
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 47-59

March dl: Adding Adaptive Heuristics

and a New Branching Strategy

Marijn J.H. Heule∗ m.j.h.heule@ewi.tudelft.nl

Hans van Maaren h.vanmaaren@ewi.tudelft.nl

Department of Software Technology,

Faculty of Electrical Engineering, Mathematics and Computer Sciences,

Delft University of Technology

Abstract

We introduce the march dl satisfiability (SAT) solver, a successor of march eq. The
latter was awarded state-of-the-art in two categories during the Sat 2004 competition.
The focus lies on presenting those features that are new in march dl. Besides a description,
each of these features is illustrated with some experimental results. By extending the pre-
processor, using adaptive heuristics, and by using a new branching strategy, march dl is
able to solve nearly all benchmarks faster than its predecessor. Moreover, various instances
which were beyond the reach of march eq, can now be solved - relatively easily - due to
these new features.

Keywords: adaptive heuristics, look-ahead, SAT solving, SAT competition

Submitted October 2005; revised December 2005; published March 2006

1. Introduction

The satisfiability (Sat) competitions of the last years have boosted the development of
Sat solvers: Each year, several unsolvable benchmarks (within the given time limit), were
easily solved the year after. Modern Sat solver architectures can be split into three divi-
sions: Conflict-driven (minisat, vallst, zChaff), look-ahead (kcnfs, march, OKsolver) and local
search (AdaptNovelty+, R+ AdaptNovelty+, unitwalk). All solvers mentioned above won a
category in the past competitions [9, 10, 11, 15]. Each architecture outperforms the other
two on parts of the spectrum of available CNF instances. For instance, conflict-driven solvers
dominate on industrial formulas, look-ahead solvers are very strong on unsatisfiable random
formulas, while local-search techniques are unbeatable on large satisfiable random formulas.

As a look-ahead Sat solver, early development of march was focused on fast performance
on unsatisfiable uniform random 3-Sat formulas. Frustrated by the poor performance on
structured instances, we attempted to increase the speed on this latter kind of benchmarks
by additional reasoning and eager data-structures. The resulted solver, march eq, is de-
scribed in detail in [8]. Since equivalence reasoning - an important part of march eq and
thus march dl - is not further developed, we will ignore this aspect of the solver in this
paper.

∗ Supported by the Dutch Organization for Scientifi Research (NWO) under grant 617.023.306.

c©2006 Delft University of Technology and the authors.

M.J.H. Heule and H. van Maaren

The march eq solver was quite successful: It won two (crafted) categories during the Sat

2004 competition [10]. However, various benchmarks - relatively easy to solve by conflict-
driven solvers - were still unsolvable by march eq. We developed some enhancements in
order to solve several of these instances. These enhancements are the primary focus of this
paper.

The usefulness of each enhancement is illustrated by some experiments. We selected
a small set of benchmarks for this purpose, since extensive experiments are beyond the
scope of this paper. Because look-ahead Sat solvers perform relatively well on unsatisfiable
uniform random 3-Sat formulas, we generated1. 200 of them (100 of 250 variables with 1075
clauses, and 100 of 350 variables with 1500 clauses) as a reference. We added some crafted
and structured instances from five families:

• the connamacher family contributed by Connamacher to Sat 2004. This family con-
sists of encodings of the generic uniquely extendible constraint satisfaction problem [3].

• the ezfact family contributed by Pehoushek to Sat 2002 [15]. These benchmarks are
encodings of factorization problems.

• the lksat family contributed by Anton to Sat 2004 [10]. These are random l-clustered
k-Sat instances.

• the longmult family contributed by Biere. Instances from this family arise from
bounded model checking [1].

• the philips family contributed by Heule to Sat 2004 [10]. Encoding of a multiplier
circuit provided by Philips.

All experiments were performed on a system with an Intel 3.0 GHz CPU and 1 Gb of
memory running on Fedora Core 4.

The remaining part of this paper is structured as follows: Section 2 provides a short
introduction on the look-ahead architecture together with some references to the origin of
the techniques. Section 3 deals with two small enhancements to the march dl pre-processor.
Two new adaptive heuristics are introduced in section 4, and a new branching strategy
is presented in section 5. Finally, section 6 concludes with some results on the overall
performance.

2. Look-ahead architecture

Since march dl is a look-ahead Sat solver, we will first provide a brief introduction on its
general architecture. This architecture (introduced in [6]) consists of a DPLL search-tree [4]
using a LookAhead procedure to determine a branch literal lbranch [14] (see algorithm 1).
We refer to a look-ahead on literal l as assigning l to true and performing iterative unit
propagation. If a conflict occurs during this unit propagation (the empty clause is gener-
ated), then l is called a failed literal - forcing l to be fixed on false. The resulting formula
after a look-ahead on l is denoted by F(l = 1).

1. using mkcnf available from www.satlib.org.

48

www.satlib.org

March dl

Algorithm 1 DPLL(F)

1: if F = ∅ then

2: return satisfiable

3: else if empty clause ∈ F then

4: return unsatisfiable

5: end if

6: lbranch := LookAhead(F)
7: if DPLL(F(lbranch = 1)) = satisfiable then

8: return satisfiable

9: else

10: return DPLL(F(lbranch = 0))
11: end if

Algorithm 2 LookAhead(F)

1: P := PreSelect(F)
2: for each variable xi in P do

3: F ′ := F(xi = 0)
4: if empty clause /∈ F ′ and F ′

2 � F2 then

5: F ′ := DoubleLook(F ′)
6: end if

7: F ′′ := F(xi = 1)
8: if empty clause /∈ F ′′ and F ′′

2 � F2 then

9: F ′′ := DoubleLook(F ′′)
10: end if

11: if empty clause ∈ F ′ and empty clause ∈ F ′′ then

12: return unsatisfiable

13: else if empty clause ∈ F ′ then

14: F := F ′′

15: else if empty clause ∈ F ′′ then

16: F := F ′

17: else

18: H(xi) = MixDiff(Diff(F , F ′), Diff(F , F ′′))
19: end if

20: end for

21: xbranch := xi with greatest H(xi)
22: return GetDirection(xbranch)

49

M.J.H. Heule and H. van Maaren

Five subprocedures of the LookAhead procedure (see algorithm 2) are common in most
modern look-ahead Sat solvers:

• Preselect - In general, performing a look-ahead on all unfixed variables is very
costly. Therefore, most look-ahead Sat solvers pre-select a subset (denoted by P)
of the unfixed variables in each node of the search-tree to enter the LookAhead

procedure. This enhancement was introduced by Li et al. [14]. In each node, variables
are ranked based on their occurrences in binary and ternary clauses. Variables with the
highest ranking are pre-selected. Some modifications to these pre-selection heuristics
are discussed in section 4.1.

• DoubleLook - If during the look-ahead on a literal, many new binary clauses are
created (denoted by F ′

2 � F2), the resulting formula is frequently unsatisfiable. The
DoubleLook procedure attempts to find a conflict in the resulted formula by per-
forming additional look-aheads. This subprocedure was first implemented in satz to
reduce the search tree while solving uniform random 3-Sat formulas [12]. Details on
this subprocedure are presented in section 4.2.

• Diff - The look-ahead evaluation function (Diff) used in march dl is identical to the
one used in march eq: Newly created binary clauses and reduced equivalence clauses
are counted in a weighted fashion. The resulting sum is used as an indicator of the size
of the search-tree of the reduced formula. A higher sum suggests a smaller search-tree.
For a full description we refer to [8].

• MixDiff - Combines the two Diff numbers. Let L := Diff(F ,F(x = 0)) and
R := Diff(F ,F(x = 1)) then MixDiff(L, R) := 1024 × LR + L + R. Motivation
for this formula is that an ideal branching variable splits the formula into two small
search-trees (realized by LR). The L + R addition is used for tie-breaking purposes.
The formula is used in most look-ahead Sat solvers (kcnfs [5], march eq [8], posit [6],
and satz [14]) and originates from [6].

• GetDirection - Given a branch variable xbranch, it pays off (only on satisfiable
instances) to choose wisely whether to first enter branch F(xbranch = 1) or branch
F(xbranch = 0). If Diff(F ,F(xbranch = 1)) < Diff(F ,F(xbranch = 0)), march dl

enters the first, otherwise the latter.

3. Pre-processor enhancements

In practice, the performance of look-ahead Sat solvers is highly related to the size of the
formula: Large CNF’s require generally much more solving time regardless the complexity
of the underlying problem. Both other architectures do not appear very sensitive to this.
Therefore, pre-processing (reducing the size of) the formula is essential for fast performance
of a look-ahead Sat solver. march dl simplifies the formula - like march eq - by binary
equivalence propagation, detection of failed literals and subsumption of clauses [8].

50

March dl

3.1 Root look-ahead

Unlike the other solvers participating in the Sat competitions, all march versions use a
3-Sat translator in the pre-processor. march dl uses the same translator as the one used in
march eq [8]. In the pre-processor, most march versions perform an iterative full look-ahead
procedure to reduce the formula. This procedure checks for all literals (full) whether unit
propagation will result in a conflict. This is iteratively performed until no new failed literals
are detected.

In march eq, this procedure was executed after applying the 3-Sat translator. The
resulted formula - after the iterative full look-ahead procedure - frequently contained many
dummy (introduced by the translation) variables. By executing the procedure before the
3-Sat translator, generally, less dummy variables have to be used.

Table 1. Performance of march dl and the number of used dummy variables by applying the
root look-ahead before or after the 3-Sat translator.

before translation after translation

Benchmarks time(s) #dummies time(s) #dummies

random-unsat-250 (100) 0.52 0 0.52 0

random-unsat-350 (100) 15.04 0 15.04 0

connm-n600-d0.04-sat04-975 406.52 148 406.52 148

connm-n600-d0.04-sat04-978 535.05 142 535.05 142

connm-n600-d0.04-sat04-981 220.78 141 220.78 141

ezfact48-1 8.61 1803 13.34 1850

ezfact48-2 8.84 1792 14.76 1846

ezfact48-3 19.93 1817 28.86 1857

lksat-n1000-k3-l5-sat04-930 26.47 0 26.47 0

lksat-n1000-k3-l5-sat04-931 25.41 0 25.41 0

lksat-n1000-k3-l5-sat04-932 6.97 0 6.97 0

longmult8 35.62 195 51.14 377

longmult10 117.50 246 140.72 471

longmult12 218.92 293 352.17 565

philips 292.81 0 292.81 0

Table 1 shows some experimental results of the effects - on solving time and number of
generated dummies - on performing a root look-ahead before or after the 3-Sat translator.
This table gives quite an accurate illustration of the effect of this enhancement: If swapping
the execution order of the root look-ahead and the translator results in less generated
dummy variables, then less computational time is required. Otherwise, no difference is
noticed in solving times too.

51

M.J.H. Heule and H. van Maaren

3.2 Ternary resolvents

While pre-processing a formula, many resolvents could be added. Addition of all possible
resolvents will - in general - significantly increase the size of the problem. Even adding
only all resolvents of length two in the preprocessing phase, will increase solving time in
most cases. Therefore, adding resolvents in march eq is restricted to all binary constraint
resolvents [8], both in the pre-processor and in the actual solving phase.

In march eq, we already implemented a prototype procedure adding some ternary re-
solvents. This procedure is now efficiently implemented in march dl and adds - just after
the 3-Sat translation - only ternary resolvents of a certain type: All ternary resolvents are
added to the formula that could be created by resolving two ternary clauses:

(xi ∨ xj ∨ xr) ⊗xj
(xi ∨ ¬xj ∨ xs) = (xi ∨ xr ∨ xs) (1)

In this equation, ⊗xj
refers to the resolution operator on variable xj . Notice that added

ternary resolvents could be used to create other ternary resolvents using the same equation.
The motivation to add these resolvents is first observed in [2]. On uniform random

3-Sat formulas, their addition in the pre-processor reduces on average the computational
costs by about 10% [13]. We experimented with the addition of these resolvents on various
structured benchmarks. Within our experimental domain, this addition appeared to have
either a favorable influence or no influence at all regarding the required computation time.

Table 2. Performance of march dl on several benchmarks with and without adding ternary
resolvents during the pre-processing phase.

Benchmarks #Ttrans #Tresolve with without

random-unsat-250 (100) 1075 92.7 0.52 0.55

random-unsat-350 (100) 1500 89.3 15.04 16.13

connm-n600-d0.04-sat04-975 7640 16840 406.52 > 2000

connm-n600-d0.04-sat04-978 7292 17908 535.05 > 2000

connm-n600-d0.04-sat04-981 7242 16888 220.78 > 2000

ezfact48-1 8086 4292 8.61 > 2000

ezfact48-2 8063 3969 8.84 > 2000

ezfact48-3 8104 4596 19.93 > 2000

lksat-n1000-k3-l5-sat04-930 3629 1080 26.47 392.91

lksat-n1000-k3-l5-sat04-931 3602 715 25.41 875.20

lksat-n1000-k3-l5-sat04-932 3634 926 6.97 233.51

longmult8 1638 48 35.62 37.48

longmult10 2142 57 117.50 111.85

longmult12 2670 62 218.92 233.85

philips 896 0 292.81 292.81

52

March dl

Table 2 shows the number of ternary clauses after the 3-Sat translator (#Ttrans) and the
number of ternary resolvents that - using (1) - could be added (#Tresolve). The last two
columns show the computational cost of march dl with and without this addition. The
table convincingly shows the usefulness of adding these ternary resolvents on a wide scale
of benchmarks. In only one case the performance is slightly decreased. Since, on structured
benchmarks, the far majority of the clauses has length two, this performance boost can be
realized by the addition of relatively few clauses.

4. Adaptive heuristics

Most heuristics used in look-ahead Sat solvers are heavily optimized towards fast perfor-
mance on uniform random formulas. These heuristics are partly the cause of mediocre
performance on structured instances. By developing heuristics that adapt towards each
specific instance, we tried to perform well ’across the board’.

4.1 Pre-selection heuristics

The main differences between the four march versions submitted to the Sat 2004 compe-
tition (march 001, march 007, march eq 010, and march eq 100) is the number of variables
pre-selected to enter the LookAhead procedure. Each version pre-selects a fixed number
of variables determined as a percentage of the original number of variables. The last suffix
(xxx) denotes this percentage. For instance, while solving a CNF with 1234 initial variables,
march eq 010 will pre-select 123 variables in each node of the DPLL search-tree to enter
the LookAhead procedure. If, in a certain node, there are less than 123 variables unfixed,
all remaining variables will be pre-selected. Hence, deeper in the search-tree relative more
unfixed variables are pre-selected.

The motivation to use a different percentage in each of the submitted versions originates
from the observation that the optimal percentage is benchmark dependent [8]. Therefore,
we decided to use more dynamic pre-selection heuristics in march dl. We also observed
that - within our experimental domain - the optimal percentage was closely related to the
frequency of detected failed literals: When relatively many failed literals were detected,
higher percentages appeared optimal. Let #failedi be the number of detected failed literals
in node i. We tried to exploit the correlation mentioned above by using the average number
of detected failed literals as an indicator for the maximum size of the pre-selected set in
node n (denoted by Pn

max):

Pn
max := µ +

γ

n

n
∑

i=1

#failedi (2)

In the above, parameter µ refers to the lowerbound of Pmax in each node (namely when
the average tends to zero) and γ is a parameter modelling the importance of failed literals.
During small scale experiments on various structured and random instances, the values
µ := 5 and γ := 7 resulted in favorable performance on most instances. Notice that the
above adaptive pre-selection heuristics are heavily influenced by the branching strategy -
which is also affected by these heuristics.

53

M.J.H. Heule and H. van Maaren

In most nodes |P| = Pmax. Only when the number of unfixed variables in the formula
is smaller than Pmax, then all variables are pre-selected - resulting in |P| < Pmax. It could
happen that, during the LookAhead procedure, all variables in P are forced - due to
the detection of failed literals. In these cases the procedure is restarted with the reduced
formula.

Table 3. Performance of march dl and three modified versions march dl∗xxx with a constant
number of pre-selected variables. Subscript xxx denotes the percentage of the original number of
variables used for this constant.

Benchmarks march dl march dl∗001 march dl∗010 march dl∗100

random-unsat-250 (100) 0.52 0.94 0.54 0.71

random-unsat-350 (100) 15.04 33.62 15.80 25.31

connm-n600-d0.04-sat04-975 406.52 1150.86 389.65 584.96

connm-n600-d0.04-sat04-978 535.05 517.55 661.29 707.19

connm-n600-d0.04-sat04-981 220.78 814.78 210.31 291.60

ezfact48-1 8.61 7.72 8.62 8.67

ezfact48-2 8.84 8.52 9.02 9.05

ezfact48-3 19.93 17.64 19.78 19.89

lksat-n1000-k3-l5-sat04-930 26.47 39.18 23.83 52.85

lksat-n1000-k3-l5-sat04-931 25.41 40.77 23.94 47.50

lksat-n1000-k3-l5-sat04-932 6.97 9.87 6.72 11.65

longmult8 35.62 36.01 43.68 44.21

longmult10 117.50 102.43 107.65 111.87

longmult12 218.92 130.54 153.24 165.43

philips 292.81 282.16 432.84 441.83

The effect of using these adaptive pre-selection heuristics on the performance is shown in
table 3. As a reference, three columns are added with the computational costs of modified
versions of march dl with static percentages. Although the adaptive variant rarely results in
the fastest performance; in general, its performance is relatively - compared to the references
- close to optimal. Since these adaptive heuristics are still in an experimental phase, we
expect to achieve even better results by further optimizing the settings.

4.2 Double look-ahead

The DoubleLook procedure (see algorithm 3) checks whether a formula resulting from a
look-ahead is unsatisfiable. It does so by performing additional unit-propagations. Since
the computational costs of the DoubleLook procedure are high, it should not be called
after every look-ahead. In the ideal case, one would only call it when the procedure would
detect that the input formula is unsatisfiable. This could be done by an indicator expressing
the usefullness of a DoubleLook call.

Li [12] suggests that the number of newly created binary clauses found during a look-
ahead is an effective indicator whether or not to call the DoubleLook procedure: Many

54

March dl

newly created binary clauses during a look-ahead increases the chance that DoubleLook

will detect a conflicting formula. Li’s solver satz calls DoubleLook if the number of new
binary clauses in the reduced formula (after a look-ahead) is larger than a certain constant.
We refer to this constant as DLtrigger. In satz, DLtrigger := 65 is used.

Algorithm 3 DoubleLook(F)

1: P := PreSelect(F)
2: for each variable xi in P do

3: F ′ := F(xi = 0)
4: F ′′ := F(xi = 1)
5: if empty clause ∈ F ′ and empty clause ∈ F ′′ then

6: return F ′

7: else if empty clause ∈ F ′ then

8: F := F ′′

9: else if empty clause ∈ F ′′ then

10: F := F ′

11: end if

12: end for

13: return F

Dubois and Dequen use a slight variation of the above setting in their solver kcnfs [5].
Here, the DoubleLook procedure is triggered when the number of new binary clauses is
larger than DLtrigger := 0.175 #vars + 5 (#vars refers to the initial number of variables).
Both settings of DLtrigger result from optimizing this parameter towards the performance on
uniform random 3-Sat formulas. On these instances they appear quite effective. However,
on structured formulas - industrial and crafted - these settings are far from optimal: On
some families, practically none of the look-aheads generate enough new binary to trigger
DoubleLook. Even worse, on many other structured instances both DLtrigger settings
result in a pandemonium of calls of the DoubleLook procedure, which will come down
hard on the computational costs to solve these instances.

To counter these unfavorable effects, march dl uses a more abstract parameter DLsuccess.
This parameter refers to the aimed ratio of successful calls on the DoubleLook procedure.
A DoubleLook call is successful if it detects that the input formula is unsatisfiable. For
instance, DLsuccess := 3

4 means that the solver tries to call the DoubleLook procedure in
such a way that three out of four calls are successful.

We achieve this success ratio by using a dynamic DLtrigger parameter: Depending on the
success of a certain DoubleLook call, DLtrigger is updated using DLupdate (see equation
(3)). Under the assumption that the number of newly created binary clauses is an effective
indicator for the success probability of a DoubleLook call, it is expected that DLtrigger

will converge to a certain value. In practice either it stabilizes or DLtrigger reaches early in
the solving phase a high value such that DoubleLook is never triggered in a later stadium.

DLupdate :=







−
1 − DLsuccess

DLsuccess
if DoubleLook(F) is successful

1 otherwise

(3)

55

M.J.H. Heule and H. van Maaren

Experiments show that a wide range of settings of DLsuccess (0.7 to 0.95) result in
a similar (fast) performance. In march dl we choose DLsuccess := 9

10 . Additionally, we
initialized DLtrigger := 0.1#vars. A full description with large-scale experiments to analyze
and explain the above parameters and the behavior of the evolving sequence of DLtrigger,
will be the subject of a forthcoming paper.

Table 4. Four different settings of the parameter DLtrigger implemented in march dl: (a) adaptive,
the default setting in march dl; (b) DLtrigger := 65 as used in satz; (c) DLtrigger := 0.175 #vars + 5 as
used in kcnfs; and (d) turning it off, so DLtrigger := ∞.

Benchmarks adaptive à la satz à la kcnfs off

random-unsat-250 (100) 0.52 0.51 0.52 0.59

random-unsat-350 (100) 15.04 14.68 14.88 17.94

connm-n600-d0.04-sat04-975 406.52 823.37 815.69 517.41

connm-n600-d0.04-sat04-978 535.05 1808.77 1816.78 1205.27

connm-n600-d0.04-sat04-981 220.78 1149.71 1112.08 729.69

ezfact48-1 8.61 111.04 9.30 10.25

ezfact48-2 8.84 117.33 10.86 10.96

ezfact48-3 19.93 223.86 22.21 21.29

lksat-n1000-k3-l5-sat04-930 26.47 50.49 26.81 32.63

lksat-n1000-k3-l5-sat04-931 25.41 47.61 25.48 31.00

lksat-n1000-k3-l5-sat04-932 6.97 14.97 7.04 8.41

longmult8 35.62 73.38 34.83 34.68

longmult10 117.50 231.99 120.42 111.67

longmult12 218.92 241.80 207.14 198.12

philips 218.92 239.47 218.31 215.87

Table 4 shows the performance (in seconds) of four different approaches: (1) our proposed
adaptive heuristics; (2) the one used in satz; (3) the one used in kcnfs; and as reference
(4) no DoubleLook at all (used in march eq). The adaptive heuristics are by far the
best option within our experimented domain. The down sides of the heuristics used in satz

and kcnfs are clearly visible: On average the off setting performs better than both these
random-instance-motivated methods.

5. Local branching

The look-ahead evaluation heuristic H (see algorithm 2) has an unfavorable effect: The
selected branch variables only have a high MixDiff value in common. On structured
instances this could result in branch variables that are scattered all over the structure.
Because no conflict clauses are added in look-ahead Sat solvers, this increases the chance
that local conflicts must be resolved multiple times.

By branching only on variables occurring in reduced clauses, we try to counter this effect.
We refer to this branching strategy as local branching. Clearly, this is not applicable for the
first node, because the initial formula has no reduced clauses. Recall that march dl uses a 3-

56

March dl

Sat translator in the pre-processing, so all clauses are either binary or ternary. Therefore,
local branching in this special case means that march dl only branches on variables that
occur in binary clauses that originated from ternary clauses in the initial formula.

This new branching strategy is realized by modifying the PreSelect procedure: In-
stead of performing the pre-selection heuristics on the whole formula in a certain node,
we discard all clauses that also occur in the initial formula (denoted by Finitial). So, only
variables occurring in reduced clauses are pre-selected. The resulted procedure is called
LocalPreSelect and is shown in algorithm 4. Notice that LocalPreSelect does not
only pre-selects different (compared to Preselect) variables to enter the look-ahead phase,
it also could select less variables: The number of variables occurring in reduced clauses in
the formula of node n could be smaller the Pn

max.

Algorithm 4 LocalPreSelect(F)

1: Freduced := F \ Finitial

2: if Freduced = ∅ then

3: Finitial := F
4: restart

5: end if

6: return PreSelect(Freduced)

On some families - satisfiable and unsatisfiable - using local branching resulted in large
speed-ups. Two examples of this kind are (1) the ferry family (all satisfiable) contributed
by Maris to the SAT 2003 competition [9] and (2) the homer family (all unsatisfiable)
contributed by Aloul to the SAT 2002 competition [15]. Table 5 shows the performance of
the march versions submitted to the Sat 2004 and 2005 competition on small instances of
these families. Clearly, march dl is the only solver that - due to local branching - could solve
these instances. On benchmarks where the new branching strategy did not realize such a
speed-up, no significant performance gains or losses were noticed.

Table 5. Performance of different march versions on instances of the ferry and homer families.

Benchmarks march dl march 001 march 007 march eq 010 march eq 100

ferry8.sat03-384 2.18 > 2000 > 2000 > 2000 > 2000

ferry8u.sat03-385 2.54 > 2000 > 2000 > 2000 > 2000

ferry9.sat03-386 1.70 > 2000 > 2000 > 2000 > 2000

ferry9u.sat03-387 1.37 > 2000 > 2000 > 2000 > 2000

fpga10-11-uns-rcr 118.93 > 2000 > 2000 > 2000 > 2000

fpga10-12-uns-rcr 136.21 > 2000 > 2000 > 2000 > 2000

fpga10-13-uns-rcr 154.78 > 2000 > 2000 > 2000 > 2000

The original motive to implement local branching was to increase the chance of finding
autarkies [7] - partial assignments that satisfy all clauses that they “touch”. The remaining
formula, after removing all satisfied clauses by an autarky, is satisfiability equivalent to the
original formula. A pure literal is an example of an autarky. Especially on unsatisfiable

57

M.J.H. Heule and H. van Maaren

benchmarks, detection of autarkies is useful: Unsatisfiability of the remaining formula yields
unsatisfiability of the original formula, resulting in a smaller search-tree.

This aspect is also shown in algorithm 4: Whenever the formula F in a certain node
does not contain reduced clauses - compared to Finitial - an autarky is detected. So, F is
satisfiability equivalent to Finitial. To reduce the computational cost to solve Finitial, we
restart the DPLL procedure with F . Although many autark assignments were found in
various families, none of these detections resulted in significant performance gains. This
disappointing result could be explained by the fact that nearly all autarkies were found on
satisfiable instances.

6. Results and conclusions

Five enhancements are presented which were developed to increase the overall performance
of march. All were illustrated using some experimental results showing their contribution of
reducing the computational costs. For comparisons with other solvers we refer to the Sat

competition pages2..
The resulted version - march dl - participated in the Sat 2005 competition. It was

awarded with three silver and two bronze medals [11]. Unlike previous competitions,
march dl performed relatively good on industrial benchmarks too: It ended midway in the
final ranking in that category. However, much progress is still required to make look-ahead
based solvers competitive on these kind of structured instances.

References

[1] A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs. in
Proc. Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems,
Springer Verlag, Lecture Notes in Comput. Sci. 1579 (1999), 193–207.

[2] A. Billionnet and A. Sutter, An efficient algorithm for the 3-Satisfiability problem.
Operations Research Letters 12 (1992), 29–36.

[3] H. Connamacher, A random constraint satisfaction problem that seems hard for DPLL.
In Proceedings of SAT 2004.

[4] M. Davis, G. Logemann, and D. Loveland, A machine program for theorem proving.
Communications of the ACM 5 (1962), 394–397.

[5] O. Dubois and G. Dequen, source code of the kcnfs solver. Available at
http://www.laria.u-picardie.fr/∼dequen/sat/.

[6] J.W. Freeman, Improvements to Propositional Satisfiability Search Algorithms. Ph.D.
thesis, Department of computer and Information science, University of Pennsylvania,
Philadelphia (1995).

[7] O. Kullmann, Investigations on autark assignments.
Discrete Applied Mathematics 107(1-3) (2000), 99–137.

2. www.satcompetition.org

58

http://www.laria.u-picardie.fr/~dequen/sat/
www.satcompetition.org

March dl

[8] M.J.H. Heule, J.E. van Zwieten, M. Dufour and H. van Maaren, March eq: Imple-
menting Additional Reasoning into an Efficient Lookahead Sat Solver. Springer-Verlag,
Lecture Notes in Comput. Sci. 3542 (2005), 345–359.

[9] D. Le Berre and L. Simon, The essentials of the SAT’03 Competition. Springer-Verlag,
Lecture Notes in Comput. Sci. 2919 (2004), 452–467.

[10] D. Le Berre and L. Simon, Fifty-five solvers in Vancouver: The sat 2004 competition.
Springer-Verlag, Lecture Notes in Comput. Sci. 3542 (2005), 321–344.

[11] D. Le Berre and L. Simon, Sat’05 competition homepage.
http://www.satcompetition.org/2005/.

[12] C.M. Li, A constraint-based approach to narrow search trees for satisfiability. Infor-
mation processing letters 71 (1999), 75–80.

[13] C.M. Li and Anbulagan, Look-Ahead Versus Look-Back for Satisfiability Problems. In
Proceedings of CP 1997, Springer-Verlag, Lecture Notes in Comput. Sci. 1330 (1997)
342–356.

[14] C.M. Li and Anbulagan. Heuristics Based on Unit Propagation for Satisfiability Prob-
lems. In Proc. of Fifteenth International Joint Conference on Artificial Intelligence
(1997), 366–371.

[15] L. Simon, D. Le Berre, and E. Hirsch, The SAT 2002 competition. Annals of Mathe-
matics and Artificial Intelligence (AMAI) 43 (2005), 343–378.

59

http://www.satcompetition.org/2005/

	Introduction
	Look-ahead architecture
	Pre-processor enhancements
	Root look-ahead
	Ternary resolvents

	Adaptive heuristics
	Pre-selection heuristics
	Double look-ahead

	Local branching
	Results and conclusions

