y − x ≤ k and x − y ≤ −k, that is, y − x = k. In other words,
an SCC of G such that its vertex set induces also an SCC of G0 has only one family of
solutions. (See Sect. 4.)

Each disequality constraint d ∈ D is checked for feasibility against each SCC of G0. If
the two variables x, y in x − y 6= n (where n may be 0) are in the same SCC of G0 and
δ(x)−δ(y) = n, then the set I∪Q∪D is infeasible. The violated disequality d, together with
a cycle that contains x and y and an appropriate subset of Q constitutes the explanation of
infeasibility. If the two variables x and y in d are in the same SCC of G0 and δ(x)−δ(y) 6= n,
then d is redundant and is dropped from D. Disequalities connecting variables in different

2. The algorithm is, in principle, applied to the augmented graph Ga described in Sect. 2. In practice, no
augmentation of G is required: it suffices to initialize all distances to 0.
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1 TheorySolver (C) {
2 Explanation = EqualitySolver (Q, D0);
3 if (Explanation = SAT ) Explanation = InequalitySolver (I);
4 if (Explanation = SAT ) Explanation = DisequalitySolver (D);
5 return Explanation
6 }

7 EqualitySolver (Q, D0) {
8 Q = CreateEqualityGraph (Q);
9 return Explanation = CheckFeasibilityOfEqualityConstraints (Q, D0);
10 }

11 InequalitySolver (I) {
12 G = CreateConstraintGraph (I);
13 NegCycle = BellmaFordAlgorithm (G);
14 if (NegCycle) return GenerateExplanationFromNegCycle (NegCycle);
15 else return SAT
16 }

17 DisequalitySolver (D) {
18 SCC = GenerateZeroSlackSCCOfConstraintGraph (G);
19 Explanation = CheckFeasibilityOfZeroSlackSCC (SCC , D);
20 if (Explanation 6= SAT ) return Explanation;
21 else {
22 SCC ′ = GeneratePositiveSlackSCCOfConstraintGraph (G);
23 return CheckFeasibilityOfPositiveSlackSCC (SCC ′, D);
24 }
25 }

26 CheckFeasibilityOfZeroSlackSCC (SCC , D) {
27 For each d ∈ D {
28 Explanation = CheckFeasibilityOfDisequalityConstraint (SCC , d);
29 if (Explanation 6= SAT ) return Explanation;
30 else DropValidConstraint (d,D);
31 }
32 return SAT ;
33 }

Figure 1. Theory solver algorithm
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34 CheckFeasibilityOfPositiveSlackSCC (SCC ′, D) {
35 for each SCC ′ ∈ SCC ′ {
36 (L,U) = GenerateBoundsForEachVariableInSCC (SCC ′);
37 Explanation = CheckFeasibilityOfBoundsWithClique(SCC ′, D, L, U);
38 if ((Explanation = UNDECIDED or

Explanation = PROB SAT ) and interpretation is a model) {
39 CNF = SmallDomainEncodingForConstraintsInSCC (SCC ′, D, L, U);
40 Explanation = SatSolver (CNF );
41 if (Explanation 6= SAT ) return Explanation;
42 }
43 else return Explanation;
44 }
45 return SAT ;
46 }

47 GenerateBoundsForEachVariableInSCC (SCC ′) {
48 x = FixValueOfOneVertexInSCC (SCC ′);
49 U = ComputeUpperBoundForEachVariableInSCC (SCC ′,x);
50 L = ComputeLowerBoundForEachVariableInSCC (SCC ′,x);
51 return (L,U);
52 }

53 CheckFeasibilityOfBoundsWithClique (SCC ′, D, L, U) {
54 Γ = GatherVariablesWithSameBounds (D, L, U);
55 ρ = GetBoundForGatheredVariables (Γ);
56 D′ = CollectRelevantDisequalityConstraints (D,Γ);
57 Γ′ = RemoveIrrelevantVariableByCheckingDegree (Γ, D′);
58 if (n(Γ′) ≤ ρ and n(V ar(D)) = n(Γ)) return PROB SAT ;
59 else if (n(Γ′) ≤ ρ and n(V ar(D)) 6= n(Γ)) return UNDECIDED ;
60 if (n(D′) < (ρ · (ρ+ 1))/2 and n(V ar(D)) = n(Γ)) return PROB SAT ;
61 else if (n(D′) < (ρ · (ρ+ 1))/2 and n(V ar(D)) 6= n(Γ)) return UNDECIDED ;
62 C = GenerateMaxClique (Γ′, D′);
63 if (n(V ar(C)) < ρ and n(V ar(D)) = n(Γ)) return PROB SAT ;
64 else if (n(V ar(C)) < ρ and n(V ar(D)) 6= n(Γ)) return UNDECIDED ;
65 else return GenerateExplanationFromMaxClique (SCC ′,C);
66 }

67 SmallDomainEncodingForConstraintsInSCC (SCC ′, D) {
68 return EncodingForBoundsOfEachVariableInSCC (SCC ′) ∪
69 EncodingForInequalityConstraintsInSCC(SCC ′) ∪
70 EncodingForDisequalityConstraints (D);
71 }

Figure 2. Theory solver algorithm (continued)
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SCCs of G0 are simply passed on to the next phase of the procedure. If no infeasibility
is detected with G0, a final feasibility check is performed by the small domain encoding
method discussed in Sect. 4. For each SCC of G, Theorem 1 is used to compute bounds for
each variable as follows.

To compute the upper bound for each variable, a variable in the SCC is chosen arbitrarily
as source. (Variable x in Theorem 1.) The distance from it is computed for each variable
in the SCC by the Bellman-Ford algorithm. The lower bound for a variable is computed as
its distance from the same source variable used to compute the upper bound after reversing
the edges in the SCC. (Note that one cannot replace the distances computed by these
invocations of the shortest path algorithm with those computed on Ga.)

Some inequalities and disequalities may be automatically satisfied for all values of the
variables in their ranges. For instance, if 0 ≤ x ≤ 1 and 2 ≤ y ≤ 3, then x 6= y and y−x ≤ 4
are both satisfied. These constraints are therefore ignored in the successive steps, which
consist of a quick check based on finding a clique of the disequality graph, possibly followed
by propositional encoding and satisfiability check.

Some disequalities may be strengthened by converting them into a disjunction of in-
equalities and dropping one disjunct that is always false due to the ranges of the variables.
For instance, x − y 6= 1, where 1 ≤ x ≤ 2, 0 ≤ y ≤ 0 can be strengthened to x − y ≥ 2
because x− y ≤ 0 is false for x and y in the given ranges. The range of x therefore shrinks
to 2 ≤ x ≤ 2.

Example 2. Consider the SCC without any negative cycle in Fig. 3. The edges correspond
to the inequality constraints {(x − y ≤ −1), (y − x ≤ 2), (z − y ≤ 1), (x − z ≤ −2)}.
Additionally, there is a set of disequality constraints {(x − y 6= 0), (y − z 6= 0), (z − x 6=
0), (z−x 6= 1), (y−z 6= −1)}. Variable x is chosen as source; hence both bounds of x, xl and
xu, are given value 0. Using the Bellman-Ford algorithm, yu is assigned 2 and zu is assigned
3. Reversing the edges in the SCC, yl is assigned 1 and zl is assigned 2. Therefore, the
ranges are {0 ≤ x ≤ 0, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3}. The inequalities {(x− y ≤ −1), (y − x ≤ 2)}
and the disequalities {(x − y 6= 0), (z − x 6= 0), (z − x 6= 1)} are automatically satisfied for
all values of the variables in their ranges. The disequality (y − z 6= 0) is strengthened to
(y − z ≤ −1). Consequently, (y − z = −1) and the disequality (y − z 6= −1) cannot be
satisfied.

The application of Theorem 2 is described in lines 53–66 of Fig. 2. We identify sets of
variables for which Theorem 1 produces the same bounds and we check whether there are
enough disequalities among the variables in one such set to cause inconsistency.

Specifically, suppose a set Γ = {γ1, . . . , γp} of variables is found such that all variables
in Γ have the same bounds yl and yu. Variables whose range is a subset of the common
range are added to Γ.

Let ρ = yu − yl + 1. If |Γ| < ρ, disequalities cannot cause inconsistency of this set of
variables. If, on the other hand, the number of variables exceeds their common range, we
check whether the disequalities form a clique of size greater than ρ. We first eliminate from
Γ all variables that appear in fewer than ρ disequalities of the form γi 6= γj (γi, γj ∈ Γ). If
Γ is not empty after this process, we greedily grow a clique, adding every time the variable
appearing in the largest number of disequalities among the surviving members of Γ. This

58



Disequality Management in IDL via Finite Instantiations

              x

                           z y

 2  −2

 −1

1

 −1

Figure 3. SCC without any negative cycle

greedy algorithm does not always find the largest clique, but is fast and works well in
practice.

In the final step of the theory solver, the constraints and the bounds are converted to
a set of clauses whose satisfiability is established by calling a propositional SAT solver.3.

If the clauses are satisfiable, an interpretation for the integer variables is extracted from
the solution. Otherwise, an explanation for the unsatisfiability is derived as follows from
the proof of unsatisfiability returned by the SAT solver, which consists of a subset of the
clauses that are found to be unsatisfiable. (The unsatisfiable core.)

Every propositional clause in the unsatisfiable core is derived from some arithmetic con-
straint. If a clause appears in the unsatisfiable core, the parent constraint is included in the
explanation. The bound constraints on the integer variables also contribute to unsatisfia-
bility. They are accounted for by including the constraints that form the two shortest path
spanning trees found during the computation of the bounds.

Example 3. If Example 2 continues without disequality strengthening, the constraints {(z−
y ≤ 1), (x− z ≤ −2), (y − z 6= 0), (y − z 6= −1)} and the bounds {0 ≤ x ≤ 0, 1 ≤ y ≤ 2, 2 ≤
z ≤ 3} are converted to the set of clauses below. The variable y is substituted by ι + 1,
and the variable z is substituted by ζ + 2. As a result, the range of ι and ζ are 0 ≤ ι ≤ 1,
0 ≤ ζ ≤ 1, and the number of bits used for ι and ζ during the encoding is one instead of
two.

ϕ = (¬ζ0 ∨ ι0) ∧ (¬ι0 ∨ ζ0) ∧ (¬ι0 ∨ ¬ζ0) ∧ (ι0 ∨ ζ0).

With the set of clauses ϕ, a propositional SAT solver is called. Since the set of clauses
is unsatisfiable, the unsatisfiable core Ω is returned:

Ω = (¬ζ0 ∨ ι0) ∧ (¬ι0 ∨ ζ0) ∧ (¬ι0 ∨ ¬ζ0) ∧ (ι0 ∨ ζ0).

The inequality constraints that are responsible for the bounds are extracted as an explanation
from the SCC in Fig. 3. For the variables x, y, z in the SCC, the edges that lie on the

3. Our current encoding of the ranges is rather unsophisticated. We are implementing a heuristic approach
to minimizing the total number of encoding bits required.
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forward and backward shortest paths from each variable to the fixed variable x are gathered.
Therefore, we get {(y− x ≤ 2), (z − y ≤ 1), (x− z ≤ −2)} as an explanation for the bounds
{0 ≤ x ≤ 0, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3}. The parent constraints of the clauses left in Ω are finally
gathered; they are {(z− y ≤ 1), (y− z 6= 0), (y− z 6= −1)}. As a result, the full explanation
for the infeasibility is

{(y − x ≤ 2), (z − y ≤ 1), (x− z ≤ −2), (y − z 6= 0), (y − z 6= −1)}.

Five constraints suffice to explain the infeasibility of the original nine constraints.

6. Related Work

Propositional abstraction as an approach to satisfiability modulo theories was proposed
in [2]. Notable solvers based on that principle are MathSAT [4, 3], ICS and Yices [8, 10],
Verifun [11], BarcelogicTools [13, 23], SLICE [30], and SATORI [14]. ASAP [18] takes a dual
approach, in which satisfiability of the propositional abstraction guarantees satisfiability of
the original quantifier-free Presburger formula, while UCLID [20] is an eager solver. Our
propositional enumeration engine is the one of [15, 16].

Finite instantiations for equality logic are studied in [24] and extended to difference logic
in [29]; this last work has several points of contact with ours, but also important differences.
The approach of [29] is eager, and the ranges are computed once and for all before invoking
the propositional SAT solver. In contrast, we advocate a lazy approach and a computation
of the ranges that takes place in the theory solver. Because of that, we may compute ranges
more than once, but the size of the range for each variable in our algorithm is bounded by
the sum of the slacks in the SCC, which is much smaller than n + maxC , where maxC is
the sum of absolute constants in the formula. In practice, ranges are much smaller in our
algorithm. Moreover, we compute ranges by simply finding shortest paths in the constraint
graph. The algorithm of [29], on the other hand, enumerates paths in the constraint graph
and is exponential in the worst case.

Recent work by Ganai et al. [12] presents a polynomial algorithm for the computation
of ranges, which improves over the one of [29], but shares the basic approach: Ranges
are allocated initially, so as to be adequate for every formula built from the given set of
difference constraints. Disequalities are converted to disjunctions of inequalities, instead of
being retained as such in the formulation of the problem. The theory consistency problem is
never converted to propositional satisfiability. Instead, range propagation allows the solver
to refine the initial ranges.

MathSAT introduced the notion of layered, incremental theory solver, and that of de-
layed theory combination; DPLL(t) the idea of exhaustive theory propagation, both of
which are included in our implementation. The importance of considering zero-slack SCCs
was first pointed out in [19], which deals with RDL. Finally, [30] discusses an efficient way
to implement a recursive, backtrackable Bellman-Ford algorithm.

7. Experimental Results

We have implemented the algorithm presented in Sect. 5 in Sateen, a theorem prover for
quantifier-free first-order logic that combines the propositional reasoning engine of [15, 16]
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Figure 4. BarcelogicTools vs. Sateen on
QF IDL
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Figure 5. Yices vs. Sateen on QF IDL

with theory-specific procedures. A first set of experiments were done with the full set of
QF IDL (Quantifier free integer difference logic) benchmarks from SMT-COMP (Satisfia-
bility Modulo Theories Competition [27]). The experiments were performed on a 1.7 GHz
Pentium 4 with 2 GB of RAM running Linux. Time out was set at 3600 seconds. Sateen was
compared with BarcelogicTools [9], Yices-0.1.1 [31] and MathSAT 3.3.1 [21]. The compared
solvers are the ones that were submitted to SMT-COMP in 2005.

Figures 4–6 show scatterplots comparing BarcelogicTools, Yices and MathSAT to Sateen.
Points below the diagonal represent wins for Sateen. Each scatterplot shows two lines: The
main diagonal, and y = κ · xη, where κ and η are obtained by least-square fitting. Fig-
ure 4 shows that Sateen is comparable to BarcelogicTools. In Figures 5 and 6, Sateen
shows better results compared to Yices and MathSAT, especially on hard problems. The
SMT-COMP benchmark formulae are such that usually the sets of constraints passed to
the theory solver either contain few disequality constraints, or are such that the disequality
constraints are dealt with by the zero-slack SCC algorithm. The main purpose of these
experiments is therefore not to show the effectiveness of the newly proposed algorithm for
finite instantiations, but to establish that Sateen is, overall, a competent solver for IDL,
comparable to some of the best tools in the field.

To assess the effectiveness of the finite instantiation approach, we have generated two
benchmark suites where disequality constraints play a significant role: the Queens Suite and
the Job Shop Scheduling Suite. The Queens Suite contains n-Queens problem and n-Super-
Queens problem. The n-Queens problem is a classical combinatorial search problem which
consists of placing n queens on a n × n board so that they do not attack each other. In
the n-Super-Queens problem, each queen’s placement is more restricted by allowing it also
the knight’s moves. The Job Shop Scheduling problem is a randomly generated problem
which checks the feasibility of processing a number of jobs, each consisting of several tasks,
on a given set of machines in a given amount of time. These two sets of benchmarks
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Figure 6. MathSAT vs. Sateen on QF IDL
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Figure 7. BarcelogicTools vs. Sateen on
Job Shop Scheduling and Queen suites
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Figure 8. Yices vs. Sateen on Job Shop
Scheduling and Queen suites

have disequality constraints that cause pigeonholing problems. In the experiment on these
benchmarks, the timeout was set to 1000 seconds.4.

Figures 7–9 shows that Sateen is often orders of magnitude faster than the other solvers
on these problems. The × symbols denotes the experiments on the Queens benchmarks,
and the + symbols denotes the experiments on the Job Shop Scheduling benchmarks. We
also provide the comparison between Sateen with our proposed algorithm and a version
of Sateen that splits disequalities. Figure 10 shows that the finite instantiation algorithm
works significantly better than the splitting method.

Table 1 shows the number of calls and conflicts involving the equality layer (EQ), the
Bellman-Ford layer (INEQ), the zero-slack SCC layer (ZS), the clique generation layer
(CLQ) and the finite instantiation layer (FI) on selected benchmarks. BV and AF corre-
spond to the number of propositional variables and atomic formulae, respectively. In the

4. Although, the results of SMT-COMP [28] in 2006 show that Sateen is still behind the three other solvers
above, Sateen gives significantly better result on the n-Queens and Job Shop Scheduling benchmarks.
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Figure 10. Sateen with splitting disequalities
vs. Sateen on Job Shop Scheduling and Queen
suites

Table 1. Number of Calls and Conflicts

Benchmark BV AF SAT EQ INEQ ZS CLQ FI

diamonds.10.5.i.a.u 0 121 UNSAT 0/0 90/1199 0/0 0/0 0/0
DTP k2 n35 c245 s2 0 490 SAT 0/0 709/7200 0/0 0/0 0/0
inf-bakery-mutex-18 76 328 UNSAT 71/1498 84/1533 25/2070 0/0 0/0
FISCHER9-10-ninc 1146 686 SAT 54/55 0/1 0/0 0/0 0/0

queen30-1 0 1365 SAT 0/0 0/1 0/1 0/0 0/1
super queen60-1 0 5664 SAT 0/0 0/1 0/1 0/0 0/1

jobshop30-2-20-20-4-4-12 0 2820 UNSAT 0/0 632/1264 0/631 1/631 0/1
jobshop40-2-20-20-4-4-12 0 4960 SAT 109/258 3/1343 109/1282 58/1172 0/1
jobshop50-2-25-25-4-4-11 0 7700 UNSAT 0/0 1802/3604 0/1801 1/1801 0/0
jobshop60-2-30-30-4-4-12 0 11040 SAT 239/538 3/2773 239/2682 88/2442 0/1
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entries of the form X/Y , X is the number of conflicts and Y is the number of calls. The data
show that each layer contributes to finding conflicts. In particular, the clique generation
layer is very effective in finding conflicts in the Job Shop Scheduling benchmarks, which
enables the solver to avoid the finite instantiation layer.

8. Conclusions

We have presented an approach to solving integer difference logic that is particularly effective
when the constraints to be solved are rich in disequalities. By restricting consideration to
a small sufficient set of solutions, we are able to compute bounds for the integer variables
occurring in the constraints. Experiments indicate that this approach is more effective
than splitting disequalities into the disjunction of inequalities. Further improvements in
efficiency are expected from a more sophisticated encoding scheme for the finite instances
that we are currently developing.

Acknowledgment The authors thank Alberto Oliveras, Alessandro Cimatti, and Leonardo
de Moura for their help with BarcelogicTools, MathSAT, and Yices.
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