
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 191-200

Research Note

A Translation of Pseudo-Boolean Constraints to SAT

Olivier Bailleux olivier.bailleux@u-bourgogne.fr

Université de Bourgogne — LERSIA
Avenue Alain Savary — BP 47870
F-21078 Dijon Cedex — France

Yacine Boufkhad yacine.boufkhad@liafa.jussieu.fr

LIAFA — Université Denis Diderot — Case 7014
2, place Jussieu
F-75251 Paris Cedex 05 — France

Olivier Roussel olivier.roussel@cril.univ-artois.fr

CRIL

rue de l’Université — SP 16

F-62307 Lens Cedex — France

Abstract

This paper introduces a new CNF encoding of pseudo-Boolean constraints, which allows
unit propagation to maintain generalized arc consistency. In the worst case, the size of the
produced formula can be exponentially related to the size of the input constraint, but some
important classes of pseudo-Boolean constraints, including Boolean cardinality constraints,
are encoded in polynomial time and size. The proposed encoding was integrated in a solver
based on the zChaff SAT solver and submitted to the PB05 evaluation. The results provide
new perspectives in the field of full CNF approach of pseudo-Boolean constraints solving.

Keywords: pseudo-Boolean, SAT translation

Submitted October 2005; revised January 2006; published March 2006

1. Introduction

This paper proposes a new way to encode pseudo-Boolean constraints into CNF formulae.

The proposed technique allows unit propagation, which is the basic filtering technique
implemented on all DLL-based SAT solvers, to enforce generalized arc-consistency. This
guarantees that the SAT solver will achieve at least the same deductions on the resulting
clauses as a minimalist enumerative solver would do on the original constraints.

In the worst case, the size of the resulting CNF formula is exponentially related to the
size of the encoded constraint. Yet, Boolean cardinality constraints - and some other classes
of pseudo-Boolean constraints that will be detailed in section 3 - are encoded in polynomial
time and size.

Section 2 describes the proposed CNF encoding of pseudo-Boolean constraints and
proves its ability to allow unit propagation to enforce arc-consistency. Section 3 gives
some complexity results relating the size of the resulting CNF formulae to the size of the
encoded constraint. Section 4 describes the implementation of the proposed encoding based

c©2006 Delft University of Technology and the authors.



O. Bailleux et al.

on the zChaff SAT solver. Section 5 presents the experimental results obtained at the
Pseudo-Boolean evaluation of the SAT 2005 competition. Section 6 presents other works
related to CNF encoding of pseudo-Boolean and arc-consistent CNF encoding of constraint
satisfaction problems. Section 7 concludes this paper.

2. Proposed encoding

2.1 Notations

Let V be a set of variables where each variable v can take a value among a finite domain
dv. An assignation I of V is a function mapping a value of dv to each variable v in V .
Given an assignation I on V , a variable v in V and a value x in dv, v =I x means that I
gives the value x to v. The notation v = x is used instead of v =I x whenever there is no
ambiguity. A constraint Q on V is the specification of a set of legal assignations of V . Each
of these legal assignations is said to satisfy Q. Other assignations of V are said to falsify Q.
Given a value x of a variable v in V , a support of x with respect to Q is an assignation of
V satisfying Q and such that v = x. We will consider pseudo-Boolean constraints specified
as w1x1 + w2x2 + . . . + wnxn <= K, where w1, . . . , wn are integers called weights, K is an
integer called bound, and x1, . . . , xn are literals, i.e., Boolean variables or negated Boolean
variables.

Let v be a Boolean variable. The literal v is said to be fixed to 0 (resp. 1) if dv = {0}
(resp. {1}). The literal v is said to be fixed to 0 (resp. 1) if dv = {1} (resp. {0}). The
literals v and v are said to be free if dv = {0, 1}.

2.2 Generalized Arc Consistency

Let Q be a constraint on a set V of variables. Q is said to be generalized arc consistent if
and only if for each domain D of any variable in V , every value of D has a support with
respect to Q.

The generalized arc consistency of a pseudo-Boolean constraint Q : w1x1 +w2x2 + . . .+
wnxn <= K can be enforced in the following way. If the sum of the weights of the literals
fixed to 1 exceeds K then Q cannot be satisfied; else for each free literal xi, if the sum of the
weights of the literals fixed to 1 exceeds K − wi then xi must be fixed to 0. The principle
of our encoding is to use some clauses and additional variables to allow unit propagation to
detect all the literals that have to be fixed with respect to generalized arc consistency.

2.3 Encoding method

Without loss of generality, we consider pseudo-Boolean constraints (PBC for short) of the
type w1x1 + w2x2 + ... + wnxn ≤ K where the weights are ordered i.e. w1 ≤ w2 ≤ ... ≤ wn.
The triple < Wn, Xn, K > where Wn is the ordered tuple (w1, w2, ..., wn) and Xn is the
tuple of Boolean variables (x1, x2, ..., xn) fully characterizes the corresponding PBC. For
the proposed encoding, there is a need to consider, for some 1 ≤ i ≤ n, the partial tuples
Wi = (w1, w2, ..., wi) and Xi = (x1, x2, ..., xi). For some bound b, the triple < Wi, Xi, b >
represents the PBC w1x1 + w2x2 + ... + wixi ≤ b. When the tuples Wn and Xn are fixed, a
triple < Wi, Xi, b > representing a PBC is defined with no ambiguity by the integer i and the
bound b. To build the proposed CNF encoding, some new Boolean variables representing

192



A Translation of Pseudo-Boolean Constraints to SAT

the satisfaction of such constraints are introduced beside the Boolean variables in Xn.
These variables are denoted Di,b and are equivalent to the PBC < Wi, Xi, b > in the sense
Di,b = 1 if and only if < Wi, Xi, b > is satisfied. Dn,K is then the variable representing
< Wn, Xn, K > and the correctness of the encoding is conditioned by the fact that an
assignation satisfies < Wn, Xn, K > if and only if it satisfies the encoded CNF formula and
fixes Dn,K = 1.

Some of these Boolean variables have a special status and are said to be terminal vari-
ables. These are the variables Di,b such that b ≤ 0 or b ≥

∑i
j=1 wj .

The CNF encoding is built in the following way. It starts with a set of variables contain-
ing the variables of the pseudo-Boolean constraint xi and the variable Dn,K . The variables
xi of the PBC are marked. At each step, an unmarked variable Di,b is considered. If Di,b

is not a terminal variable then the two variables Di−1,b and Di−1,b−wi
are added to the set

of variables if they are not already in it and the following four clauses are added to the set
of clauses:

Di−1,b−wi
∨ Di,b, Di,b ∨ Di−1,b, Di,b ∨ xi ∨ Di−1,b−wi

, Di−1,b ∨ xi ∨ Di,b

After this, Di,b is marked so it will not be considered further.

If Di,b is a terminal variable then, by definition either b ≤ 0 or b ≥
∑i

j=1 wj . We
consider separately the case b 6= 0. In this case Di,b must be fixed as follows:

Di,b =

{

0 if b < 0. The unit clause Di,b is added to the formula

1 if
∑i

j=1 wj ≤ b. The unit clause Di,b is added to the formula

When b = 0, every variable in the constraint must be fixed to 0. To achieve this, for every
1 ≤ j ≤ i, the binary clauses Di,0∨xj are added together with the clause x1∨x2∨ ...∨Di,0.

The procedure stops when there are no more unmarked variables.

Example 1. The following example illustrates the preceding encoding of PBC: 2x1 + 3x2 +
4x3 ≤ 6. In Figure 1 the way variables are added is represented by a graph where every non
terminal node have two children representing the two variables added each time an unmarked
non terminal variable is considered. For this example, the graph is a tree but in the general
case some node may have more than one parent.

The formula is C = {D2,2∨D3,6, D3,6∨D2,6, D3,6∨x3∨D2,2, D2,6∨x3∨D3,6, D2,6, D1,−1∨
D2,2, D2,2∨D1,2, D2,2∨x2∨D1,−1, D1,2∨x2∨D2,2, D1,2, D1,−1} which makes D3,6 = 1 only
if at least one of x2 or x3 is equal to 0.

To encode a PBC, a set of clauses is built as described in the procedure then, to ensure
that the PBC is satisfied, the unit clause Dn,K is added requiring from any assignation
satisfying the set of clauses, to satisfy also the PBC.

This encoding is very close to those using a BDD and translating it into clauses [9].
But the latter produce only clauses of length 3 while the proposed translation produces a
mixture of binary and ternary clauses allowing a better propagation during solving.

Clearly, the precedent procedure terminates because at each step the subscript i of
newly added variables Di,b strictly decreases and necessarily, the variables of type D0,b are
terminal variables. At the end of this procedure, a set of variables V and a set of clauses C
are obtained.

193



O. Bailleux et al.

D3,6

D2,2

D1,−1 D1,2

D2,6

Figure 1. Variables added for encoding the constraint 2x1 + 3x2 + 4x3 ≤ 6

The correctness of the encoding is conditioned by the fact that for any assignation to
the variables of V that satisfies C and fixes Dn,K = 1, the restriction of this assignation
to the variables Xn satisfies also the pseudo-Boolean constraint < Wn, Xn, K >. Moreover
any assignation to the variables of Xn that satisfies < Wn, Xn, K > can be extended to
an assignation to the variables of V that satisfies C and fixes Dn,K = 1. The connection
between BDD and this encoding makes the proof of correction trivial.

Beyond the correctness, we require from the encoding to restore the generalized arc
consistency through unit propagation as defined in section 2.2. Namely, considering a partial
assignation to the variables of Xn that violates the PBC, the unit propagation generates
an empty clause in the formula C ∪ {Dn,K}. Moreover, for any partial assignation to the
variables of Xn such that if some literal xp is fixed to 1 then the PBC is violated, the unit
propagation assigns 0 to xp in the formula C ∪ {Dn,K}. This is the case in our encoding.

Theorem 2.1. The encoding restores the generalized arc consistency through unit propa-
gation.

Proof. 1. n = 1. Trivial.

2. Suppose that the property holds for any i ≤ n − 1 and let us prove that it still holds
for n. Let C0 the set of clauses encoding the PBC w1x1 + ... + wn−1xn−1 ≤ K and C1

the set of clauses encoding the PBC w1x1 + ...+wn−1xn−1 ≤ K−wn. Remark that by
construction C = C0∪C1∪{Dn−1,K−wn

∨Dn,K , Dn,K∨Dn−1,K , Dn,K∨xn∨Dn−1,K−wn
,

Dn−1,K ∨ xn ∨ Dn,K}. After simplification, C ∪ {Dn,K} = C0 ∪ C1 ∪ {Dn−1,K , xn ∨
Dn−1,K−wn

, Dn,K}.

Consider a partial assignation B that violates the PBC < Wn, Xn, K > such that
xn is not fixed or xn = 0 by this partial assignation. Because the unit propagation
restores generalized arc-consistency for n − 1, unit propagation applied to C0 fixes
Dn−1,K = 0 which contradicts the clause Dn,K ∨ Dn−1,K in C ∪ {Dn,K}. If xn = 1
then the PBC < Wn−1, Xn−1, K − wn > is violated by this partial assignation. Then
Dn−1,K−wn

= 0 which contradicts the clause Dn,K ∨ xn ∨ Dn−1,K−wn
in C ∪ {Dn,K}.

Consider now a partial assignation B such that there exists some free literal xp such
that if xp = 1 the PBC is violated. Suppose first that p 6= n. If xn = 0 or xn is free
then xp = 1 violates < Wn−1, Xn−1, K > under B then unit propagation fixes xp = 0
in C0 ∪ {Dn−1,K}. If xn = 1 then xp = 1 violates < Wn−1, Xn−1, K − wn > under B
then unit propagation fixes xp = 0 in C1 ∪ {Dn−1,K−wn

} ({Dn−1,K−wn
} comes from

the clause Dn,K ∨ xn ∨ Dn−1,K−wn
).

194



A Translation of Pseudo-Boolean Constraints to SAT

(a)

D1,3 D1,0

D2,6 D2,3 D2,0

D3,6 D3,3

D4,6

(b)

D1,4 D1,0

D2,12 D2,4

D3,12 D3,−4

D4,12

Figure 2. (a) Variables introduced to encode 3x1+3x2+3x3+3x4 ≤ 6. (b) Variables introduced
to encode 2x1 + 4x2 + 8x3 + 16x4 ≤ 12

If p = n then the PBC < Wn−1, Xn−1, K − wn > is necessarily violated by B. Since
the encoding is arc consistent for n − 1, when applied to C1 unit propagation fixes
Dn−1,K−wn

= 0. In C ∪ {Dn,K} the clause xn ∨ Dn−1,K−wn
fixes xn = 0.

3. Complexity of the translation

3.1 Some polynomial cases

The size of the encoding is measured in terms of the number of variables.The number of
clauses is related by a constant factor to the number of variables.

At first sight, the procedure described in the previous section generates an exponential
number of variables: at each step a non-terminal variables creates two variables that will
in turn create two other variables each and so on. This is not true for terminal variables
and for variables already considered in the procedure. When a terminal variable is met, it
is said a cut in the procedure and when a variable already in the set of variables is met,
it is said a merge in the procedure. By the cuts and merges, the size of encodings can be
polynomial in some cases. In the following, two restrictions of the general PBC producing
a polynomial size encoding are identified:

• The weights wi are integers bounded by a polynomial in n: P (n). The potential
number of variables Di,b for some i is 2n−i but because of merges this number reduces
to a polynomial as shown in the following. Indeed, since the variables Di,b for some

i are such that m ≤ b ≤ M where m is at least equal to K −
∑i

j=0 wn−j and M is
at most K, b can take at most M − m different values and then it can take at most
∑i

j=0 wn−j different values, which is bounded by (n−i)P (n). Since there is n different
possible values of i, the total number of variables is bounded by a polynomial in n.
Figure 2(a) shows an example for this case.

• The weights are wi = ai where a ≥ 2. In this case, for every non terminal variable
Di,b considered in the procedure, at least one of the variables Di−1,b or Di−1,b−ai is

a terminal variable. This is true because
∑i−1

j=0 aj < ai. Either b ≥ ai and then

195



O. Bailleux et al.

∑i−1
j=0 aj < b and then Di−1,b is a terminal variable or b < ai and in this case Di−1,b−ai

is a terminal variable. Consequently there is a cut each time a variable is considered
in the procedure as shown in the example of Figure 2(b).

3.2 An exponential case

Unfortunately, it is possible to use a sequence of weights which will give a tree with branches
of length Ω(n) and with no possible merge of nodes (which implies a tree of size Ω(2n)). The
idea here is simply to combine a constant sequence with a geometric sequence. Let n be the
length of the pseudo-Boolean constraint Q and let wi = a + bi such that a = bn+2. The key
point is that the geometric term must be negligible compared to the constant term, that is
∑n

i=0 bi < a. For simplicity, we will choose b = 2. Note that in this case, wi = 2n+2 + 2i

which is not bounded by a polynomial in n. Let’s choose K = a.n/2 = n.2n+1.

A terminal node is reached when we get a term Di,k such that k ≤ 0 or k ≥
∑i

j=1 wj .
Because the constant term is predominant, the first condition cannot be met before i =
K/a = n/2. The earliest case where the second condition can be satisfied is when k
remains equal to K. We have

∑i
j=1 wj =

∑i
j=1(a + bj) = a.i +

∑i
j=1 bj ≥ a.i. Therefore,

the earliest case where the second condition can be met is when a.n/2 = a.i which means
i = n/2. We can conclude that each branch is at least of length n/2.

Furthermore, in the encoding, each node of the tree holds the term Di,k which corre-

sponds to the inequation
∑i

j=1 wj .xj ≤ K −
∑

j∈S wj where S is a subset of [i + 1..n]. One
key point is that in the binary representation of K −

∑

j∈S wj , the n least significant bits
directly correspond to the indices in S. Therefore, these n least significant bits of the right
term are necessarily different from one node to another. For this reason, no node can be
merged. Because of this and since branches are of length at least equal to n/2, the size of
the tree is at least 2n/2 and the encoding of this particular constraint is of exponential size.

4. Implementation: the pb2sat+zchaff solver

The proposed encoding of pseudo-Boolean constraints into SAT was implemented in a solver
named pb2sat+zchaff. As indicated in its name, this solver uses the zChaff solver [8] to
actually solve the SAT problem. This SAT solver might not be the most efficient solver
today but our goal is less to get a faster PB solver than to experiment with the new encoding.

4.1 Encoding of pseudo-Boolean constraints

Each pseudo-Boolean constraint is first normalized, that is transformed into a less or equal
inequality, with all weights positive and sorted. Constraints which are clauses are directly
sent to the SAT solver. Other constraints are encoded into a set of clauses over new
propositional literals Di,b which are true if and only if the inequation

∑i
j=0 wj .xj ≤ b

holds. The clauses which are sent to the SAT solver are the ones described in section 2.
The only difference with the description of section 2 is that the implemented procedure
is recursive and enumerates the Di,b in a depth-first manner while section 2 presents an
iterative enumeration (in a breadth-first manner).

196



A Translation of Pseudo-Boolean Constraints to SAT

4.2 Optimization process

Most of the pseudo-Boolean solvers available are able to find a solution which optimizes the
value of an objective function (either maximize or minimize its value). Therefore a minimal
support for optimization was added to the solver in order to be able to compare our solver
to others. Our support is minimal because we didn’t want to modify the SAT solver in any
way. A more complete support would imply a change in its heuristics in order to prefer
models with least values of the objective function (in the case of minimization).

Each objective function to optimize can be normalized so that it takes only positive
values. Let f(x) be the normalized objective function to minimize. Our solver first runs a
satisfiability test ignoring this function. If no solution could be found, the solver directly
answers that the formula is unsatisfiable. Otherwise, let M0 be the model found by this
first satisfiability test which gives value f(M0). To find the best solution, the optimization
process proceeds by binary search on the value of the objective function in [0..f(M0) − 1].
For each iteration of the binary search algorithm, we have to encode that f(x) ≤ M where
M is the middle of the interval. However, we’d rather avoid the costly encoding of this new
constraint at each iteration.

To this end, we swap to a relaxed definition of M such that M = f(M0)− 1−B where
B can be written as B =

∑

bi.2
i. By introducing bi as new propositional variables, we can

write a single pseudo-Boolean constraint f(x) −
∑

bi.2
i ≤ f(M0) − 1 which we can use to

enforce an optimization constraint for each iteration of the binary search algorithm. All the
algorithm does is to try to set each bi to true (starting with the most significant bit). If the
formula is still satisfiable, then bi is definitively set to true, otherwise it is definitively set
to false. We then proceed with the next bit.

One problem though it that objective functions may contain thousands of literals and
their encoding may get too large. To fix this problem, when the solver is faced with a large
objective function, it iteratively searches for the first solution with a value of the objective
function in [i.C, (i + 1).C] where C is a constant which corresponds to a upper limit on the
size of the encoding. Once this first interval is found, the solver proceeds by binary search
to find the optimum solution in this interval.

5. Experimental results

The pb2sat+zchaff solver was submitted to the 2005 evaluation of pseudo-Boolean solvers
(PB05) [7]. Among the 8 submitted solvers, two of them were directly based on a translation
to SAT and 4 of them had support for big integers (i.e. weights with an arbitrary number of
digits). Table 1 reports the global results of the evaluation. It counts the different answers
of the solvers (unsatisfiable, optimum solution found, a solution found but not necessarily
the optimum or unknown). TO (Time Out) means that the solver exceeded the time limit
and was required to output the best solution it had so far and to stop. MO (Mem. Out.)
means that the solver exceeded the memory limit. EC means that the solver exited with a
different exit code that the one that was expected.

The difference in the number of instances handled by each solver results from the fact
that some solvers were not able to handle big integers or could suffer from other integer
overflow problems. For this reason, solvers cannot be directly compared.

197



O. Bailleux et al.

Table 1. Results of the last phase of the PB05 evaluation for all categories

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong

TO MO TO MO EC caught cert. cert. opt. unsat.

bsolo 1172 136 196 326 26 1 391 10 86 0 0 0 0 0 0

galena 690 49 103 157 0 0 319 0 0 0 51 0 0 0 11

minisat+ 1172 156 226 0 0 0 0 444 49 11 0 286 0 0 0

PBS4 690 71 166 28 0 0 0 425 0 0 0 0 0 0 0

Pueblo 690 71 194 298 0 0 48 78 0 0 0 0 1 0 0

sat4jpseudo 1172 149 142 29 489 0 6 353 0 0 1 3 0 0 0

vallst 0.9.258 499 48 131 33 0 0 0 277 0 0 0 0 3 0 7

pb2sat+zchaff 1172 60 161 36 173 12 0 193 157 372 8 0 0 0 0

Even if pb2sat+zchaff is clearly not among the best solvers of this evaluation, its results
remain comparable to the other solvers. minisat+ which is also based on a translation to
SAT has particularly good results. Interestingly, it was discovered after the evaluation that
minisat+ uses almost the same encoding as ours as well as two other encodings to which it
switches when the first encoding gets too large.

Another point to notice is the large number of out of memory (157) or unexpected exit
code (372). Among the 372 unexpected exit code, 6 are caused by an exception which
is raised to indicate that a constraint is trivially unsatisfiable. As this exception was un-
fortunately not correctly handled, the solver exited without answering UNSAT. The other
366 unexpected exit codes were caused by a bad allocation exception which is just another
manifestation of memory exhaustion. Among the 523 instances (157+366) where the solver
exhausted the memory, there are only 105 cases where the memory exhaustion occurred
after zChaff was run. In the 418 other cases, the solver ran out of memory during the
translation process because it encountered one or more constraints with an exponential
translation.

These results clearly suggest that the proposed translation cannot be a standalone
method to solve pseudo-Boolean constraint. But at the same time, the global results of
the solver indicate that the translation is an effective approach in a number of cases. The
conclusion is that a good approach to solving pseudo-Boolean constraints is maybe to mix
a clausal translation together with a native handling of pseudo-Boolean constraint. Con-
straints which can be translated to a low number of clauses are probably best translated to
SAT (because this removes the overhead of dealing with weights, which can be important
especially with big integers). Constraints whose translation to SAT is too big should be
handled as pseudo-Boolean constraints.

6. Related works

In [5], Gent shows the importance of enforcing arc-consistency in CNF encoding of binary
constraints. He compares two encodings, namely direct encoding and support encoding.
Contrarily to direct encoding, support encoding, introduced in [6], allows unit propagation
to maintain arc consistency of the encoded constraints. Using the Chaff SAT solver [8],
Gent experiments these two encodings on random CSP instances on which support encoding
clearly outperforms direct encoding.

198



A Translation of Pseudo-Boolean Constraints to SAT

In [2], the principle of an encoding allowing unit propagation to maintain arc-consistency
is applied to Boolean cardinality constraints. Given a Boolean cardinality constraint on
n variables, the proposed encoding produces a CNF formula of O(n. log n) variables and
O(n2) clauses. This encoding is compared to Warner’s encoding, which reduces any pseudo-
Boolean constraint of length n to a CNF formula of O(n) clauses and variables. Although
Warner’s encoding produces a smaller formula, it does not allow unit propagation to main-
tain generalized arc-consistency on the encoded constraint. Experimental results obtained
with the zChaff solver [8] show that the encoding of [2] largely outperforms Warner’s one
on some discrete tomography problems. [3] shows that this encoding can be used for solv-
ing optimization problems and can even be competitive with the dedicated pseudo-Boolean
solvers PBS [1] and OPBDP [4] on some maxsat and maxones instances.

In [10], Sinz proposes two other encodings for Boolean cardinality constraints. The
first one is based on a sequential counter using a binary representation of integers. Like the
encoding presented in [2], it allows unit propagation to maintain generalized arc-consistency.
The second one is based on a parallel counter using a binary representation of integers.
Like Warner’s encoding, it does not allow unit propagation to maintain generalized arc
consistency. No experimental results are given for these two encodings.

Concomitantly to the present work, [9] proposes another pseudo-Boolean solver named
minisat+, which is based on translating pseudo-Boolean constraints into CNF. Preferably,
minisat+ uses a translation technique based on BDD (Binary Decision Diagram), which
produce a CNF formula logically equivalent to the one produced with our translation tech-
nique, with the same advantage i.e., unit propagation enforces generalized arc consistency,
and the same drawback, i.e., the size of the resulting formula can be exponentially related
to the size of the original constraints. If this preferred translation technique produces too
many clauses, another technique, based on sorting networks, is tried. At last, if this second
technique produces too many clauses, a translation based on an adder network is used,
which guarantees that a polynomial number of clauses is generated.

We do not know any reference of polynomial size CNF encoding allowing unit propa-
gation to enforce generalized arc consistency. We would like to cash in on this paper for
opening the question of the existence of such an encoding.

7. Conclusion

We proposed a new CNF encoding of pseudo-Boolean constraints. Compared with the refer-
ence encoding of Warner, this new encoding presents a benefit and a drawback. The benefit
is that it allows unit propagation to maintain arc consistency of the encoded constraints.
The drawback is that in the worst case, the encoded formula can have a size exponentially
related to the size of the encoded formula. Yet, some useful classes of pseudo-Boolean
constraints, like Boolean cardinality constraints, can be encoded in polynomial time and
space. This encoding was implemented in a solver based on the zChaff SAT solver and
presented to the PB05 competition. The obtained results show that the proposed encoding
is not suitable to encode any pseudo-Boolean constraint. However, these results certainly
prove that large classes of pseudo-Boolean constraints can advantageously be encoded in
SAT to avoid the cost of dealing with weights. These results show that the CNF encoding
is not a unreasonable option for solving pseudo-Boolean constraints. They also contribute

199



O. Bailleux et al.

to open the question of the existence of a polynomial CNF encoding that would really put
the resolution of pseudo-Boolean constraints in the field of application of pure SAT solvers.
An important objective for future researches is either to find a polynomial arc-consistent
CNF encoding for pseudo-Boolean constraints, or to prove that such an encoding does not
exist.

8. Acknowledgments

The authors are grateful to the anonymous reviewers for their comments. We would like to
thank Dominique Rossin for helpful discussions.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A Backtrack Search Pseudo-
Boolean Solver. In Symposium on the Theory and Applications of Satisfiability Testing
(SAT 2002), pages 346–353, 2002.

[2] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Proceedings of the 9th International Conference on Principles and Practice
of Constraint Programming, CP 2003, volume 2833, pages 108–122. LNCS, 2003.

[3] O. Bailleux and Y. Boufkhad. Problem encoding into SAT : the counting constraints
case. In Proceedings of The Seventh International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2004), 2004.

[4] P. Barth. A Davis-Putnam based Enumeration Algorithm for Linear Pseudo-Boolean
Optimization, Technical Report MPI-I-95-2-003. Technical report, Max-Planck-Institut
Für Informatik, 1995.

[5] I.P. Gent. Arc Consistency in SAT. In Proceedings of the Fifteenth European Conference
on Artificial Intelligence (ECAI 2002), 2002.

[6] S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45:275–286, 1990.

[7] V. Manquinho and O. Roussel. The Pseudo Boolean Evaluation 2005, 2005.
http://www.cril.univ-artois.fr/PB05.

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver . In 39th Design Automation Conf., pages 530–535, June 2001.

[9] N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2006. This issue.

[10] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In Proceedings of the 11th International Conference on Principles and Practice of Con-
straint Programming, CP 2005, 2005.

200

http://www.cril.univ-artois.fr/PB05

	Introduction
	Proposed encoding 
	Notations
	Generalized Arc Consistency 
	Encoding method

	Complexity of the translation 
	Some polynomial cases
	An exponential case

	Implementation: the pb2sat+zchaff solver 
	Encoding of pseudo-Boolean constraints
	Optimization process

	Experimental results 
	Related works
	Conclusion 
	Acknowledgments

