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Abstract

This paper introduces a new hybrid method for efficiently integrating Pseudo-Boolean
(PB) constraints into generic SAT solvers in order to solve PB satisfiability and optimiza-
tion problems. To achieve this, we adopt the cutting-plane technique to draw inferences
among PB constraints and combine it with generic implication graph analysis for conflict-
induced learning. Novel features of our approach include a light-weight and efficient hybrid
learning and backjumping strategy for analyzing PB constraints and CNF clauses in order
to simultaneously learn both a CNF clause and a PB constraint with minimum overhead
and use both to determine the backtrack level. Several techniques for handling the original
and learned PB constraints are introduced. Overall, our method benefits significantly from
the pruning power of the learned PB constraints, while keeping the overhead of adding
them into the problem low. In this paper, we also address two other methods for solving
PB problems, namely Integer Linear Programming (ILP) and pre-processing to CNF SAT,
and present a thorough comparison between them and our hybrid method. Experimental
comparison of our method against other hybrid approaches is also demonstrated. Addi-
tionally, we provide details of the MiniSAT-based implementation of our solver Pueblo to
enable the reader to construct a similar one.
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1. Introduction

Recent advances in algorithms for Boolean Satisfiability (SAT) have led to a significant
increase in the capacity and applicability of SAT solvers. Many large design and analysis
problems from the field of Electronic Design Automation (EDA) are now routinely cast as
SAT instances (with millions of CNF clauses and tens of thousands of variables) and quickly
solved using these powerful solvers.

Modern SAT solvers for systems of Boolean constraints in Conjunctive Normal Form
(CNF) are based on the DLL backtrack search procedure of Davis, Logemann, and Love-
land [11] augmented with powerful conflict-based learning [28] and efficient watched-literal
schemes [29] for Boolean constraint propagation (BCP). While proving to be quite versatile
for a wide range of applications, CNF constraints are not always the most efficient. The
closely-related linear 0-1 inequalities known as Pseudo-Boolean (PB) constraints have been
widely used to efficiently encode many problems ranging from logic synthesis [1] and verifi-
cation [5] to numerous Operations Research applications [4]. Additionally, PB constraints
are increasingly used to represent objective functions in optimization applications, such as
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Max-SAT and Max-ONEs [8]. These optimization problems are solved by deciding a series
of PB SAT instances, each time tightening the right-hand side of the objective function con-
straint. The procedure terminates when the last instance becomes unsatisfiable. Methods
for lower bound estimation [26] have been effectively applied to these problems.

In order to prune the solution space during the search, many solvers introduce new
constraints dynamically. In ILP, such constraints are generated by cutting plane analysis
[20] inside the branch-and-bound procedure. In modern SAT and PB solvers, on the other
hand, these constraints are derived by analyzing the implication graph at each conflict
resulting in a CNF clause [28, 1], or by applying cutting plane analysis to produce a PB
constraint [13] or a cardinality constraint [6]. Cutting planes were also introduced into the
PB optimization procedure in [27] and were used to compute lower bounds on the objective
function.

In this paper, we introduce a new hybrid algorithm for solving PB SAT problems based
on combining cutting plane methods and implication graph analysis for conflict-based learn-
ing. This enables the learning procedure to benefit from the unique properties of the im-
plication graph in terms of efficient and cheap recognition of unit clauses and at the same
time learn a PB constraint through the cutting plane procedure. Consequently, our method
creates both a PB constraint and a CNF clause after a conflict is detected. This strategy
enables the solver to fully utilize the pruning power of the PB constraint as long as it
remains active. When the PB constraint becomes inactive, it is discarded and its role is
assumed by its companion CNF clause. Such a “dual learning” scheme incurs no overhead
over a learning method that just creates a PB constraint. Additionally, by only watching
some of the variables in each of the learned PB constraints and periodically discarding those
constraints that are not active, the handling cost is curbed further.

This method allows for a particularly efficient “light” integration of PB constraints into
the MiniSAT SAT solver [16] further enhancing performance on mixed CNF/PB problems.
Experimental evaluation over a wide range of benchmarks demonstrates the effectiveness
of our hybrid learning and backjumping strategy compared to the individual strategies of
generating either a PB constraint or a CNF clause after each conflict. We also compare
our hybrid approach with ILP and Boolean preprocessing methods on a wide range of
benchmarks with different characteristics and examine the effectiveness of these methods
on each problem set.

The paper is structured as follows. In Section 2, we cover some preliminaries. In Section
3, different methods for solving PB satisfiability and optimization problems are introduced.
Section 3.3 describes our hybrid learning, backjumping and constraint management meth-
ods. Implementation details and experimental results are reported in Sections 4 and 5 and
conclusions and suggestions for further work are presented in Section 6.

2. Preliminaries

A linear Pseudo-Boolean (PB) constraint is said to be in normal form when expressed as1.:

∑n

i=1
aiẋi ≥ b ai, b ∈ Z

+, ẋi ∈ {0, 1} (1)

1. Less-than-or-equal and equality constraints can be easily transformed to equivalent greater-than-or-equal
forms
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ω1 : 3x1 + 2x′
2 + x3 + x′

4 ≥ 3
ω2 : 2x2 + 2x10 + x8 + x9 ≥ 2
ω3 : x′

3 + x7 + x4 ≥ 2
ω4 : x2 ∨ x′

5 ∨ x6

ω5 : x′
6 ∨ x′

4 ∨ x′
9

ω6 : x1 ∨ x3 ∨ x4

Figure 1. PB SAT problem with CNF
and PB constraints
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Figure 2. implication graph resulting in a conflict
in ω3

where ẋi denotes a literal xi or x′
i. A PB constraint in which some coefficients are negative

can be transformed to normal form by noting that ẋ′
i = 1− ẋi. The sum of the coefficients

of the literals in the constraint whose values are true, false and undefined are denoted by
ST , SF , and SU respectively. The largest coefficient in the constraint is referred to as amax

and its corresponding literal as ẋmax. An example PB constraint in normal form is:

3x1 + 2x′
2 + x3 + x4 ≥ 3 (2)

If all the coefficients in a PB constraint are equal, the constraint reduces to a cardinality
constraint ; when the right-hand side and all left-hand side coefficients are equal, the con-
straint further reduces to a single CNF clause. Inversely, a CNF clause can be converted to
a cardinality constraint with unit right-hand side:

∑n

i=1
ẋi ≥ 1 ⇔

∨n

i=1
ẋi

In this paper, we will use the SAT problem of Figure 1 as a running example.

2.1 PB Constraint Processing

The following operations are defined for PB constraints and can be applied to them before
and during the solving process:

Coefficient Reduction - As noted in [9], a PB constraint in normal form as in (1), such
that ak > b for some k ∈ {1, · · · , n}, is equivalent to the PB constraint:

bẋk +
∑n

i=1,i6=k
aiẋi ≥ b (3)

in the sense that they both have the same 0-1 solution set. The set of real solutions
of (3) in the unit hypercube is a subset of those of the original constraint (1).

Weakening to Cardinality Constraint - The strongest extended clause2. [2] of the PB
constraint (1) is the weaker cardinality constraint:

∑n

i=1
ẋi ≥ β (4)

2. Also known as the extended cover inequality [36]

167



H.M. Sheini and K.A. Sakallah

where β is the smallest integer such that3.

∑β−1

i=1
ai < b ≤

∑β

i=1
ai

For instance, the cardinality constraint representing the strongest extended clause of
(2) is:

x1 + x′
2 + x3 + x4 ≥ 1

Variable Elimination - A non-negative linear combination of a system of PB constraints
is referred to as a cutting plane [20, 7] since it cuts off a portion of the feasible
set obtained by relaxing the integrality requirement on the variables (in this case
simply being 0 or 1) without affecting the 0-1 feasibility of the original set [7]. This
construction can also be viewed as an extension of resolution from CNF clauses to 0-1
inequalities [22]; in this view the cutting plane is considered to be an implication of
the set of PB constraints used to generate it. An example of this procedure is:

3x1+ 2x′
2+ x3+ x4 ≥ 3

x′
3+ x4 ≥ 1

3x1+ 2x′
2+ 2x4 ≥ 3

2.2 PB Constraint Propagation

A PB constraint is unit and therefore implies ẋU
max when ST + SU < b + aU

max, where ẋU
max

is the unvalued literal with the largest coefficient, aU
max, among all unvalued literals in the

constraint. The implying assignment, in this case, is the conjunction of false literals in the
PB constraint. For example, PB constraint (2) becomes unit if x1 is false, implying x2 to
false. It later can become unit again if either x3 or x4 is assigned to false, implying the
other. A constraint is said to be over-satisfied if, under its current assignment, its left-hand
side is strictly greater than its right-hand side. Note that a unit CNF clause can never be
over-satisfied . On the other hand, a unit PB constraint is over-satisfied when ST +SU > b.
Obviously, a PB constraint is violated when ST +SU < b. Figure 3 demonstrates the status
of example PB and CNF constraints under different variable assignments.

The most straightforward method for detecting that a constraint has become unit is to
always update ST , SF , and SU after each assignment to one of its literals. This amounts
to watching all literals in the constraint and has been dubbed the “counters” procedure in
[6]. This procedure was used in the PBS PB solver [1]. Efficient propagation procedures
through PB constraints [6, 14, 33] are based on various extensions of the highly effective
two-literal watch strategy for CNF clauses [29]. For example, in [6] the basic idea is to watch
the fewest number of non-false literals such that when the unassigned watched literal with
the largest coefficient is set to false a) the constraint is still guaranteed to be satisfied and
b) the constraint can identify the literals that must now be implied to true. Specifically, if
SW denotes the sum of coefficients of the watched literals (the watched sum), the invariant
that must be maintained to detect when the PB constraint becomes unit can be succinctly
expressed as:

SW ≥ b + aU
max (5)

3. We assume that a1 ≥ a2 ≥ ... ≥ an
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constraint x1, x2, x3 ST SU aU
max

unit? overSAT?
ST + SU < b + aU

max ST + SU > b

3x1 + 3x′
2 + x3 ≥ 3 −,−,− 0 7 3 no yes

0,−,− 0 4 3 yes yes
0, 0,− 3 1 1 no yes

2x1 + x2 + x3 ≥ 2 −,−,− 0 4 2 no yes
0,−,− 0 2 1 yes no
0, 1, 1 2 0 − no no

x1 ∨ x2 ∨ x3 −,−,− 0 3 1 no yes
0, 0,− 0 1 1 yes no
0, 0, 1 1 0 − no no

Figure 3. Constraint status examples

When a watched literal is set to false, it must be replaced by one or more non-false
literals to maintain this invariant. When that is no longer possible, the constraint becomes
unit and the unassigned watched literal with the largest coefficients must be set to true to
insure that the constraint is not violated. Effectively this procedure extends the two-literal
watch strategy for CNF clauses [29] to unrestricted PB constraints and amount to watching
the fewest literals necessary to perform implications and detect conflicts. It was concluded
in [6], however, that while useful for CNF clauses and cardinality constraints, such a scheme
is not as effective for unrestricted PB constraints due to its high overhead. Thus, for the
solver in [6], they “decided to use counters to implement BCP for LPB constraints” as was
suggested in [1].

2.3 Conflict-Based Learning Schemes

Following the introduction of no-good recording in dependency-directed backtracking method
of [34], conflict learning and non-chronological backtracking techniques have been exten-
sively studied and applied to different problems specifically to Constraint Satisfaction Prob-
lems (CSP) [12, 19, 32, 18, 24].

Noting the inevitability of conflicts during SAT search, in GRASP [28], a powerful
conflict-induced learning and non-chronological backtracking for CNF propositional satis-
fiability problem is introduced. In this procedure, the implication graph leading to the
conflict is constructed and analyzed to find a cut that includes only one assignment at the
conflict level. This point in the graph is referred to as a unique implication point (UIP)
[28] and its corresponding CNF clause is guaranteed to become unit when the last decision
assignment is “erased”.

On the other hand, the process of implication graph analysis to learn a CNF clause at
the first UIP can be viewed as repeated application of resolution on the violated constraint
and all the constraints that implied the conflict until a clause that becomes unit after erasing
the last decision assignment is obtained [15]. In this framework, if we denote the violated
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constraint by V and the unit implying constraints leading to the conflict by U1, U2, · · · (in
reverse implication order), this process can be formulated as follows:

R1 = resolve(V, U1, x̂1)
R2 = resolve(R1, U2, x̂2)
· · ·
Rk = resolve(Rk−1, Uk, x̂k)

(6)

where Ri represents the resolvent at each resolution step and x̂1, x̂2, · · · , x̂k denote the
corresponding implied variables. This process terminates when a unit resolvent is found
which, in case of CNF clauses, will be the first encountered UIP.

It is important to note that these two learning procedures, namely a) structural and
b) resolution-based analysis of the implication graph, yield identical results when the only
constraint types involved are CNF clauses. When PB constraints are also present in the
implication sequence, these two procedures do not necessarily yield identical learned con-
straints. We summarize below three different learning schemes that were proposed to deal
with the participation of PB constraints in conflicts.

2.3.1 CNF Learning

It is possible to extend the conflict-induced CNF learning method of GRASP [28] to PB
constraints by treating the implications caused by PB constraints exactly the same way as
the ones caused by CNF clauses. We will refer to such learning as CNF learning. This
process basically consists of constructing the implication graph and analyzing the implied
assignments regardless of the types of constraints implying them. At this point, the exact
same GRASP-like implication graph analysis and backtracking process is followed that
always results in learning a CNF clause at the first UIP that determines the backtrack
level. Figure 2 shows the implication graph for our running example in the case where x5

and x10 are assigned to true and false at decision levels 1 and 2 respectively. At decision
level 3, x1 is decided to false which ends up in a conflict in the PB constraint ω3. Analyzing
the implication graph yields the following CNF clause:

(x1 ∨ x′
5 ∨ x10) (7)

2.3.2 PB Learning

PB learning, introduced in [13, 6], aims at analyzing the implication sequences leading to
conflicts in order to derive unit PB constraints. It is basically an application of resolution as
in (6) and results in the step-by-step elimination of implied variables, generating a cutting
plane at each step. It terminates when a unit resolvent Ri is found. An example of this
process is demonstrated in Figure 4 under the PB learning column.

As noted earlier, this process basically mimics the CNF learning scheme based on im-
plication graph analysis. However, unlike CNF learning where it is guaranteed that the
learned CNF clause always remains violated in the process, a resolvent, Ri, may become
satisfied if its corresponding Ui is over-satisfied. A procedure to weaken the over-satisfied
unit constraint Ui is suggested in [6]. In this procedure, the slack of a constraint, defined as
(ST +SU )−b, is used to check whether the combination of Ri−1 and Ui yields a non-violated
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resolvent Ri. When this condition is detected, the unit constraint Ui is weakened to insure
that Ri becomes violated. For example, consider the following resolution step to eliminate
x2 under the assignment (x1, x2, x10, x5) = (0, 0, 0, 1) (after applying coefficient reduction):

V : x1 + 4x2 + 4x10 + 2x′
5 + x7 + 2x8 ≥ 4 (slack = −1)

U : 2× 3x1 + 2x′
2 + x3 + x′

4 ≥ 3 (slack = +1)

R : 6x1 + 4x10 + 2x′
5 + 2x3 + 2x′

4 + x7 + 2x8 ≥ 6 (slack = +1)

Clearly the over-satisfaction of the unit constraint U causes the resolvent R to become non-
violated. In terms of slacks, the slack of the resolvent R is obtained by linearly combining
the slacks of V and U yielding −1 + 2 = +1. The procedure suggested in [6] for weakening
the over-satisfied unit constraint Ui proceeds as follows:

1. weakening 3x1 + 2x′
2 + x3 + x′

4 ≥ 3 (slack = +1) → 3x1 + 2x′
2 + x3 ≥ 2

2. coef reduc’n 3x1 + 2x′
2 + x3 ≥ 2 → 2x1 + 2x′

2 + x3 ≥ 2

3. weakening 2x1 + 2x′
2 + x3 ≥ 2 (slack = +1) → 2x1 + 2x′

2 ≥ 1

4. coef reduc’n 2x1 + 2x′
2 ≥ 1 → Û : x1 + x′

2 ≥ 1

Note that in each weakening step, a non-false literal is chosen to be removed in no
particular order. Finally combining V with the weakened constraint Û yields the following
resolvent after coefficient reduction, which is strictly stronger than (7):

4x1 + 4x10 + 2x′
5 + x7 + 2x8 ≥ 4 (8)

It is important to note that, cutting planes-based learning may not yield a unit constraint
when PB constraints are involved. This is in contrast to the case where only CNF clauses
participate in the implication sequence where it is guaranteed, as mentioned earlier, that
resolution-based learning stops at the first UIP and yields a unit clause (an example of such
a case will be given in Section 3.3.2).

2.3.3 Cardinality Learning

Finally, learning cardinality constraints has been considered as a compromise between CNF
and PB learning methods [2]. These constraints are able to retain some of the information
represented by the PB constraints and, at the same time, lead to significantly cheaper
propagation. In [6], a “post-reduction” procedure is introduced that converts the learned
PB constraint into a weaker cardinality constraint. Applying the procedure of [6] to (8)
would yield x1 + x10 + x′

5 + x7 + x8 ≥ 1 which is further weakened due to over-satisfaction
to x1 + x10 + x′

5 ≥ 1. For more details on the this process, the reader is referred to [6].

3. Solving PB Constraints

3.1 Integer Linear Programming Methods

These methods, as used in several commercial tools such as CPLEX [23], are based on re-
laxing the integrality of 0-1 variables and using the Simplex procedure to solve the resulting
LP problem at each node of a Branch-and-Bound (BNB) tree. The search proceeds by
partitioning (branching on) the domain of each 0-1 variable at each node and terminates as
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soon as it finds an integral solution or all its nodes are examined. Recent advances in this
procedure are mainly due to augmenting it with the branch-and-cut technique [21] which is
a method to find inequalities that are valid in the 0-1 problem but are violated by the LP
relaxation. Hence, adding these inequalities to the LP relaxation tightens the formulation
and strengthens the BNB framework. This is useful because a stronger relaxation at a node
may have a larger objective function that may allow the tree to be pruned at that node.
Other devices include Lagrangean relaxation, the use of reduced costs to check whether
fixing a variable to 0-1 will permit the tree to be pruned, and so forth. Note that these
procedures are not as efficient when applied to decision problems with no objective function.

3.2 Pure SAT-based Methods

The most straightforward method for solving a system of PB constraints mixed with CNF
clauses is to somehow convert them to an equivalent system of CNF clauses and to submit
them to a SAT solver as is done in MiniSAT+ [17]. One approach for PB-to-CNF conversion
is the adoption of a circuit representation for each PB constraint to yield a CNF formula [1].
This transformation can be obtained by introducing “partial sum” variables that decompose
the monolithic PB constraint into a set of smaller constraints.

In [17], the following three techniques for translating PB constraints to CNF clauses
have been introduced:

1. converting the PB constraint to a BDD, where the BDD representation of the PB
constraint is obtained and then translated into CNF clauses

2. converting the PB constraint to a network of adders, where the sum at the left-hand
side of the PB constraint is produced as a binary number and the circuit representing
the comparison of this sum against the right-hand side is created. CNF representation
of this circuit is the translation of the PB constraint.

3. converting the PB constraint to a network of sorters, where unlike the previous tech-
nique, numbers are represented in unary instead of binary and then again the circuit
for the comparison is constructed and translated to CNF clauses.

For more details on these methods, the reader is referred to [17].

3.3 Hybrid Methods

Extending DLL-style SAT solvers to handle PB constraints [3] is the most common SAT-
based approach for solving these types of problems. In these methods, PB constraints and
CNF clauses are treated as separate constraint classes. Several techniques and strategies for
integrating PB constraints into SAT solvers have been developed during the past few years.
Aloul et al [1] adopted the “watch all literals” and CNF learning schemes for PB propagation
and learning. Conflict-induced learning based on cutting planes was first introduced to SAT
solvers in [13]. Recognizing the inefficiency of handling a large number of generated PB
constraints (cutting planes), the authors in [6] introduced a weakening process applied to
all generated cutting planes (“post-reduction”), converting them to cardinality constraints.
Also noting the significant overhead of processing a large number of generated cutting
planes, the authors in [33] proposed a scheme to discard those constraints periodically. In
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this section, we present a novel hybrid method for analyzing the implication graph and
generating cutting planes that yields both a CNF and a PB constraint at each conflict.
Two strategies for efficiently managing the PB constraints are also discussed.

3.3.1 Hybrid Learning

Noting the advantages of CNF learning, namely its cheap implementation and its ability to
always produce a unit constraint, as well as the pruning power of PB learning, our hybrid
algorithm efficiently combines the CNF and PB learning methods in order to produce both
a CNF clause and a PB constraint in case of a conflict. In this combined procedure, CNF
learning guarantees the correctness and completeness of the process by always producing a
unit CNF clause, and is used to terminate the learning process as soon as the first UIP is
reached. Additionally, the simultaneous generation of a PB constraint helps to considerably
prune the search space. This is in contrast to the method of [6] in which learned PB
constraints are weakened to cardinality constraints which are then used to terminate the
learning process and also retained as the final learned constraints.

It is also important to note that the false literals in the resolvent, Ri, at each resolution
step represent the cut in the implication graph at that step. Therefore they are stored in a
separate set, XF , and used for CNF learning. This makes CNF learning quite efficient and
significantly minimizes its overhead.

The overall learning process terminates as soon as the first UIP is reached which is
automatically detected inside the CNF learning procedure. At this point the learned CNF
clause, stored in XF , is unit and the resolvent, Ri, forms the learned PB constraint. The
backtrack level is determined by processing both the learned CNF and PB constraints
according to the conditions explained in the next section.

This process is demonstrated in Figure 4 for our running example. It starts at step 0
with the violated PB constraint. XF , at this point, contains those literals in the violated
constraint that are false, x′

3 and x4. The next step eliminates x3 by combining its implying
clause, x1∨x3∨x4, with the violated constraint resulting in x1 +2x4 +x7 ≥ 2. Additionally,
x′

3 is replaced by x1 in XF . In the following steps, literals x4, x6, and x9 are eliminated
from the cutting plane respectively. Note that in step 4, coefficient reduction is applied to
the coefficient of x2. XF at each step holds the literals in the generated cutting plane at
that step that are false and cause that constraint to be violated.

While it is not necessary in this hybrid approach to eliminate over-satisfaction in the
learned PB constraints, or to even make them unit, by a weakening step, we found em-
pirically that it is beneficial to weaken them somewhat to increase their pruning power
under the current truth assignment. To reduce the overhead of such weakening, we uti-
lize the structure of the implication graph to replace an over-satisfied unit PB constraint
with the implication it induced, namely the CNF clause representing the cut that cor-
responds to the edges labeled with that constraint. For example in Figure 4, the over-
satisfied unit constraint 3x1 + 2x′

2 + x3 + x′
4 ≥ 3 is replaced with x′

1 → x′
2 to resolve x2

in x1 + 4x2 + 4x10 + 2x′
5 + x7 + 2x8 ≥ 4 yielding 4x1 + 4x10 + 2x′

5 + x7 + 2x8 ≥ 4 (after
applying coefficient reduction). This simple weakening scheme incurs very little overhead
and performed quite well in practice.
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Figure 4. Simultaneous PB and CNF learning induced by conflict. The variable ordering is
according to implication.

3.3.2 Hybrid Backjumping

Let C and P denote the CNF and PB constraints generated by the hybrid learning process
described above. As mentioned earlier, C is guaranteed to become unit at some earlier
decision level after the current decision assignment is undone. The same cannot be said
of P , however. In other words, after erasing the last decision assignment, it is possible for
P to remain non-unit at all earlier decision levels (recall that we do not require P to be
weakened to the point that it becomes unit). The hybrid backjumping procedure must,
thus, consider the following two scenarios:

Scenario A: The learned PB constraint can become unit. In this case, let lc and
lp denote the decision levels at which C and P , respectively, become unit. The solver
can now safely backtrack to decision level min(lc, lp) and proceed as follows:
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1. If lc = lp, then both C and P are unit and their corresponding implications are
propagated. This was the case of our running example.

2. If lc < lp, then C is unit and P is satisfiable (not violated). In this case, the
implication due to C alone is propagated.

3. If lc > lp, then P is unit and C is satisfiable (not violated). In this case, the
implication(s) due to P alone is (are) propagated. As an example of this case,
consider the following constraints whose structure is common in routing problems
[1]:

(C1)x11 ∨ x10 ∨ x9

(C2)x8 ∨ x7 ∨ x6

(C3)x5 ∨ x4 ∨ x3

(C4)x
′
2 + x′

5 + x′
8 + x′

11 ≥ 3
(C5)x

′
1 + x′

4 + x′
7 + x′

10 ≥ 3

(9)

In this example, we assume that, x3, x6 and x9 are implied to false at the decision
levels 1, 2 and 3 respectively and x1 is assigned to true at the current (4th)
decision level resulting in the violation of C4. The learning procedure proceeds
as follows:

step action resulting cutting plane conflict assignments
1 C4 x′

2 + x′
5 + x′

8 + x′
11 ≥ 3 x1x

′
4x

′
7x

′
10x5x8x11

2 + C1 x′
2 + x′

5 + x′
8 + x9 + x10 ≥ 3 x1x

′
4x

′
7x

′
10x5x8

3 + C2 x′
2 + x′

5 + x6 + x7 + x9 + x10 ≥ 3 x1x
′
4x

′
7x

′
10x5

4 + C3 x′
2 + x3 + x4 + x6 + x7 + x9 + x10 ≥ 3 x1x

′
4x

′
7x

′
10

5 + C5 x′
1 + x′

2 + x3 + x6 + x9 ≥ 3 x1x
′
4x

′
7

The resulting PB constraint is x′
1(0@4) + x′

2 + x3(0@1) + x6(0@2) + x9(0@3) ≥
3. The learned CNF clause, comprising of the false literals in the learned PB
constraint is, therefore, x′

1(0@4) ∨ x3(0@1) ∨ x6(0@2) ∨ x9(0@3). The learned
PB constraint is unit at decision level 2 (lp = 2) implying x′

1, x′
2 and x9 to true.

On the other hand, the learned CNF clause is unit at decision level 3 (lc = 3),
implying x′

1 to true. Note that at decision level 3, the learned PB constraint is
still violated and therefore, our algorithm learns both constraints, backtracks to
level 2, implies x′

1, x′
2 and x9 to true and records the PB constraint as the reason

for the implications.

Scenario B: The learned PB constraint does not become unit. In this case, the
solver checks the status of P at decision level lc:

1. If P is satisfiable (not violated), then the implication due to C alone is propa-
gated. This is similar to case 2 of scenario A.

2. If P is violated, one possibility is to invoke the learning procedure to analyze
the causes of this violation yielding two new learned constraints (CNF and PB).
Another possibility is to backtrack to the highest decision level before lc at which
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P becomes satisfiable (but not necessarily unit). At that point, there are no
implications due to the learned constraints and the solver must record both C

and P and make a new decision assignment. This is the approach implemented
in the Pueblo solver. We should note that this backtracking strategy is complete
because each pruning step eliminates a new portion of the search space and
provides an explanation (a CNF or PB constraint) for why a solution cannot be
found in that portion. In this case, the learned CNF and PB constraints are
never removed to maintain the completeness of the procedure.

As an example, consider the set of constraints of (9), but now assume that due to
other parts of the problem, x3, x6 and x9 are all implied to false at the decision
level 3 and x1 is assigned to true at the 4th decision level, resulting in the violation
of C4. Thus, the resulting PB and CNF constraints are as follows:

P : x′
1(0@4) + x′

2 + x3(0@3) + x6(0@3) + x9(0@3) ≥ 3
C : x′

1(0@4) ∨ x3(0@3) ∨ x6(0@3) ∨ x9(0@3)

At decision level 3, C is unit but P is still violated. On the other hand, at
decision level 2, none of the two learned constraints are unit. In this case, the
solver can either backtrack to decision level 3 and invoke the learning process on
P or backtrack to decision level 2 and continue the search.

3.3.3 Efficient Managements of PB Constraints

As noted in [6, 33], the major disadvantage of learning PB constraints is that the high
overhead of propagating through those constraints might offset the speed-up due to their
pruning power. On the other hand, unlike unrestricted PB constraints, unit propagation
on cardinality constraints is more efficient, mainly due to the fact that finding the unvalued
literal with maximum coefficient is avoided. As mentioned earlier, this is addressed in [6]
by weakening learned PB constraints to cardinality constraints. In contrast, our strategy
for managing the overhead of unrestricted PB constraints is based on a) watching more
than the minimum number of (but not all) literals to simplify the propagation process and
b) controlling the number of learned PB constraints as search progresses. Some details of
these two strategies are explained below:

Efficient Propagation through PB Constraints Our proposed watching scheme for
PB constraints is to watch enough literals in the PB constraints to make SW ≥ b+amax.
By using amax, rather than aU

max as in (5), more than the minimum number of lit-
erals ends up being watched, but propagation becomes considerably faster since it is
no longer necessary to find aU

max. Note that this technique was suggested in [6] but
was not found “beneficial” and therefore was not implemented for unrestricted PB
constraints.

Bounded Learning Scheme In this approach, the number of times that each learned PB
constraint has participated in a conflict (referred to as that constraint’s activity) is
stored. In order to keep the number of PB constraints in the problem under control,
those learned PB constraints whose activity has dropped below a set threshold are
periodically removed. Following this procedure guarantees that at all times, only
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those PB constraints relating to the current status of the assignment sequence are
propagated. This would limit the time spent in propagating PB constraints and
delegates the role of the dropped PB constraints to their companion learned CNF
clauses. The maximum number of learned PB constraints is increased after each
restart; this heuristic was found to be useful experimentally.

4. Implementation

We implemented the procedures and schemes described in this paper in our PB solver,
Pueblo, as an extension to MiniSAT 1.12 [16]. The implementation details are covered in
this section and should be read together with the MiniSAT description presented in [16].
Note that Pueblo can solve both PB satisfiability and optimization problems and has the
capability to handle integer coefficients that can be represented with at most 32 bits.

4.1 Constraints

Exploiting the capability of MiniSAT to handle arbitrary constraints over Boolean variables
through its Constr abstract base class, we added a PseudoBool constraint class in addition
to its existing Clause constraint class. Unique procedures for propagating and calculating
reasons for this class of constraints are presented in Figure 5. Using the base class enables
Pueblo to use all of MiniSAT’s solving procedures independent of the type of constraint
being handled. These PseudoBool constraints are either created at the beginning of the
search or learned through PB learning procedure. Each PseudoBool constraint is created
or learned using the PB new procedure, presented in Figure 6.

4.2 Accumulator

The accumulator is the PB constraint that contains the resolvent of the cutting plane based
PB learning procedure. The PB learning process starts with the violated constraint consid-
ered as the accumulator and continues by adding it to the implying constraints and saving
it back in itself. In order to avoid searching for variables, the accumulator is implemented
as an array whose size is equal to the number of problem variables. In this scenario, CNF
learning consists of detecting and separately storing the false literals of the accumulator.
Details of the accumulator class are presented in Figure 7.

4.3 Pueblo Solver

Pueblo major modifications in MiniSAT solving procedure are listed below:

4.3.1 Learning

Pueblo adopts the same learning flow as in MiniSAT augmenting it with cutting plane
generation (PB learning) at each step. At each step in the backward traversal of the
implication graph, the CNF or PB constraint involved in that implication is added to the
accumulator while performing MiniSAT’s calcReason() routine to eliminate the implied
literal. The cutting plane is saved in the accumulator while the learned CNF clause is
stored in the out reason following the learning procedure of MiniSAT (refer to Figure 5).
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class PseudoBool : public Constr

int rhs
int watchsum
int amax
float activity
bool learnt
Vec<PBTerm> terms - PBTerm comprises of a literal, a coefficient and watched bool.

- terms is sorted based on coefficients
bool propagate(Solver S, lit p)

int p idx = terms.index (p)
terms[p idx].unwatch(this)
- update watchsum
for(int i = 0; i < size() && watchsum < amax + rhs; i++)

Lit lit = terms[i].lit
if(S.value(lit)6= l False && !terms[i].watched()) terms[i].watch(S, this)

- check for conflict
if(watchsum < rhs goal)

terms[p idx].watch(S, this)
return False

- check for satisfiability
if(watchsum ≥ amax + rhs) return True

for(int i = 0; i < size(); i++)
Lit lit = terms[i].lit
int coeff = PBTerms[i].coeff
if(watchsum ≥ coeff + rhs) break

if(S.value(lit) == l Undef)
if(!S.enqueue(lit, this))

terms[p idx].watch(S, this)
return False - conflict in the Solver

return True

void calcReason(Solver S, lit p, vec<lit> out reason)
- all learned constraints are initially active
if (learnt) S.pbBumpActivity(this)
- calculate the multiplier to eliminate p from accumulator
int mul = (p == lit Undef) ? 1 : S.accumulator.coeff(var(p))
S.accumulator.goal += mul * rhs
for (int i = 0; i < size(); i++)

lit = terms[i].lit
if(lit == p)

S.accumulator.goal − = mul*terms[i].coeff
continue

- adds this literal to the accumulator
UpdateAccumulator(S, mul, terms[i].lit, terms[i].coeff )
- saves the false literals for CNF learning
if (S.value(lit) == l False) out reason.push(¬lit)

Figure 5. Implementation of PseudoBool constraint class in Pueblo

If an over-satisfaction is detected in the accumulator, the step resulting in over-satisfaction
is undone and replaced by adding the weakened CNF clause to the accumulator. The
learning stops when the first UIP is reached as detected by MiniSAT analyze procedure.
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bool PB new(Solver S, int goal, Vec<lit coef> pbs, PseudoBool out, Clause c, bool learnt)
out = new PseudoBool

out.rhs = goal
for (int i = 0; i < pbs.size(); i++)

out.terms[i].lit = Lit(pbs[i].lit)
if(pbs[i].coef < 0)

out.rhs += abs(pbs[i].coef)
out.terms[i].lit = ¬ out.terms[i].lit

out.terms[i].coeff = abs(pbs[i].coef)
sort(out.terms, size())
if( (out.terms[0].coeff == out.rhs && out.terms[size()].coeff == out.rhs) ||

out.rhs == 1 ) - checking if PB constraint is equal to a CNF clause
bool ret = convertPBtoCNF (S, out, c, learnt) - creates clause with literals in terms of out
xfree(out)
return ret

out.amax = out.terms[0].coeff
out.learnt = learnt
if(out.rhs == 0) return True

for (int i = 0; i < size(); i++) - setting up the watch list
Lit lit = out.terms[i].lit
if (out.watchsum < out.rhs + out.amax ) out.terms[i].watch(S, this)
if (out.watchsum ≥ out.rhs + out.amax ) break

if(out.watchsum < out.rhs) return False

if(out.watchsum < out.rhs + out.amax )
for(int i = 0; i < size(); i++)

Lit lit = out.terms[i].lit
if(S.value(lit) == l Undef)

if(out.watchsum ≥ out.terms[i].coeff + out.rhs) break

if(!S.enqueue(lit)) return False

if(learnt) S.varBumpActivity(lit, coeff/out.rhs)
return True

Figure 6. Implementation for creating and adding new PseudoBool constraints in Pueblo

The details of conflict analysis procedure of Pueblo based on the analyze method of MiniSAT
is presented in Figure 8.

4.3.2 Backtracking and Constraint Recording

In Pueblo, the lowest decision level at which the learned PB constraint is unit is determined
by checking the invariant of (5) at each decision level. If such decision level was found, the
solver backtracks to the minimum level between this level and the backtrack level computed
in MiniSAT’s analyze routine. Otherwise, the highest decision level at which the learned
PB constraint is not violated is determined and the solver backtracks to that level or the
backtrack level, whichever lower. This procedure is demonstrated in Figure 9. Both learned
PB and CNF constraints are recorded and their watched literals are properly setup, as
demonstrated in Figure 10.
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class accumulator

Vec<lit coef> terms - lit coef is a structure with a literal and an integer coefficient
int goal
- set all literals in terms to undefined
void reset()
- check if satisfied, subtracts pb and adds CNF weakened of pb
void checkOverSatisfaction(PseudoBool pb)
- multiplies all coefficients by mul
void multiplyBy(int mul)
- adds to the coefficient of var(lit)
void updateCoef(Lit lit, int coef)
- returns the coef of var
int coeff(int var)
- return literal having var
Lit lit(int var)
- returns sum of coefficients of false literal at level i
int sumAssignedFalseAtLevel(int i)
- returns the largest coefficient among unvalued literals
int amaxAtLevel(int i)
- constructs a vector of literals with non-zero coefficients
void getLiterals(Vec<Lit> lits)
- converts all coefficients to positive by changing the sign of literals
void normalize()

Figure 7. Implementation of the accumulator class in Pueblo

4.3.3 Activity Heuristics

The variable activity heuristic of MiniSAT is extended to PB constraints in such a way
that it recognizes the coefficient of each variable in the learned constraint. Therefore, the
activity of each variable that is present in a newly learned PB constraint is increased by
the ratio of its coefficient to the right-hand side of that PB constraint.

4.3.4 Constraint Removal

In Pueblo, the number of active PB constraints is periodically reduced to a fixed number
of constraints. This procedure basically removes all PB constraints that are not locked (to
an implication) and are less active than a pre-set threshold limit. This limit is increased at
each restart. Through our experiments on benchmarks used in the PB’05 evaluation [31],
we found that an initial threshold of 50 and a growth rate of 10% produces the best results.

5. Experimental Analysis

We present comprehensive experimental analysis of the methods described in this paper
using the benchmarks in [31]. These benchmarks include instances of logic synthesis [38],
prime DIMACS [30], FPGA and global routing [1], the progressive party problem [35] and
model RB [37]. Detailed results and analysis of the performance of various solvers on these
benchmarks are reported in [25].

More specifically, we first compare our hybrid method against other solution methods,
namely ILP and conversion-to-SAT. Next, we compare Pueblo against other PB SAT meth-
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void analyze(Constr confl, Vec<Lit> out learnt, int out btlevel)
Vec<char> seen = analyze seen, seen.growTo(nVars(), 0)
int pathC = 0
Lit p = lit Undef
Vec<Lit> p reason
bool inPB = False

out learnt.push()
out btlevel = 0
do

if(inPB)
- finding the multipliers to generate the cutting plane such that p is removed
int mul = confl.terms.getCoeff [var(p)]
accumulator.multiplyBy(mul)

p reason.clear()
confl.calcReason(this, p, p reason)
- check if accumulator is satisfied and if so undo adding and replace with weakened confl
accumulator.checkOverSatisfaction(confl)
for (int j = 0; j < p reason.size(); j++)

Lit q = p reason[j]
if (!seen[var(q)])

seen[var(q)] = 1
if (level[var(q)] == decisionLevel())

pathC++
else if (level[var(q)] > 0)

out learnt.push(¬q)
out btlevel = ::max (out btlevel, level[var(q)])

- Select next constraint to look at:
do

p = trail.last()
confl = reason[var(p)]
- check if this literal should be removed from the accumulator
inPB = accumulator.coeff(var(p)) 6= 0 && (value(accumulator.lit(var(p))) == l False
undoOne()

while(!seen[var(p)])
seen[var(p)] = 0
pathC–

while (pathC > 0)
out learnt[0] = ¬p

Figure 8. Implementation for conflict analysis method in Pueblo

ods adopting different learning and propagation strategies. For this, we use the results of
the PB’05 evaluation [25] and present a thorough analysis.

5.1 Comparison of Solution Methods

The results of applying three different methods for solving PB constraints, namely ILP (us-
ing XPRESS-MP [10]), pre-processing to SAT (using MiniSAT+ [17]) and PB-SAT (using
Pueblo) on a representative set of the benchmarks from [31], are presented in Table 1 and
Table 2. All these experiments were conducted on an AMD Opteron 2.2GHz machine with
8GB of RAM running Linux - Kernel 2.6.5.
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void undoPB()
accumulator.normalize() - convert all coefficients to positive
int tmp lhs = accumulator.goal
for(int i = root level; i < decisionLevel(); i++)

- subtracts the sum of coefficients in the accumulator became false at level i
tmp lhs − = accumulator.sumAssignedFalseAtLevel(i)
- check if accumulator is unit/conflict at this level
if( tmp lhs < accumulator.goal + accumulator.amaxAtLevel(i) )

if(tmp lhs < accumulator.goal) - no unit level exists
bt level = i-1

else bt level = i
break

cancelUntil(::max(bt level, root level))

Figure 9. Implementation of PB backtracking in Pueblo

bool recordPB(Vec<Lit> clause, int backtrack level)
PseudoBool pb
Clause c
Vec<Lit> PBLits - literals in the learned PB constraint
accumulator.getLiterals(PBLits)
undoPB()
if(!PBnew(this, PBLits, pb, c)) return True - learn the PB constraint
if(pb 6= NULL )

pb learnts.push(pb)
pbDecayActivity()

if(c 6= NULL)
learnts.push(c)
claDecayActivity()

Clause CNFlearnt
bool CNFunit = False

if(decisionLevel() > backtrack level)
cancelUntil(::max(bt, root level)) - backtrack to earlier level
CNFunit = True

check(Clause add(this, clause, CNFlearnt)) - learn the CNF clause
if(CNFunit) check(enqueue(clause[0], CNFlearnt))
if(CNFlearnt 6= NULL)

learnts.push(CNFlearnt)
claDecayActivity()

return False

Figure 10. Implementation of conflict-induced constraint recording method in Pueblo

As expected, the performance of the ILP solver on problems that are under-constrained is
superior to the other methods. On the other hand, SAT-based methods perform exceedingly
well on problems with a high number of constraints as well as problems with a larger
proportion of CNF clauses (refer to Table 3 for distributions of constraint types).

The PB SAT method of Pueblo outperforms the pure SAT method by taking advantage
of cutting planes and the PB structure of the problems. Our learning methods based on
cutting plane theory were able to reduce the performance gap between the ILP and SAT-
based methods on those problems that were solved more efficiently in the ILP framework
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Table 1. Experimenting using different Solving Methods for optimization benchmarks. The best
times are bold.

benchmark vars/constraints
Time (sec.)

XPRESS-MP MiniSAT+ Pueblo

[3] lseu 89/29 0.191 99.021 331.37
p0282 282/222 0.308 488.40 4.95
mod008 319/7 0.021 63.133 0.27
nw04 87482/73 14.92 54.957 3.08

l152lav 1989/194 0.043 232.43 0.03

[38] 5xp1.b 465/860 2.241 >1000 132.96
9sym.b 310/977 0.325 0.175 11.67
alu4.b 808/1839 65.925 >1000 >1000
clip.b 350/716 0.309 3.211 29.15
count.b 467/695 0.883 >1000 53.72
f51m.b 407/539 0.351 782.61 33.99

[37] frb30-15-4 450/17832 >1000 95.304 >1000
frb30-15-5 450/17795 >1000 31.072 >1000

[30] aim100,3,4y1,1 200/441 51.926 0.014 0.01

aim200,1,6y1,2 400/521 >1000 0.026 0.01

bf0432-007 2080/4709 806.84 0.033 0.11
ii32d3 1648/20303 >1000 57.24 953.04
par16-1-c 634/1582 223.59 0.813 0.59

par16-1 2030/4326 573.64 4.95 7.15

Table 2. Experimenting using different Solving Methods for decision benchmarks. The best
times are bold.

benchmark vars/constraints
Time (sec.)

XPRESS-MP MiniSAT+ Pueblo

[1] fpga35 33sat 1733/1256 0.557 >1000 0.3

fpga35 35sat 1838/1330 0.941 52.452 0.35

fpga40 39sat 2340/1678 0.955 203.43 0.84

fpga40 40sat 2400/1720 1.252 468.60 0.34

fpga45 44sat 2970/2113 5.33 >1000 2.71

[35] ppp:1-12,16 4662/5691 204.50 6.723 1.97

ppp:1-13 4632/35770 >1000 574.83 4.32

ppp:1,3-13,19 4608/35130 >1000 125.73 2.81

ppp:1-9,16-19 4626/5649 >1000 >1000 62.97

without compromising the advantages of SAT-based techniques for over-constrained prob-
lems. Specifically, in the representative decision benchmarks of Table 2, the hybrid PB SAT
approach performs considerably better on more benchmarks than the other two methods.
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Note that these benchmarks are especially good for a hybrid solver such as Pueblo, because
the input is already hybrid.

It is worth mentioning that the overall performance of our SAT-based method on op-
timization problems can be further improved by applying the lower bound computation in
[26]; such local estimates are routine in ILP solvers and contributes to their robust perfor-
mance.

5.2 Comparison of PB SAT Methods

Figure 11 compares the performance of Pueblo against galena and PBS on the representa-
tive benchmark set of Table 3. In Table 3 the distribution of each type of constraint, namely
unrestricted PB, cardinality and CNF, in each benchmark suite is presented. The data of
Figure 11 are from the PB’05 evaluation [31]. For details of the settings, benchmarks and
results, the reader is referred to [25].

The first two rows in this figure show the comparison between Pueblo and, respectively,
galena and PBS for different optimization problems, whereas the second two rows cor-
respond to the comparison for different satisfiability problems. The X and Y axes show,
respectively, Pueblo and each of the competitors’ execution times. A dot above the diago-
nal line indicates that Pueblo’s performance is better than the corresponding competitor,
and vice versa. The two uppermost horizontal lines and the two rightmost vertical lines
represent, respectively, benchmarks that ended in UNKNOWN or SAT instead of OPT. Ac-
cording to the notations used in the PB’05 evaluation [31, 25], in these benchmarks, galena
and Pueblo reported SAT for optimization problems when “solver found a solution (s SAT-
ISFIABLE was output)” and PBS did not provide SAT results to any of the optimization
problems. In these benchmarks, UNKNOWN results reported for galena corresponded to
cases when “solver couldn’t decide (s UNKNOWN was output)” or “solver was terminated
by a signal (SIGSEGV for example) and didn’t output a solution line” and UNKNOWN
results for PBS and Pueblo corresponded to the cases when “solver exceeded the time limit
and gave no answer”. Figure 12 demonstrates the comparison of Pueblo against galena and
PBS on all benchmarks of Table 3 collectively as well as on SMALLINT MIPLIB optimiza-
tion benchmarks of [31] where the majority (more than 90% in average) of the constraints
are of PB and cardinality types. For more details on these benchmarks, the reader is referred
to [25].

galena is based on the work in [6] and utilizes cutting plane PB learning and post-
reduction of learned PB constraints to cardinality constraints. PBS, on the other hand, is
based on CNF learning [1]. These results show that general PB learning in many applica-
tions performs comparably or better than learning strategies producing CNF or cardinality
constraints. For instance in routing benchmark suites (right most column in Figure 11),
learning unrestricted PB constraints enables the solver to considerably prune the search
space and consequently reduces the solve time in such a way that Pueblo could quickly (in
a few seconds) solve instances that galena and PBS were unable to solve.

The comparison of Pueblo and galena demonstrates the effectiveness of each solver’s
strategy to control the overhead of learning PB constraints in different benchmarks. As
discussed earlier, Pueblo adopts simultaneous CNF and PB learning and periodic discarding
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Figure 11. Results of PB’05 evaluations for different benchmark suites, comparing Pueblo (X-
axis) to galena/PBS (Y-axis).

of learned PB constraints, while galena weakens the learned PB constraints to cardinality
constraints.
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Figure 12. Results of PB’05 evaluations for MIPLIB problems as well as all benchmarks of Table
3, comparing Pueblo to galena/PBS

Table 3. Benchmarks distributions of constraint types per instance in each suite

Benchmark Suite
# of avg # of avg avg avg
Inst’s Constraints % PB % CARD % CNF

Barth Suite [3] 20 727 21.7% 30.5% 47.8%

prime DIMACS [30] 156 9707 0% 0.2% 99.8%

global Routing [1] 15 1579 0% 1.5% 98.5%

UCLID proc. verification [5] 50 79522 8.8% 0% 91.2%

Progressive Party [35] 6 35672 0.2% 15.6% 84.2%

FPGA Routing [1] 57 480 0% 22.7% 77.3%

6. Conclusions and Future Work

In this paper, we covered learning methods based on cutting planes for solving PB con-
straints and compared our method to pure SAT and ILP methods as well as to other PB
SAT methods. On the learning front, we proposed a hybrid procedure that produces both
a PB and a CNF constraint after each conflict. We described the major challenges for
handling learned PB constraints and experimentally demonstrated the advantages of our
hybrid method with periodic PB constraint removal to overcome those barriers.

The integration of logic-based reasoning and integer programming methods promises to
be a vibrant area of research for the next several years. Inference-based learning as discussed
in this paper has proven to be very successful when combined with SAT solver algorithms for
solving a wide range of problems including hardware verification and synthesis. In addition
to adopting new methods, better integration strategies that could control the high overhead
of PB constraints could be a viable path for further research.
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