
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 169–186

Using SAT Encodings

to Derive CSP Value Ordering Heuristics

Christophe Lecoutre lecoutre@cril.fr

Lakhdar Säıs sais@cril.fr

Julien Vion vion@cril.fr

CRIL-CNRS FRE 2499, Université d’Artois

Lens, France

Abstract

In this paper, we address the issue of designing from SAT new value ordering heuristics
for CSP. We show that using the direct and support SAT encodings of CSP instances,
such heuristics can be naturally derived from the well-known two-sided Jeroslow-Wang
heuristic. These heuristics exploit the bi-directionality of constraint supports to give a
more comprehensive picture in terms of domain reduction when a given value is assigned
to (resp. removed from) a given variable. Interestingly, in the context of a backtracking
search algorithm that exploits binary branching and the adaptive variable ordering heuristic
dom/wdeg, we experimentally observed that the new heuristics yielded the best results
on satisfiable and unsatisfiable instances when following the promise and the fail-first
policies, respectively.

Keywords: heuristics, SAT encodings, CSP

Submitted November 2006; revised April 2007; published May 2007

1. Introduction

For solving instances of the Constraint Satisfaction Problem (CSP), backtracking search al-
gorithms are commonly used. To limit their combinatorial explosion, various improvements
have been proposed (e.g. ordering heuristics, filtering techniques and conflict analysis). It
is well known that the ordering used to perform search decisions has a great impact on the
size of the search tree. At each stage, one needs to decide the value to assign to a variable.
So far, such decisions have been performed by choosing the variable in a first step (vertical
selection) and the value to assign in a second step (horizontal selection).

Many works have been devoted to the first selection step. Variable ordering heuristics
that have been proposed can be conveniently classified as static (e.g. deg), dynamic (e.g.
dom [15], brelaz [6], dom/ddeg [4]) and adaptive (e.g. dom/wdeg [5]). The heuristic
dom/wdeg has been shown to be the most robust generic heuristic [5, 20, 16, 28]. However,
value ordering (the second step of the decision) has clearly been considered for a long time
as potentially of marginal effect to search improvements. The arguments behind this can
be related to the fact that selecting a given value is computationally more difficult than
selecting a given variable, particularly when one considers dynamic selection. The second
reason for considering value ordering as useless is that, when facing unsatisfiable instances
or when searching all solutions, one needs to consider all values for each variable. As clearly

c©2007 Delft University of Technology and the authors.

C. Lecoutre et al.

shown by Smith and Sturdy [25], these arguments hold when search is based on d-way
branching but not on 2-way branching. In fact, d-way branching means that, at each node
of the search tree, a variable X is selected and d branches are considered where d is the
current size of the domain of X: the ith branch corresponds to X = vi where vi denotes the
ith value of the domain of X. On the other hand, with binary (or 2-way) branching, at each
node of the search tree, a pair (X, a) is selected where X is an unassigned variable and a a
value in the domain of X, and two branches are considered: the first one corresponds to the
assignment X = a and the second one to the refutation X 6= a. These two schemes are not
equivalent as it has been shown that binary branching is more powerful than non-binary
branching [17].

Traditionally, two principles are considered during search: at each step, select the vari-
able which is the most constrained and select then the least constrained value (e.g. min-
conflicts [12]). These principles respectively correspond to two policies called fail-first
and promise, and one interesting issue is the adherence assessment of heuristics to both
policies [2, 30].

Considering the fact that, for some types of constraints, good value ordering can sig-
nificantly reduce the search effort [25], we decided to further investigate value ordering
heuristics (assuming, of course, an underlying 2-way branching scheme). In particular, our
attention was attracted by the fact that 2-way branching is the basic scheme in SAT solvers.
We thought that this might be very helpful to map SAT heuristics to CSP ones. Indeed,
considering any SAT encoding of a CSP instance, selecting a pair composed of a variable
and a value corresponds to the selection of a literal in SAT.

In this paper, we show a direct correspondence between min-conflicts (resp. max-
conflicts) and the maximum number of literal occurrences in the SAT formula obtained
using support (resp. direct) encoding of CSP instances. Also, we propose new value ordering
heuristics derived from the well known Jeroslow-Wang (JW) heuristic [18]. The obtained
heuristics exploit the bi-directionality of constraints to give a more comprehensive picture
in terms of domain reduction when a given value is assigned to a given variable and also
when a given value is removed from the domain of a given variable. Let us illustrate this
with the following example.

Example 1. Let C be the binary constraint depicted by Figure 1. Note that any value in the
domain of X occurs in two allowed tuples and is in conflict with two values in the domain of
Y . Consequently, applying a classical value ordering heuristic such as min-conflicts does
not discriminate between the different values of X since all the values of X have the same
number of supports in Y .

This example shows that it is not always sufficient to only consider the number of
conflicts in order to choose the most (or least) promising value. Indeed, considering a
binary branching scheme, when the value a is assigned to X (decision corresponding to the
first branch), two values are removed from dom(Y), and when a is removed from dom(X)
(decision corresponding to the second branch) two values are also removed from dom(Y).
On the other hand, when the value b or c is assigned to X, two values are removed from
dom(Y), and when b or c is removed from dom(X) no value is removed from dom(Y).
So, the value a is more constrained than b or c. This illustration shows that it can be

170

Using SAT Encodings to Derive CSP Value Ordering Heuristics

Figure 1. A constraint C between X and Y . Edges correspond to allowed pairs of values.

important to consider the impact on both branches when evaluating values to be selected
by an heuristic.

In fact, the estimation of the number of removed values when eliminating a given value
from the domain of a given variable (the refutation labelling the second branch of a binary
search) has not been considered so far when devising generic value ordering heuristics.
Interestingly enough, our approach can be used to derive in more general way a suitable value
ordering with respect to any type of constraint. It is then related to a recent independent
work by Szymanek and O’Sullivan [26].

The rest of the paper is organized as follows. After some technical background about
CSP and SAT, SAT encodings of CSP instances are recalled. Our approach is then pre-
sented. Experimental results conducted on a wide range of CSP instances are described
and discussed before concluding.

2. Technical Background

2.1 Constraint Satisfaction Problem

A Constraint Network (CN) P is a pair (X , C) where X is a finite set of variables and C a
finite set of constraints. Each variable X ∈X has an associated domain, denoted dom(X),
which represents the set of values allowed for X. Each constraint C ∈ C involves a subset
of variables of X , called the scope and denoted vars(C), and has an associated relation,
denoted rel(C), which contains the set of tuples allowed for the variables of its scope. Γ(X)
denotes the set of constraints involving X. From now on, to simplify and without any loss of
generality, we will only consider binary networks, i.e. networks involving binary constraints.
The number of variables of a CN will be denoted by n, the number of constraints by e and
the greatest domain size by d. Also, for any given set E, |E| will denote the number of
elements in E. Note that in the case of binary networks, Γ(X) is equal to the number of
neighbors of X.

A solution to a constraint network is an assignment of values to all the variables such
that all the constraints are satisfied. A constraint network is said to be satisfiable iff
it admits at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint network is satisfiable. A CSP
instance is then defined by a constraint network, and solving it involves either finding one

171

C. Lecoutre et al.

Algorithm 1: MAC(P = (X , C) : CN): Boolean

if X = ∅ then return true1

select (X, v) | X ∈X ∧ a ∈ dom(X)2

P ′ ← AC(P |X=a)3

if P ′ 6= ⊥ ∧MAC(P ′\X) then return true4

P ′ ← AC(P |X 6=a)5

return P ′ 6= ⊥ ∧MAC(P ′)6

(or more) solution(s) or determining its unsatisfiability. To solve a CSP instance, one can
modify the constraint network by using inference or search methods [8]. Usually, domains
of variables are reduced by removing inconsistent values, i.e. values that can not occur
in any solution. Indeed, it is possible to filter domains by considering some properties of
constraint networks. Arc Consistency (AC), which remains the central one, guarantees the
existence of a support for each value in each constraint.

Definition 1. Let P = (X , C) be a CN, C ∈ C s.t. vars(C) = {X, Y } and a ∈ dom(X).

• The set of supports of (X, a) in C, denoted Sp(C, X, a), corresponds to the set {b ∈
dom(Y) | (a, b) ∈ rel(C)}.

• The set of conflicts of (X, a) in C, denoted Cf (C, X, a), corresponds to the the set
{b ∈ dom(Y) | (a, b) /∈ rel(C)}.

In Example 1, we have Sp(C, X, a) = Sp(C, X, b) = {(Y, a), (Y, b)}, Sp(C, X, c) =
{(Y, c), (Y, d)}, Cf (C, X, a) = Cf (C, X, b) = {(Y, c), (Y, d)} and Cf (C, X, c) = {(Y, a), (Y, b)}.

Definition 2. Let P = (X , C) be a CN. A pair (X, a), with X ∈ X and a ∈ dom(X),
is arc consistent (AC) iff ∀C ∈ C |X ∈ vars(C), Sp(C, X, a) 6= ∅. P is AC iff ∀X ∈ X ,
dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is AC.

Notation. AC(P) denotes the constraint network obtained from P after enforcing arc con-
sistency on P . When P cannot be made arc consistent, we will note AC(P) = ⊥.

Let us now briefly describe the well known MAC algorithm [24]. This algorithm aims
at solving a CSP instance and performs a depth-first search with backtracking while main-
taining arc consistency. More precisely, at each step of the search, a variable assignment is
performed followed by a filtering process called constraint propagation which corresponds
to enforcing arc-consistency. Algorithm 1 corresponds to a recursive version of the MAC
algorithm (using binary branching). It returns true iff the given constraint network P is
satisfiable. It involves selecting a pair (X, a) and trying first X = a and then X 6= a (if
no solution has been found with X = a). After any consistent assignment, the assigned
variable is eliminated from the network and search is continued (line 4)1.. When the current
constraint network has no more variables (line 1), it means that a solution has been found.

1. P |X=a denotes the constraint network obtained from P by restricting the domain of X to the singleton

{a}, whereas P |X 6=a denotes the constraint network obtained from P by removing the value a from the

domain of X. P\X denotes the constraint network obtained from P by removing the variable X.

172

Using SAT Encodings to Derive CSP Value Ordering Heuristics

Instead of directly selecting a pair (X, a), most CSP solvers select first a variable and
then a value belonging to the domain of this variable. It can be partly explained by the fact
that the number of elements to consider for the selection is then O(n+d) instead of O(nd).
Classically, CSP solvers use fail-first oriented variable ordering heuristics such as dom [15],
brelaz [6] or dom/wdeg [5]. Value ordering is usually considered as less important, this is
why lexicographic (lexico) value ordering is still the most used one. Let us note that when
the values of the domains are shuffled, lexico and random value selection are equivalent.
More informed value heuristics exploit the set of allowed tuples rel(C) associated with each
constraint C. This leads to the well known heuristic called min-conflicts, which involve
selecting the value with the lowest number of conflicts (i.e., disallowed tuples) [16, 13, 12].
min−conflicts (respectively max−conflicts) follows the promise (respectively fail-first)
policy.

One advantage of using random or lexico is that selecting a value is O(1) whereas it is
usually O(dη) for the other heuristics with η denoting the complexity of evaluating a value
according to the heuristic. In fact, this is true when the heuristic is dynamic. In practice,
it is usually far more efficient to consider a static version of the heuristics. It means that
the order of values is computed for each domain in a preprocessing step. It is even possible
to rearrange the values in their respective domains prior to search in order to be able to
select a value in O(1) [23]. From now on, we will consider all value ordering heuristics as
being static.

2.2 Encoding CSP into SAT

Propositional satisfiability (SAT) is the problem of deciding whether a Boolean formula in
conjunctive normal form (CNF) is satisfiable. A CNF formula Σ is a set (interpreted as
a conjunction) of clauses, where a clause is a set (interpreted as a disjunction) of literals.
A literal is a positive or negated propositional variable. A truth assignment of a boolean
formula is an assignment of truth values {true, false} to its variables. A model of a formula
is a truth assignment that satisfies the formula. SAT is one of the most studied NP-Complete
problems because of its theoretical and practical importance. Encouraged by the impressive
progress in practical solving of SAT, various applications ranging from formal verification
to planning are encoded and solved using SAT. CSP instances can also be reformulated as
SAT instances.

In this paper, we consider the most commonly used encodings of CSP into SAT, namely,
the direct encoding [7] and the support encoding [14]. In both SAT encodings of a constraint
network P = (X , C), a propositional variable xa is associated to each pair (X, a) of P with
X ∈ X and a ∈ dom(X). The correspondence is the following: xa is true if X is assigned
the value a (i.e. X = a) and xa is false if a is removed from dom(X) (i.e. X 6= a).

Before introducing direct and support encodings, we first present the two particular sets
of clauses expressing that a given variable must be assigned to only one value. Given a
variable X ∈X with dom(X) = {v1, v2, . . . , vd},

• one at least one clause expresses that the variable X must be assigned at least one
value from its domain. Such constraint is encoded by the clause of the form xv1

∨
xv2
∨ · · · ∨ xvd

. For a given constraint network P , Σl(P) denotes the set of at least
one clauses encoding all the domains of P .

173

C. Lecoutre et al.

• at most one clauses express that the variable X must be assigned at most one value
from its domain. Such constraint is encoded by the following set of clauses:

{(¬xv1
∨ ¬xv2

), . . . , (¬xv1
∨ ¬xvd

), . . . ,
(¬xvi

∨ ¬xvi+1
), . . . , (¬xvi

∨ ¬xvd
), . . . , (¬xvd−1

∨ ¬xvd
)}.

For a given constraint network P , Σm(P) denotes the set of at most one clauses
encoding all the domains of P .

To simplify the presentation, for a given constraint network P , we define Σlm(P) =
Σl(P) ∪Σm(P). Let us note that direct and support encoding differ mainly in the way the
constraint are encoded. Both encoding share the same set of clauses encoding the domains
(at least one and at most one clauses).

2.2.1 Direct Encoding

The direct encoding of a constraint network P = (X , C) [7] involves an additional set of
clauses, called conflict clauses, encoding C . The conflict clauses encode for each constraint
the incompatible tuples i.e. tuples not satisfying the constraint. Each constraint C ∈ C

such that vars(C) = {X, Y } is encoded as a set of conflict clauses:
⋃

v∈dom(X),w∈Cf (C,X,v)

{(¬xv ∨ ¬yw)}

From the constraint C given in example 1, we obtain the following set of conflict clauses:
{(¬xa ∨ ¬yc), (¬xa ∨ ¬yd), (¬xb ∨ ¬ya), (¬xb ∨ ¬yb), (¬xc ∨ ¬ya), (¬xc ∨ ¬yb)}
For a given constraint network P , ΣCf (P) denotes the set of conflict clauses encoding

all the constraints of P . The direct encoding of P is then defined as a formula ΣD(P) =
Σlm(P)∪ΣCf (P). The set of at most one clauses Σm(P) is only necessary to guarantee the
equivalence between P and ΣD(P), i.e. the same set of models. They can be omitted to
obtain an equivalence w.r.t. SAT [31, 14].

2.2.2 Support Encoding

The idea of encoding supports has been first introduced by Kasif in [19] and expanded on
by Gent [14]. The support encoding [7] of a constraint network P = (X , C) involves an
additional set of clauses, called support clauses, encoding C . Each constraint C ∈ C such
that vars(C) = {X, Y } is encoded using both supports Sp(C, X, v) for all values v ∈ dom(X)
and Sp(C, Y, w) for all values w ∈ dom(Y). The set of support clauses encoding C is the
union of the two following sets of clauses:

1.
⋃

vi∈dom(X)

{(¬xvi
∨ yw1

∨ · · · ∨ ywk
) | {w1, . . . , wk} = Sp(C, X, vi)}

2.
⋃

wi∈dom(Y)

{(¬ywi
∨ xv1

∨ · · · ∨ xvk
) | {v1, . . . , vk} = Sp(C, Y, wi)}

The following set of support clauses is obtained from Example 1 using the support
encoding:
{(¬xa∨ya∨yb), (¬xb∨yc∨yd), (¬xc∨yc∨yd), (¬ya∨xa), (¬yb∨xa), (¬yc∨xb∨xc), (¬yd∨

xb ∨ xc)}

174

Using SAT Encodings to Derive CSP Value Ordering Heuristics

For a given constraint network P , ΣSp(P) denotes the set of support clauses encoding
all the constraints of P . The support encoding of P is then defined as a formula ΣS(P) =
Σlm(P) ∪ ΣSp(P).

Support encoding admits interesting features. In [14], it is shown that encoding supports
enables Arc Consistency in the original CSP instance to be established by unit propaga-
tion in the translated SAT instances. Last but not least, applying the well known DPLL
algorithm using the same ordering to the obtained SAT instance behaves exactly like the
MAC algorithm on the original CSP instance. We can also mention that support encod-
ing has been extended to encode non-binary constraints in SAT [3]. Interestingly enough,
it has been proved in [9] that support clauses can be inferred from direct encoding using
HyperBin resolution introduced by Bacchus [1]. These nice results open new interesting
perspectives for establishing strong connections between SAT and CSP. The results that we
present below on value ordering can be seen as a step in this direction.

3. Value Ordering Heuristics from SAT to CSP

3.1 SAT Branching Heuristics

Many branching heuristics have been proposed in SAT. One can cite the most recent ones,
namely the VSIDS and UP heuristics used in Zchaff [32] and Satz solvers [22] respectively.
The first one uses literal occurrences in the set of learned no-goods with dynamic decay
policies, whereas the second one measures the effect of unit propagation on the formula
when a literal is assigned a truth value. Previously, CSAT [10] and POSIT [11], among
other solvers, used simpler heuristics. Most of them are variants of the well-known Jeroslow-
Wang (JW) heuristic [18], and evaluate a given literal according to syntactical properties
(e.g. occurrence number of literals, clause length).

Let us explain the main idea behind the JW heuristic. Given a CNF formula Σ with
n variables, Σ admits p = 2n interpretations. Each clause c ∈ Σ removes v = 2n−|c| lines
from the truth table where |c| denotes the size of the clause. So, v expresses the number of
interpretations that falsifies c. The proportion v/p = w = 2−|c|, represents the proportion
of the search space falsifying c. The smaller the clause size is, the higher the number of
interpretations falsifying it. A clause of size one is falsified by 2n−1 interpretations, i.e. half
of the search space.

In SAT branching heuristics, the score, denoted H(Σ, x), of a variable x from a CNF
Σ is generally defined as a function f [h(x), h(¬x)], called two-sided, of the score associated
with its positive (h(x)) and negative literals (h(¬x)). The next variable to assign is then
chosen among variables with the greatest (max) or the lowest (min) score. Generally, SAT
branching heuristics are formulated as follows:

Definition 3. Let Σ be a propositional formula and x be a propositional variable from Σ,
the score, denoted Hw(Σ, x), of x in Σ w.r.t. a weighting function w is defined as follows:

Hw(Σ, x) =
∑

c∈Σ | x∈c

w(|c|) +
∑

c∈Σ | ¬x∈c

w(|c|), with c ∈ Σ

A SAT heuristic, denoted H⊗
w , considers all the variables x ∈ vars(Σ) and selects according

to the operator ⊗ the variable with the optimal value Hw(Σ, x).

175

C. Lecoutre et al.

Considering a selection operator ⊗ and a weighting function w, different heuristics can
be derived from the general formulation given in definition 3. For example, the two-sided
Jeroslow-Wang (JW) rule corresponds to H⊗

w where w(α) = 2−α and ⊗ = max. Many
variants of the JW heuristic have been proposed; all of them attempt to choose variables
with Maximum Occurrences in clauses of Minimal Size (MOMS) [10]. Another basic heuris-
tic that we will consider in this paper is H⊗

w where w(α) = 1 and ⊗ ∈ {min, max}. This
heuristic, with ⊗ = max (resp. ⊗ = min), selects in priority a variable with the greatest
(resp. lowest) number of occurrences in the formula.

3.2 Mapping SAT Heuristics to CSP

Using direct and support encodings, we present now the CSP value ordering heuristics
obtained from the instantiation of SAT branching heuristic H⊗

w . We note D-Hw (resp.
S-Hw) the variable value function obtained using direct (resp. support) encoding.

3.2.1 Mapping H⊗
w using Direct Encoding

Let us first show how the SAT branching heuristic on direct encoding can correspond to
the CSP value ordering heuristic max-conflicts or min-conflicts.

Definition 4. Let P = (X , C) be a CN, X ∈ X and a ∈ dom(X), the score, denoted
D-Hw[P, (X, a)], of (X, a) in P is defined as follows:

D-Hw[P, (X, a)] = W [dom(X)] + w(2)×
∑

C∈C | X∈vars(C)

|Cf (C, X, a)|

such that

W [dom(X)] = w(|dom(X)|) + w(2)× (|dom(X)| − 1)

Property. Let P = (X , C) be a CN, X ∈X and a ∈ dom(X)

We have D-Hw[P, (X, a)] = Hw[ΣD(P), xa]

Proof. Each positive literal xa appears exactly one time in at least one clauses. The size
of the clause containing xa corresponds to the size of the domain of the variable X. The
negative literal ¬xa occurs in (|dom(X)| − 1) at most one binary clauses. Hence, we obtain
the term W [dom(X)]. On the other hand, ¬xa also appears in each conflict binary clause
corresponding to incompatible tuples involving a in constraints binding X.

If the CSP value ordering heuristic D-H⊗
w is applied only on the values of a given variable

X (horizontal choice), then all the values appear exactly the same number of times in at
least one and at most one clauses. Consequently, W [dom(X)] becomes useless, and we
obtain, also discarding the constant term w(2):

D-Hw[P, (X, a)] =
∑

C∈C | X∈vars(C)

|Cf (C, X, a)|

Only the number of conflicts is still relevant. In this case D-H⊗
w with ⊗ = max (re-

spectively ⊗ = min) thus delivers the same ordering as max-conflicts (respectively min-
conflicts).

176

Using SAT Encodings to Derive CSP Value Ordering Heuristics

3.2.2 Mapping H⊗
w using Support Encoding

For support encoding, the length of the clauses depends on the number of supports of
a value with respect to a given constraint. Consequently, considering H⊗

w on ΣS(P) the
CNF formula obtained using support encoding of the constraint network P , we derive new
interesting value orderings.

Definition 5. Let P = (X , C) be a constraint network, X ∈X and a ∈ dom(X).

S-Hw[P, (X, a)] = W [dom(X)] +
∑

C∈C | X∈vars(C)

[W↓(C, X, a) + W↑(C, X, a)]

such that

W [dom(X)] = w(|dom(X)|) + w(2)× (|dom(X)| − 1)

W↓(C, X, a) = w[1 + |Sp(C, X, a)|]

W↑(C, X, a) =
∑

(Y,b)∈Sp(C,X,a)

w[1 + |Sp(C, Y, b)|]

Property. Let P = (X , C) be a CN, X ∈X and a ∈ dom(X). We have:
S-Hw[P, (X, a)] = Hw[ΣS(P), xa]

Proof. As for direct encoding, the first factor W [dom(X)] corresponds to at least one and
at most one clauses. On the other hand, for each constraint C involving the variable X,
each literal xa corresponding to the value a will appear in support clauses,

• only one time negatively. The size of the clause is 1 (the negative literal ¬xa) plus
the number of supports of a according to the constraint C. This corresponds to the
term W↓(C, X, a).

• positively in all support clauses corresponding to values b ∈ Sp(C, Y, b). These clauses
are of the form ¬yb ∨ xv1

· · · ∨ xvk
, with rel(C) = {X, Y }, b ∈ dom(Y) and b being

a support of v1, . . . , vk. The size of these clauses is 1 (the occurrence of the negative
literal ¬yb) plus the number of supports of b according to C. This corresponds to the
term W↑(C, X, a).

If we consider the choice restricted to the values of a given variable, the first argument
W [dom(X)] is the same for all these values. This term may then be dropped.

Depending on the weighting function w and the operator ⊗, different new value ordering
heuristics that exploit the bi-directionality of constraints (take into account both branches
of the 2-way branching search scheme) can be derived from S-H⊗

w using the ΣS(P).

Instantiation 1 (S-H⊗
occ = S-H⊗

w(α)=1). The following CSP value ordering heuristic is

obtained using w(α) = 1 as a weighting function:

S-Hocc[P, (X, a)] = |dom(X)|+ |Γ(X)|+
∑

C∈C | X∈vars(C)

|Sp(C, X, a)|

177

C. Lecoutre et al.

We then obtain the CSP value ordering corresponding to the SAT heuristic based on
the occurrence number of literals in ΣS(P). When the choice is restricted to the values
of a given variable, the order in which values will be chosen depends only on the number
of supports (|dom(X)| and |Γ(X)| are constants), which is inversely proportional to the
number of conflicts. S-Hmin

occ (respectively S-Hmax
occ) thus delivers the same ordering as

max-conflicts (respectively min-conflicts).

Instantiation 2 (S-H⊗
jw = S-H⊗

w(α)=2−α). The following CSP value ordering heuristic is

obtained using w(α) = 2−α as a weighting function :

S-Hjw[P, (X, a)] =

Wjw[dom(X)] + 1
2 ×

∑

C∈C | X∈vars(C)

[

2−|Sp(C,X,a)| + W↑jw(C, X, a)
]

with

Wjw[dom(X)] = 2−|dom(X)| + 1
4 × (|dom(X)| − 1)

W↑jw(C, X, a) =
∑

(Y,b)∈Sp(C,X,a)

2−|Sp(C,Y,b)|

Instantiation 3 (S-H⊗
inv = S-H⊗

w(α)=α
). The following CSP value ordering heuristic is

obtained using weighting w(α) = α as a weighting function :

S-Hinv[P, (X, a)] =

3× |dom(X)| − 2 + |Γ(X)|+
∑

C∈C | X∈vars(C)

[|Sp(C, X, a)|+ W↑inv(C, X, a)]

with

W↑inv(C, X, a) = |Sp(C, X, a)|+
∑

(Y,b)∈Sp(C,X,a)

|Sp(C, Y, b)|

3.2.3 New value ordering heuristics for CSP

The second and the third instantiations deliver new value ordering heuristics for CSP.
Restricting the evaluation to the values of a given variable leads to the following simple
CSP value ordering heuristics Hjw (respectively Hinv) corresponding to the instantiation 2
(respectively 3) where non-discriminating terms have been discarded.

Definition 6. Let P = (X , C) be a constraint network, X ∈X and a ∈ dom(X).

Hjw[P, (X, a)] =
∑

C∈C |X∈vars(C)

[

2−|Sp(C,X,a)| + W↑jw(C, X, a)
]

In the following, we will refer to the new value ordering heuristic Hmax
jw as max-jw. In

Example 1, we obtain Hjw[P, (X, a)] = 1.25 and Hjw[P, (X, b)] = Hjw[P, (X, c)] = 0.75
Using the selection operator ⊗ = max, the value a is then chosen. This choice clearly

corresponds to the best evaluation of both branches corresponding to X = a and X 6= a.
Indeed, all values in dom(X), when assigned to X, lead to the removal of 2 values from the

178

Using SAT Encodings to Derive CSP Value Ordering Heuristics

Table 1. Summary: CSP heuristics obtained from D-H⊗
w and S-H⊗

w .

Encoding H⊗
w

CSP Value Ordering Heuristic
Policy

known ? name

(D)irect
⊗ = max w(α) = 1 Y max-conflicts fail-first
⊗ = min w(α) = 1 Y min-conflicts promise

(S)upport

⊗ = max w(α) = 1 Y min-conflicts promise
⊗ = min w(α) = 1 Y max-conflicts fail-first
⊗ = max w(α) = α N max-inverse promise
⊗ = min w(α) = α N min-inverse fail-first
⊗ = max w(α) = 2−α N max-jw fail-first

domain of Y , whereas removing a from the domain of X leads to the removal of 2 values
from the domain of Y instead of 0 values when b or c are removed from the domain of X.

On the other hand, in Example 1, Hjw does not discriminate between the different values
of Y (Hjw[P (Y, v)] = 0.75 ∀v ∈ {a, b, c, d}) even though assigning Y the value a removes
two values from dom(X) and selecting Y = c removes only one value.

Definition 7. Let P = (X , C) be a constraint network, X ∈X and a ∈ dom(X).

Hinv[P, (X, a)] =
∑

C∈C | X∈vars(C)



2× |Sp(C, X, a)|+
∑

(Y,b)∈Sp(C,X,a)

|Sp(C, Y, b)|





In the following, we will refer to the new value ordering heuristics Hmax
inv (respectively

Hmin
inv) as max-inverse (respectively min-inverse).

Applying Hinv on the variables X and Y of Example 1, we obtain:

Hinv[P, (X, a)] = 8, Hinv[P, (X, b)] = Hinv[P, (X, c)] = 10,

Hinv[P, (Y, a)] = Hinv[P, (Y, b)] = 4 and Hinv[P, (Y, c)] = Hinv[P, (Y, d)] = 8

We can note that using min-inverse leads to the same value ordering on the variable X
as max-jw, whereas on the variable Y , min-inverse selects the value a or b and max-jw
derives the same score for all the values from the domain of Y .

All heuristics obtained from S-H⊗
w and D-H⊗

w are summarized in Table 1, assuming
that the value selection is restricted to the values from the same domain of a given variable.
Indeed, selecting the best pair (X, v) from all possible pairs of a given constraint network
is time consuming. In this last case, no mapping is possible between the instantiations
presented above and the known CSP value orderings, i.e. all instantiations lead to new
CSP value orderings heuristics of pairs (variable, value).

From Table 1, one can see that the derived CSP value ordering heuristics H⊗
w (with ⊗ =

min and w(α) = 1) using (D)irect encoding leads to the known (Y) promise-oriented CSP
value ordering heuristic min-conflicts, whereas H⊗

w (with ⊗ = min and w(α) = α) using
(S)upport encoding leads to the new (N) fail-first-oriented CSP value ordering heuristic
called min-inverse.

179

C. Lecoutre et al.

3.2.4 Computation cost of the heuristics

In the general case i.e. constraint networks involving n-ary constraints, the maximum
number of tuples a constraint may admit is in O(dr) where r denotes the maximal arity of
the constraints. To compute the number of supports for each given variable-value, one needs
to enumerate for each constraint the set of allowed tuples. This can be done in O(edr),
which exactly corresponds to the computation cost of Hocc (min- and max-conflicts).
Consequently, we only consider static versions of the proposed value heuristics i.e. the
number of supports of each value is only computed prior to the search. For each domain, the
values are sorted according to their scores. Consequently, at each node the value selection
is done in O(1).

Computing Hocc at each node of the search tree is very time consuming. For a given
variable (chosen using a variable ordering heuristic), the worst-case time complexity of
selecting a given value is in O(Γmaxdr), Γmax denoting the maximal number of constraints
involving one variable.

For Hjw and Hinv computation, we proceed in two phases. First, the number of supports
of each value is computed. Then, the score of each value according to Hjw and Hinv

is computed. Assuming that Sp(C, X, a) can be obtained in O(1), the worst-case time
complexity to compute Hjw and Hinv is clearly the same as for Hocc. Indeed the two phases
admit the same worst-case time complexity (O(edr)).

4. Experiments

To prove the practical interest of our approach, we have implemented the different heuristics
described in the previous sections in our platform CSP4J [29] and conducted an experimen-
tation with the full set of 3115 instances used as benchmarks of the first CSP Competition2.

(the Pseudo-Boolean instances have been discarded because they involve constraints of high
arity which prevent an enumeration of all supports).

The search algorithm that has been employed is MGAC embedding GAC3rm [21] and
equipped with dom/wdeg. All value ordering heuristics have been implemented statically:
an ordering is established prior to search and remains unchanged during the whole search
process [23].

First, we conducted a full comparison of all heuristics instances from the first round
of the 2006 CSP Solver Competition. Figure 2 shows the relative difference in terms of
proportion of solved instances with respect to random value ordering. All heuristics with
positive proportion of solved instances lead to solve more problems than random within a
timeout of 1200 seconds. Overall results show that max-inverse is the best heuristic on
the whole set of instances. The other promise-oriented heuristic, min-conflicts, also gives
good results. However, remark that most of the academic instances are easily solved by
our solver whatever the value ordering heuristic used. The slight advantage of max-inverse
appears on All Interval and Golomb Ruler series. On random instances, the promise-
oriented heuristics present a good behavior. As a summary, the new promise-oriented CSP
value ordering heuristic max-inverse seems to be the most robust one.

2. All instances can be downloaded at http://www.cril.univ-artois.fr/∼lecoutre.

180

http://www.cril.univ-artois.fr/~lecoutre

Using SAT Encodings to Derive CSP Value Ordering Heuristics

-1%

-0.5%

0%

0.5%

1%

1.5%

2%

2.5%

3%

max-inversemin-inversemin-conflictsmax-conflictsJW-CSP

%
 in

st
an

ce
s

so
lv

ed
 w

.r
.t.

 r
an

do
m

 (
re

la
tiv

e)

all 3115
random 1390

academic 832
real 893

Figure 2. Relative deviation of heuristic performances with respect to random in terms of solved
instances (timeout = 1200s).

To get a more comprehensive picture on the behavior of promise and fail-first oriented
heuristics, in Figure 3 we give a detailed comparison between the two new proposed CSP
value ordering heuristics max-inverse (promise-oriented) and min-inverse (fail-first-
oriented) on all satisfiable and unsatisfiable instances. Points near the diagonal correspond
to instances equally solved by both heuristics. Points under the diagonal are instances for
which the algorithm represented on the y-axis (max-inverse in Figures 3 and 4) is better
than the algorithm represented on the x-axis. Unsolved instances within a time limit of 1200
seconds are shown on the right hand side and on the top of the two figures. Clearly, on the
whole set of instances, min-inverse is outperformed by max-inverse. This is confirmed on
satisfiable instances. Interestingly enough, on unsatisfiable instances, the fail-first min-
inverse heuristic becomes better that max-inverse. To confirm this behavior, we conducted
an additional experiment on all random instances, looking for all solutions. In this case,
the search space is exhaustively explored for both satisfiable and unsatisfiable instances.
Figure 4 shows that min-inverse outperforms again max-inverse.

Finally, we focused on some Open-Shop scheduling instances. We tested extensively our
heuristic against Taillard’s Open-Shop Generator [27]. Hardest Open-Shop instances are
those that are unsatisfiable but close to the optimal solution. Proving a solution within a
makespan t to be optimal involves proving that there is no solution within a makespan of
t−1. In Table 2, we can observe that fail-first-oriented heuristics are the most efficient ones
on hard unsatisfiable instances (see median-5-95), whereas the promise-oriented heuristics
are the best on hard satisfiable instances, where t is equal to the optimal value (see median-

181

C. Lecoutre et al.

1

10

100

1000

 1 10 100 1000

m
ax

-in
ve

rs
e

min-inverse

all instances

1

10

100

1000

 1 10 100 1000

m
ax

-in
ve

rs
e

min-inverse

sat instances

1

10

100

1000

 1 10 100 1000

m
ax

-in
ve

rs
e

min-inverse

unsat instances

Figure 3. Looking for one solution: comparative performance of min-inverse and max-
inverse (cpu time against cpu time, in seconds) on respectively all, satisfiable and unsatisfiable
competition instances.

182

Using SAT Encodings to Derive CSP Value Ordering Heuristics

1

10

100

1000

 1 10 100 1000

m
ax

-in
ve

rs
e

min-inverse

random instances: all solutions

Figure 4. Looking for all solutions: comparative performance of min-inverse and max-
inverse, cpu time against cpu time, in seconds, on random instances.

Table 2. Results details on 5x5 Open Shop instances. Timeout is 1200 seconds CPU time. 5-95-
instances are UNSAT whereas 5-100- instances are SAT.

Instance random max-jw max-cfl min-cfl min-inv max-inv

os-taillard-5-95-0 50.58 82.67 74.29 111.75 54.7 83.55

os-taillard-5-95-1 8.31 10.16 5.82 7.44 7.16 6.48

os-taillard-5-95-2 850.2 462.8 49.22 558.89 189.97 46.25

os-taillard-5-95-3 35.26 23.01 25.95 30.88 22.34 26.59

os-taillard-5-95-4 1195.4 112.87 151.11 201.37 97.33 timeout

os-taillard-5-95-5 376.77 269.18 192.79 71.93 137.06 308.33

. . .

median-5-95 89.39 78.51 72.03 92.94 63.07 107.29

os-taillard-5-100-0 timeout 248.64 6.68 45.12 4.17 timeout

os-taillard-5-100-1 45.07 73.91 24.29 5.64 12.87 158.54

os-taillard-5-100-2 timeout 239.67 timeout timeout timeout timeout

os-taillard-5-100-3 timeout timeout 36.69 692.08 timeout timeout

os-taillard-5-100-4 77.16 timeout timeout timeout timeout timeout

os-taillard-5-100-5 timeout timeout 829.96 703.45 timeout 251.02

. . .

median-5-100 > 1200 > 1200 > 1200 402.33 > 1200 433.33

183

C. Lecoutre et al.

5-100). Note that not all instances are shown, the median can thus not be deducted from
the lines in the table.

5. Conclusion

In this paper, we have focused on converting SAT heuristics to CSP. Thanks to the Support
and Direct encodings, we have shown how to derive new CSP value ordering heuristics.
Interestingly, these heuristics enabled us to measure for the first time the impact of both
positive and negative decisions of binary branching. Using the two-sided Jeroslow-Wang
general formulation, we introduced a clear map about the relationships existing between
some SAT and CSP heuristics.

We have also shown that fail-first (respectively promise) are more suitable for solv-
ing unsatisfiable (respectively satisfiable) instances. Using simpler variants, so-called min-
inverse and max-inverse of the Jeroslow-Wang heuristic allowed to solve more unsatisfiable
and satisfiable instances (from the suite of instances of the first round of the 2006 CSP Solver
competition) than classical heuristics.

In fact, we noticed that on unsatisfiable instances or when looking for all solutions,
following the fail-first policy does pay off. Our understanding of this phenomenon is that,
as dom/wdeg is able to efficiently refute unsatisfiable subtrees, the overhead of refuting
more unsatisfiable sub-trees (as more often than not, we guide search towards unsatisfiable
sub-trees) is compensated by the benefit of rapidly reducing the search space.

Finally, our experimental results seems to confirm that the gap existing between the
different (tested) value ordering heuristics is rather small. However, we think that it is
worthwhile to understand the impact of following different policies. Our opinion is that the
most efficient the variable ordering heuristic will be (to respect the fail-first policy), the
most interesting to follow the same principle at the value level it could be.

Acknowledgments This work has been supported by the CNRS and the “IUT de Lens”.
We would like to thank all reviewers for their useful comments that helped to greatly improve
the quality of this paper.

References

[1] F. Bacchus. Enhancing Davis Putnam with extended binary clause reasoning. In
Proceedings of AAAI’02, pages 613–619, 2002.

[2] J.C. Beck, P. Prosser, and R.J. Wallace. Variable ordering heuristics show promise. In
Proceedings of CP’04, pages 711–715, 2004.

[3] C. Bessiere, E. Hebrard, and T. Walsh. Local consistencies in SAT. In Selected revised
papers from SAT’03, pages 299–314, 2003.

[4] C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake FC
(and CBJ?) on hard problems. In Proceedings of CP’96, pages 61–75, 1996.

[5] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by
weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

184

Using SAT Encodings to Derive CSP Value Ordering Heuristics

[6] D. Brelaz. New methods to color the vertices of a graph. Communications of the ACM,
22:251–256, 1979.

[7] J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of IJCAI’89,
pages 290–296, 1989.

[8] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

[9] L. Drake, A. Frisch, I. Gent, and T. Walsh. Automatically reformulating SAT-encoded
CSPs. In Proceedings of the RCSP’02 workshop held with CP’02, 2002.

[10] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. Sat versus unsat. In Second DIMACS
Challenge, pages 299–314, 1993.

[11] J.W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD
thesis, University of Pennsylvania, 1995.

[12] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction prob-
lems. In Proceedings of IJCAI’95, pages 572–578, 1995.

[13] P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In
Proceedings of ECAI’92, pages 31–35, 1992.

[14] I.P. Gent. Arc consistency in SAT. In Proceedings of ECAI’02, pages 121–125, 2002.

[15] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence, 14:263–313, 1980.

[16] T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour. In Pro-
ceedings of CP’05, pages 328–342, 2005.

[17] J. Hwang and D.G. Mitchell. 2-way vs d-way branching for CSP. In Proceedings of
CP’05, pages 343–357, 2005.

[18] R.G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals of
Mathematics and Artificial Intelligence, 1:167–187, 1990.

[19] S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45:275–286, 1990.

[20] C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus
conflict-directed heuristics. In Proceedings of ICTAI’04, pages 549–557, 2004.

[21] C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In
Proceedings of IJCAI’07, pages 125–130, 2007.

[22] C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability prob-
lems. In Proceedings of IJCAI’97, pages 366–371, 1997.

[23] D. Meetah and M.R.C. van Dongen. Static value ordering heuristics for constraint
satisfaction problems. In Proceedings of CPAI’05 workshop held with CP’05, pages
49–62, 2005.

185

C. Lecoutre et al.

[24] D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction.
In Proceedings of CP’94, pages 10–20, 1994.

[25] B.M. Smith and P. Sturdy. Value ordering for finding all solutions. In Proceedings of
IJCAI’05, pages 311–316, 2005.

[26] R. Szymanek and B. O’Sulivan. Guiding search using constraint-level advice. In Pro-
ceedings of ECAI’06, pages 158–162, 2006.

[27] E. Taillard. Benchmarks for basic scheduling problems. European journal of operations
research, 64:278–295, 1993.

[28] M.R.C. van Dongen, editor. Proceedings of CPAI’05 workshop held with CP’05, vol-
ume II, 2005.

[29] J. Vion. Constraint Satisfaction Problem for Java. http://cspfj.sourceforge.net/, 2006.

[30] R.J. Wallace. Heuristic policy analysis and efficiency assessment in constraint satis-
faction search. In Proceedings of CPAI’05 workshop held with CP’05, pages 79–91,
2005.

[31] T. Walsh. SAT v CSP. In Proceedings of CP’00, pages 441–456, 2000.

[32] L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of ICCAD’01, pages 279–285,
2001.

186

	Introduction
	Technical Background
	Constraint Satisfaction Problem
	Encoding CSP into SAT
	Direct Encoding
	Support Encoding

	Value Ordering Heuristics from SAT to CSP
	SAT Branching Heuristics
	Mapping SAT Heuristics to CSP
	Mapping HwO using Direct Encoding
	Mapping HwO using Support Encoding
	New value ordering heuristics for CSP
	Computation cost of the heuristics

	Experiments
	Conclusion

