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Abstract

An independent set of variables is one in which no two variables occur in the same clause
in a given k-SAT instance. Recently, independent sets have obtained more attention. Due
to a simple observation we prove that a k-SAT instance over n variables with independent
set of size i can be solved in time O(φ2(k−1)(n − i)) where φk(n) denotes an upper bound
on the complexity of solving k-SAT over n variables.
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1. Introduction

Independent sets of variables for the k-SAT problem have recently obtained attention since
their usefulness has been practically shown [3]. In [3] the authors prove that a modification of

the PPZ-algorithm [6] yields a bound of O(2(n−i)(1− 1

2k−2
)) and a modification of Schönings

local search algorithm [7] needs O((2k−3
k−1 )n−i) steps. We show that these bounds can be

achieved by an obvious simplification of the formula. Further, by applying the currently
best algorithms for k-SAT these bounds are significantly improved. Due to its simplicity
the method could find an application in SAT solvers which explore independent sets of
variables.

2. Preliminaries

A k-SAT formula is a conjunction of m clauses with at most k literals per clause. As usual,
n denotes the number of the variables in a given k-SAT instance. A variable is written as
ci, 1 ≤ i ≤ n, a literal as ci and its negation as ¬ci. V denotes the set of variables and
L := V ∪ V the set of literals. A k-clause C = (c1 ∨ .. ∨ ck) is a disjunction of k literals.
An independent set of variables I ⊆ V contains at most one variable pro clause. Its
cardinality is written as i := |I|.
φk(n) denotes an upper bound on the complexity of solving k-SAT over n variables.
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3. Main result

Theorem 1. A k-SAT instance F over n variables with independent set I ⊆ V of size i
can be solved in O(φ2(k−1)(n − i)) steps .

Proof: In order to simplify the reading we color the variables v ∈ I in red and the rest
variables u ∈ V \I in blue. Then the following Algorithm 1 solves the problem: (The
input is k-CNF formula F over n variables and an independent set I ⊆ V of size i. We
assume that the formula is not empty and n > 0. It is obvious that 1 ≤ i ≤ n.)

while (I 6= ∅)
choose a red variable v ∈ I
resolute(F, v)
simplify(F )

solve the 2(k − 1)-SAT problem for F

The procedure resolute (SAT instance F , variable v) implements the well-known resolu-
tion rule which doesn’t affect the satisfiability of a given SAT formula [2]:

for each pair of clauses (v ∨ C), (¬v ∨ D)
add the clause (C ∨ D) to the clause database

delete each clause containing the variable v

The procedure simplify (SAT instance F ) deletes clauses containing a literal and its nega-
tion and clauses subsumed by another clauses. This guarantees that during the execution
of the algorithm the size of the formula remains bounded by O((n)2(k−1)).

Since we resolute only on red variables and each clause contains at most one red vari-
able the clauses added by the resolution consist of blue variables exclusively. Therefore, the
new clauses have at most 2(k − 1) literals and all these are blue (so we don’t resolute on
a variable occurring in a 2(k − 1)-clause). Thus, the resulting formula is a 2(k − 1)-SAT
instance over n − i variables. 2

In table 1 we give the running times of the best known 2(k − 1)-SAT algorithms w.r.t.
to the number of variables n, deterministic as well probabilistic, for k ≥ 3. The bounds
for a k-SAT instance over n variables with independent set I of size i can be immediately
concluded:

Table 1. Best known running times for 2(k − 1)-SAT algorithms

2(k − 1) probabilistic deterministic

4 O(1.474n) [4] O(1.6n) [1]
6 O(1.638n) [5] O(1.714n) [1]
8 O(1.725n) [5] O(1.778n) [1]
... ... ...
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