
Journal on Satisfiability, Boolean Modeling and Computation 1 (2006) 123-141

Research Note

Impurity: Another Phase Transition of SAT

Eliezer L. Lozinskii lozinski@cs.huji.ac.il

School of Computer Science and Engineering

The Hebrew University, Jerusalem 91904, Israel

Abstract

It is well known that satisfiability of random sets of propositional clauses undergoes
phase transition while the clause-to-variable ratio of the sets increases. We introduce
another parameter of sets of clauses, impurity, and show that the satisfiability undergoes
a phase transition as a function of impurity. This phenomenon supports a conjecture that
various properties (such as random graph connectivity, perfect integer partition) exhibit
phase transition under control of several different syntactic parameters.
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1. Introduction: Propositional satisfiability

Various objects of different nature undergo a radical change of their qualitative properties
while their quantitative parameters change values. If an evolution of objects inverts their
property, it is said that the property undergoes a phase transition [17, 16, 19]. A remarkable
feature of phase transition is that it happens as a rapid change of the corresponding property
while the parameters controlling this change vary in a relatively narrow range of values, and
the narrower this range, the sharper the phase transition.

Consider a set of n propositional variables {v1, . . . , vn}, and a set of 2n literals such
that each literal l is either a variable vi or its negation ¬vi. A CNF propositional formula
F is a conjunction of a set of clauses such that each clause is a disjunction of a subset
of literals. If each variable is assigned a value of true or false, then a clause is true if it
contains a true literal, and F is true if all its clauses are true. An assignment of truth values
to the variables making F true is a model of F , and if a model exists then F is satisfiable
(otherwise, unsatisfiable).

The problem SAT of checking satisfiability of a CNF propositional formula is one of most
important and difficult computational problems. It is the classic NP-complete problem [7]
providing the basis for the theory of computational complexity. Many hard problems can
be encoded as SAT. SAT is also a major part of many proof and deduction procedures, as
a formula φ is a logical consequence of F iff F ∧ ¬φ is unsatisfiable. No wonder that SAT
became the topic of numerous theoretical and experimental studies.

Let F(n,m, k) denote a set of all CNF propositional formulae F (n,m, k) over n variables
containing m clauses each with k literals such that each clause is chosen randomly and
uniformly out of the set of all

(

n
k

)

2k possible k-literal clauses. Then k-SAT is the problem of

c©2006 Delft University of Technology and the authors.



E. L. Lozinskii

checking satisfiability of F (n,m, k). Let psat(n,m, k) denote the probability that a formula
F (n,m, k) ∈ F(n,m, k) is satisfiable.

Consider satisfiability of F (n,m, k) in the process of its growth by acquiring more and
more clauses. While m < 2k all the formulae of F(n,m, k) are satisfiable, so, psat(n,m <
2k, k) = 1. As m grows some formulae of F(n,m, k) become unsatisfiable, and psat(n,m, k)
decreases becoming eventually zero, since a set of all

(

n
k

)

2k possible clauses is obviously un-
satisfiable. Many theoretical and experimental studies indicated that for all n, k, psat(n,m, k)
is a monotone decreasing function of the clause-to-variable ratio r = m/n, and there exists
a clauses-to-variables ratio rk depending on k such that in the vicinity of rk the value of
psat(n,m, k) changes rapidly from 1 to 0, so, the property of satisfiability of F (n,m, k)
undergoes a phase transition.

For k = 2, Chvátal and Reed [6], and Goerdt [15] proved that r2 = 1, and the satisfia-
bility of F (n,m, 2) undergoes a sharp phase transition:

lim
n→∞

psat(n,m, 2) =

{

1 if m/n < 1
0 if m/n > 1

(1)

For k ≥ 2 Friedgut [13] proved that there exists a sequence rk(n) such that for all ε > 0,

lim
n→∞

psat(n,m, k) =

{

1 if m/n = rk(n) − ε
0 if m/n = rk(n) + ε

(2)

For k ≥ 3 it is unknown yet whether the sequence rk(n) converges. However, the value
of r3(n) is bounded by 3.26 from below [1] and 4.506 from above [10]. Achlioptas and
Moore [2] proved for k ≥ 2 that rk > 2k−1 ln 2 − dk, where dk → (1 + ln 2)/2. Numerous
computer experiments provide an evidence that r3 ≈ 4.25 [21, 8] r4 ≈ 9.76 [14].

So, clauses-to-variables ratio controls satisfiability of sets of clauses in the rather remark-
able way. However, is this ratio the only control parameter of this important property? Is
there another syntactic parameter of a set of clauses that affects its satisfiability? The next
sections provide an affirmative answer to the latter question.

2. Impurity

The clause-to-variable ratio r of a set of clauses provides an information regarding its satisfi-
ability as psat(r)1. determines the uncertainty associated with the outcome of a satisfiability
test. This uncertainty reaches its maximum in a close vicinity of rk where psat = 0.5. We
are looking for another measure µ of a set of clauses (different from r, and also effectively
computable) that would provide an additional information of its satisfiability by reducing
the uncertainty. For every value of r (in a wide range of values2.) there are both satisfi-
able and unsatisfiable sets, so, if the probability psat(r, µ) that a set with measures r, µ is
satisfiable is monotone in µ, then psat(r, µ) may undergo a phase transition under control
of µ.

1. We use psat(r) or psat instead of psat(n, rn, k) if this abbreviation does not cause ambiguity.

2. Any set with m > 2k and r as small as 1/k may contain an unsatisfiable subset of 2k k-literal clauses
over k variables. At the other extreme of r, there are satisfiable sets of

`

n
k

´

(2k − 1) clauses containing no
clause with all negated (or all unnegated) literals.
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Let pos(v), neg(v) denote, respectively, the number of unnegated and negated occur-
rences of a variable v in a set of clauses F . If v occurs in F either only unnegated or only
negated (i.e., pos(v) = 0 or neg(v) = 0) then v is a pure variable in F . An important
observation implemented in many Davis-Putnam-Logemann-Loveland style algorithms [9]
is that satisfiability of F does not change if all pure unnegated and negated variables in
F are assigned the values true and false, respectively. That is, F is satisfiable iff F ′ is
so, where F ′ is a result of deleting from F all clauses containing pure variables. So, pure
variables don’t affect satisfiability of F , and even allow its simplification as F ′ is a subset
of F . In particular, if all variables of F are pure then F is trivially satisfiable.

If both pos(v) and neg(v) are non-zero in F , let v be called impure variable, and denote
max(v) = max(pos(v), neg(v)), min(v) = min(pos(v), neg(v)). Any assignment of truth
value to v removes from F at most max(v) clauses, but deletes literals of v from at least
min(v) clauses making them “shorter” (let the length of a clause be the number of its
literals). Deleting a literal from a clause reduces the probability that an assignment to its
variables satisfies the clause since this probability is monotone in the clause length.

Let imp(v) = min(v)/max(v) be the impurity of v, and imp(F ) stand for the impurity
of F that is the average impurity of its variable:

imp(F ) =
1

n

n
∑

i=1

min(vi)/max(vi) (3)

0 ≤ imp(F ) ≤ 1. (4)

So, for all n, r, k, all sets with zero impurity are satisfiable, psat(n, r, k, imp = 0) = 1,
and the argument above suggests that this probability decreases while imp increases from 0
to 1. The following sections show that psat undergoes phase transition as a function of imp.

3. Experiments: Generating sets with a given value of impurity

To study sets of clauses with different impurity we have implemented three different models
of generating random sets of m k-literal clauses over n variables with 0 ≤ imp < 1.0.
These models differ in characteristics of the produced sets of clauses, and in several aspects
complement each other.

Experiments were run with programs that generate random sets of clauses (correspond-
ing to each model), check their satisfiability, and count the number of truth value as-
signments to variables required for the check (the latter measure is discussed in Section 5).
About ten million 3-literal sets were generated with the following parameters: n = 30−200;
r = 3.0 − 1000; pul = 0.05 − 0.50, imp = 0.0 − 1.0.

3.1 Model P

Almost all experimental and theoretical studies of propositional satisfiability consider sets
of clauses generated by the following procedure. To produce a new literal choose randomly
and uniformly one of n variables, then insert an unnegated literal of the variable with a
constant probability pul; insert k literals of different variables into each clause; generate m
clauses for a set. Sets generated by this procedure with pul = 0.5 conform to those produced

125



E. L. Lozinskii

by choosing randomly and uniformly m clauses out of the set of all different k-literal clauses
over n variables.

The effect of relative number of negated and unnegated literals in a set on characteristics
of the set has been studied recently. Bayardo and Schrag [3] found that higher structural
regularity of sets increases the mean difficulty of SAT. In order to produce very hard SAT
instances they generated sets of clauses in such a way that all variables occur in the set
almost the same number of times, and there is almost the same number of negated and
unnegated literals.

Dubois, Boufkhad and Mandler [10] considered syntactic structure of a typical random
3-SAT formula produced with pul = 0.5. They defined an asymptotic distribution of the
number of occurrences of variables in a formula, and of the number of unnegated literals;
then by analyzing this distribution derived an improved upper bound of the satisfiability
threshold, equal 4.506.

Sinopalnikov [22] studied skewed random k-SAT: sets generated with pul < 0.5. His
study showed that the smaller pul, the larger the threshold value of r at which psat under-
goes phase transition.

Model P produces sets of clauses with a constant pul. The value of pul determines
distribution of impurity of the sets of clauses generated by the model. For a constant value
of r, sets with different impurity can be generated by varying pul between 0 and 0.5. Sets
generated with pul = 0 have imp = 0. As pul grows, the difference between the number of
negated and unnegated literals of each variable decreases, so the mean impurity of the sets
increases.

Figure 1 displays probability of satisfiability psat as a function of both clause-to-variable
ratio r and impurity imp. For all fixed values of r ≥ 3.8 (n = 100) the probability of
satisfiability exhibits the typical behaviour of phase transition as a function of imp: it
starts with psat = 1.0 at imp = 0, while imp grows psat decreases slowly to a value 1 − ε
for a small ε > 0, then steeply drops to psat = ε within a narrow range of imp called
scaling window [4], and then continues to decrease. The two curves marked with triangles
and squares correspond to sets of clauses generated with pul of 0.5 and 0.3, respectively.
Figure 1 displays the projection of these curves on the (r, imp)-plane (thin curves), and
shows that the value of average impurity of sets of clauses depends on both pul and r,
growing rather slowly with r.

Table 1: Impurity of sets of clauses generated with constant pul = 0.5
mean - average impurity of sets
σ(set) - standard deviation of impurity of sets

r
imp

3.00 4.26 6.00 8.00 10.0 20.0

mean .607 .657 .702 .736 .760 .821
σ(set) .024 .022 .019 .017 .016 .012
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Figure 1 and Table 1 (that presents the mean and standard deviation of impurity of sets
produced with the maximum value of pul = 0.5) show that Model P does not produce sets
with large value of impurity. Besides, if the standard deviation of impurity of sets, σ(set),
could be made smaller, the larger proportion of the generated sets would have the target
value of impurity.
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Figure 1: Phase transition of psat(r, imp) of sets of clauses
generated with constant pul (model P )

3.2 Model S

To generate sets with impurity approaching 1.0, and a small variance, Model S employs the
following algorithm.
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Given a target impurity α, the algorithm chooses for each new literal a variable v
randomly and uniformly, then before inserting a new literal of the variable in a clause the
algorithm calculates the current impurity α̃ of the set under generation, and inserts v or
¬v to minimize the new current difference ∆ = |α̃− α|.

Let l, ñl, α̃l denote, respectively, the number of literals, the number of different variables
currently appearing in the set, and its current impurity. Without loss of generality3., the
algorithm maintains for each variable w, neg(w) ≤ pos(w) in the following way. If a variable
v chosen for a new literal does not yet appear in the set, then a literal v is inserted such
that pos(v) = 1, neg(v) = 0, imp(v) = 0, ñl+1 = ñl + 1. At any step of the algorithm, if for
any variable w neg(w) < pos(w), then any next assignment to w keeps neg(w) ≤ pos(w), if
neg(w) = pos(w), then the next assignment will be w.

So, after the first assignment to any variable v,

α̃l+1 = α̃l(1 −
1

ñl + 1
) (5)

If v already appears in the set then there are two possibilities. If the new literal is v
then

α̃vl+1 = α̃l −
neg(v)

ñl pos(v) (pos(v) + 1)
(6)

If the new literal is ¬v then

α̃¬v
l+1 = α̃l +

1

ñl pos(v)
(7)

So,
∆l+1 = min{|α̃vl+1 − α|, |α̃¬v

l+1 − α|} (8)

It follows that after an insertion of each new literal of a variable v

∆l+1 < ∆l or ∆l+1 <
2

ñl+1 lit(v) ,

where lit(v) is the number of occurrences of v currently in the set.
The number of literals in a set of m k-literal clauses is nrk, the average number of

occurrences of a variable in the set is rk, at the start of a set generating ∆ = α. So, the
larger nrk and smaller α the closer the impurity of a set generated by the algorithm to the
target value α.

Table 2 presents percentage of sets generated by the algorithm with a target impurity
α = 0.1 − 0.9 for which ∆ ≤ 0.005.

The maximum impurity of 1.0 is practically unattainable, as the impurity of any variable
with an odd number of occurrences in the set is strictly less than 1. Hence, only the very
rare sets, in which every variable occurs an even number of times, can have imp = 1. Table 3

3. The impurity of a set of clauses and of any its variable v do not change if all literals of v are reversed,
so a set with neg(v) ≤ pos(v) for all its n variables represents an equivalence class of 2n sets with the
same impurity of all sets and all corresponding variables. If the variables are numbered, this class of
sets with an equivalent impurity can be extended by permutation of their numbers. So, for any set of
clauses F , there exists a set F ′ over the same number of variables such that imp(F ) = imp(F ′), for
every variable v of F there is a variable w of F ′, and vice versa, such that imp(v) = imp(w), and for all
w neg(w) ≤ pos(w).
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Table 2: Percentage of sets with a target impurity α produced by Model S (n = 100, k = 3)

r
α

3.0 4.0 4.26 5.0 6.0 7.0 8.0

0.1 - 0.5 100 100 100 100 100 100 100
0.6 99.5 100 100 100 100 100 100
0.7 96.8 99.6 99.8 100 100 100 100
0.8 90.0 97.4 98.1 99.8 99.9 100 100
0.9 28.2 69.9 76.2 88.4 98.2 99.4 99.9

presents for sets generated with the target impurity α = 1.0 their average impurity imp,
and the percentage of sets with imp± 0.005. Values of σ(set) of sets generated by Model S
appear in Tables 4 and 5, and will be discussed in the sequel.

Table 3: Sets generated by Model S with α = 1.0 (n = 100, k = 3)

r 3.0 4.0 4.26 5.0 6.0 7.0 8.0

imp 0.89 0.91 0.92 0.93 0.94 0.95 0.96
% of sets 33.1 41.2 45.4 48.3 50.3 62.4 70.7

Figure 2 displays probability of satisfiability psat as a function of r and imp. As in
Figure 1 psat exhibits the typical behaviour of phase transition as a function of imp. The
values of psat differ slightly from those of Figure 1 (for the same n, r, imp), and for r =
4.26, 6.00 are presented in Table 4 that compares the generating models. For r ≥ 3.8,
psat = 0 for all sets produced by Model S with maximum values of impurity shown in
Table 3, so, the corresponding curves in Figure 2 are prolonged up to imp = 1.0 with
psat = 0.

Table 4 shows (for r = 4.26, 6.0) that the standard deviation σ(set) of impurity of sets
generated by Model S is more than 10 times smaller than that of sets generated by Model
P (this ratio holds also for all r ≤ 50 checked in the experiments). The small value of
σ(set) is due to the fact that in Model S every assignment to a variable minimizes the
difference between the current impurity of the generated set and the target one. So, every
assignment to an individual variable must adjust the impurity of the entire set, but this
leads to a relatively large standard deviation σ(var) of impurity of variables within a set.
Indeed, in Table 4 σ(var) of sets generated by Model S is larger than that of sets produced
by Model P .

3.3 Model V

To study impurity in a wider class of random sets of clauses we used a model that generates
sets with a relatively small variance of impurity of each individual variable. Model V
implements the following procedure. Given a target impurity α, choose randomly and
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Figure 2: Phase transition of psat(r, imp) of sets of clauses
generated with a constant impurity of each set (Model S)

uniformly one of n variables. Then before inserting a new literal of the variable in a clause
calculate the current impurity α̃ of this variable, and insert v or ¬v to minimize the new
current difference ∆ = |α− α̃|.

Let α, λ, posλ, negλ, αλ, Lλ denote, respectively, the target impurity of sets, the number
of literals of a variable v currently in the set under generation, the number of its unnegated,
negated literals, the current value of its impurity, the last λ-th literal of the variable inserted
in the set. Then

posλ + negλ = λ (9)

αλ = min(posλ, negλ)/max(posλ, negλ) (10)

∆λ = |α− αλ| (11)

If a variable v chosen for a new literal does not yet appear in the set, then a literal
L1 = v is inserted such that λ = 1, pos1 = 1, neg1 = 0, α1 = 0, ∆1 = α. For all λ, if
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posλ = negλ then Lλ+1 = v, so, for all λ, negλ ≤ posλ
4.. Each Lλ is assigned to minimize

∆λ, so for all λ > 1 and all variable v, if
∣

∣

∣

∣

α−
negλ

posλ + 1

∣

∣

∣

∣

≤

∣

∣

∣

∣

α−
negλ + 1

posλ

∣

∣

∣

∣

(12)

then Lλ+1 = v, otherwise Lλ+1 = ¬v.
For any variable v, any series of consecutive insertions of its unnegated literal is bounded.

It can be shown that if for some λ Lλ = v, that is
∣

∣

∣

∣

α−
negλ−1

posλ−1 + 1

∣

∣

∣

∣

≤

∣

∣

∣

∣

α−
negλ−1 + 1

posλ−1

∣

∣

∣

∣

(13)

then there exists a finite value t ≥ 1 such that for all λ ≤ x < λ+ t, Lx = v, but Lλ+t = ¬v,
that is

∣

∣

∣

∣

α−
negλ−1

posλ−1 + t+ 1

∣

∣

∣

∣

>

∣

∣

∣

∣

α−
negλ−1 + 1

posλ−1 + t

∣

∣

∣

∣

. (14)

In the same way it can be shown that for any variable, any series of consecutive insertions of
its negated literal is bounded. Because both posλ and negλ are monotone in λ, the changes
of αλ caused by each new assignment decrease with growing λ while αλ approaches α. Since
the average number of literals of a variable in a set is rk, both σ(var) and σ(set) decrease
with growing r, as presented in Tables 4, 5. Figure 3 shows impurity of a variable for the
first 24 assignments to its literals for the target values of α = 0.1, 0.3, 1.0.

For Model V Figure 4 displays psat as a function of r and imp. It shows that for
different values of r, psat undergoes a phase transition while imp grows from 0 to 1. The
curves are very similar to those of Figures 1, 2 although with slightly different values of
psat (for the same n, r, imp) presented in Table 4. In this Table, indeed as intended, σ(var)
of sets of Model V is smaller than that of sets of Models P and S, since by Model V , every
assignment to a variable adjusts the value of imp of this particular variable.

4. Comparison of models

Tables 4, 5 allow comparison of the models. For the three models Table 4 presents values
of psat, σ(var), σ(set) for imp = 0.1 − 0.94 and r = 4.26, 6.0. The models are arranged
in the order of decreasing psat such that psatS ≥ psatP ≥ psatV . It can be noticed that
the corresponding values of σ(var) follow the same order: σS(var) > σP (var) > σV (var),
while σP (set) > σV (set) > σS(set). Table 5 shows a steady concentration of impurity of
sets generated by the models around the mean value 0.5 while the size of the sets grows.
The value of σ(set) of Model P decreases slower than that of Models S and V (the last
column and three last rows of Table 5).

Let Wε(imp) denote the scaling window in which psat (for a constant r) undergoes
phase transition as a function of imp, and lower(ε), upper(ε), middle stand for boundaries
of Wε(imp) and its middle such that

lower(ε) = inf{imp|psat(imp) ≤ 1 − ε}, (15)

upper(ε) = sup{imp|psat(imp) ≥ ε}, (16)

psat(middle) = 0.5. (17)

4. This does not cause a loss of generality, as shown in Subsection 3.2
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The width of scaling window:

|Wε(imp)| =
upper(ε) − lower(ε)

middle
. (18)

-
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Figure 3: Impurity αλ of any variable for the first λ ≤ 24 assignments
to its literals (target α = 0.1, 0.3, 1.0)

Table 6 shows (for Model S) the movement of scaling windows Wε(imp) toward low
values of impurity while the clause-to-variable ratio grows from 3.8 to 1000 (n = 100,
k = 3). This movement is explained by the fact that for m ≤

(

n
k

)

there are sets of m
clauses with zero impurity and psat = 1; on the other hand, for 0 < imp and all r > r′,
psat(r, imp) ≤ psat(r′, imp). This means also that if psat(imp) undergoes a phase transition
for some ratio r′, then a phase transition must take place for at least all ratios r′ ≤ r ≤

(

n
k

)

/n.

Models P and V produce a similar movement of the corresponding scaling windows
slightly shifted toward smaller values of impurity, since (as shown partly in Table 4) for the
same values of n, r, imp it holds psatS ≥ psatP ≥ psatV .

To show phase transition of psat in more details, Figure 5 displays for r = 4.26 (Model
S) psat vs. impurity, and its scaling windows shrinking while n grows from 30 to 200.

Expression (2) is equivalent to a statement that for k ≥ 2 and all ε(r) > 0, limn→∞ |Wε| =
0. So, to estimate the sharpness of phase transition of psat as a function of impurity we
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Table 4: Comparison of the three generating models (n = 100)

P - constant pul, S - constant impurity of sets of clauses
V - constant impurity of every variable in a set of clauses

σ(var) - average standard deviation of impurity of variables in a set of clauses
σ(set) - standard deviation of impurity of sets of clauses

mean imp
r model

.100 .200 .300 .400 .500 .600 .660 .800 .900 .940
psat 1.0 1.0 1.0 1.0 1.0 .997 .779 .004 .000 .000

S σ(var) .133 .198 .239 .261 .267 .256 .240 .178 .106 .084
σ(set) .0003 .0004 .0005 .0006 .0007 .0008 .0010 .0015 .0033 .0082
psat 1.0 1.0 1.0 1.0 1.0 .960 .524

4.26 P σ(var) .109 .165 .207 .235 .246 .238 .221
σ(set) .0112 .0165 .0199 .0230 .0250 .0240 .0220
psat 1.0 1.0 1.0 1.0 .961 .478 .022 .000 .000

V σ(var) .030 .036 .044 .050 .055 .065 .074 .084 .085
σ(set) .0028 .0036 .0043 .0049 .0057 .0066 .0074 .0088 .0089
psat 1.0 1.0 1.0 1.0 .928 .088 .000 .000 .000 .000

S σ(var) .121 .181 .221 .244 .250 .241 .214 .168 .098 .059
σ(set) .0002 .0003 .0003 .0004 .0005 .0005 .0006 .0008 .0014 .0058
psat 1.0 1.0 1.0 1.0 .266 .006 .000

6.00 P σ(var) .086 .134 .175 .207 .224 .221 .202
σ(set) .0089 .0133 .0174 .0211 .0228 .0224 .0190
psat 1.0 1.0 1.0 .421 .000 .000 .000 .000 .000

V σ(var) .021 .025 .030 .034 .037 .044 .050 .057 .066
σ(set) .0019 .0026 .0029 .0034 .0039 .0046 .0053 .0056 .0064

compare the width of scaling windows Wε(imp) of psat vs. imp with Wε(r) of psat con-
trolled by r as presented in Table 7. The third row gives values of |Wε(r)| for random sets
of 3-literal clauses with r changing from 3 to 5, while the last row gives |Wε(imp)| for sets
with r = 4.26 and impurity changing from 0.1 to 1.0. It shows that for n = 30 − 200 scal-
ing windows controlled by impurity are narrower and shrinking faster (the last column of
Table 7) than those determined by clause-to-variable ratio. This fact provides an evidence
for a conjecture that the phase transition of satisfiability as a function of impurity is sharp
for a wide range of r.

Conjecture 1. There exists a sequence imp∗(n, r, k) such that for all 3.8 ≤ r ≤
(

n
k

)

/n and
ε > 0,

lim
n→∞

psat(n, r, k, imp) =

{

1 if imp = imp∗(n, r, k) − ε
0 if imp = imp∗(n, r, k) + ε

(19)

The models used in this study produce sets of clauses with different distributions of
impurity of the sets, and of variables in the sets (Table 4). Nevertheless, the sets exhibit
a similar phase transition of psat as a function of r and imp (Figures 1, 2, 4). This fact
suggests that impurity is a significant parameter controlling propositional satisfiability.

Although Model P exhibits a pattern of phase transition similar to that of Models S
and V , there are differences between the notions of impurity and probability of unnegated
literal: (i) Given a set of clauses, it is hard to determine the value of pul that generated the
set, while impurity is easily computable a parameter of the set characterizing its expected
satisfiability; (ii) The notion of impurity suggests a conjecture (Section 6) that for many
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Figure 4: Phase transition of psat(r, imp) of sets of clauses
generated with constant impurity of each variable (model V )

processes undergoing a phase transition controlled by some parameter, there exist different
parameters causing a phase transition of the process; (iii) Aiming at a certain impurity of a
set of clauses allows producing sets with a richer diversity than it is possible with a constant
pul.

The phenomenon discovered by Sinopalnikov [22] that the smaller pul, the larger the
value of r at which psat undergoes phase transition , can be explained by the fact that the
smaller pul, the smaller impurity of the sets with the same r, and therefore the higher the
probability of their satisfiability. An increase of r compensates for the effect of decreased pul
by decreasing psat, and causing its phase transition. The curves with squares and triangles
in Figure 1 illustrate this phenomenon.
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Table 5: Concentration: standard deviation σ(set)
of impurity of growing sets of clauses (imp = 0.5).

P - constant pul S - constant impurity of sets of clauses
V - constant impurity of every variable in a set of clauses

r
n model

3.0 3.8 4.26 5.0 7.0 10.0

σ(set)r=3

σ(set)r=10

S .0032 .0026 .0021 .0019 .0012 .0008 4.00

30 V .0167 .0117 .0103 .0084 .0057 .0038 4.39

P .0483 .0462 .0450 .0424 .0380 .0334 1.45

S .0010 .0008 .0007 .0006 .0004 .0003 3.33

100 V .0088 .0066 .0057 .0045 .0031 .0022 4.00

P .0273 .0257 .0250 .0240 .0215 .0197 1.39

S .0005 .0004 .0003 .0003 .0002 .0001 5.00

200 V .0046 .0036 .0034 .0029 .0023 .0016 2.88

P .0186 .0182 .0179 .0170 .0161 .0145 1.28

S 6.40 6.50 7.00 6.33 6.00 8.00

σ(set)n=30

σ(set)n=200
V 3.63 3.25 3.03 2.90 2.48 2.38

P 2.60 2.54 2.51 2.49 2.36 2.30

Table 6: Moving scaling windows Wε(imp), Model S (n = 100)

r 3.8 4.26 5 10 50 100 500 1000

lower(0.01) .69 .61 .54 .38 .21 .19 .18 .18
lower(0.05) .71 .63 .56 .39 .25 .23 .20 .19
middle .77 .69 .61 .45 .32 .30 .28 .28
upper(0.05) .85 .74 .67 .50 .39 .38 .37 .37
upper(0.01) .93 .77 .69 .53 .42 .41 .40 .40

5. Hard sets

To estimate the computational hardness of satisfiability testing of various sets of clauses
(and make this estimation machine independent) programs in the experiments counted
for each set the number of truth assignments to variables that is proportional to the run
time. Figure 6 shows for Model S the average number of assignments for unsatisfiable
sets, satisfiable ones, and all sets (curves marked with black and hollow circles, and black
triangles, respectively) as a function of impurity for n = 100 and r = 4.26. The curves are
very similar to those depicting run time as a function of r. The run time of unsatisfiable
sets decreases monotonously with growing impurity, while the run time of satisfiable sets
is bounded by that of unsatisfiable ones, and approaches the latter with a maximum value
by the middle of the scaling window. As it can be expected, the hardest unsatisfiable
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Table 7: Shrinking of scaling windows Wε(r), Wε(imp), Model S

n = 30 n = 100 n = 200
ε 0.01 0.05 0.01 0.05 0.01 0.05

|W.01(n=30)|
|W.01(n=200)|

|Wε(r)| 0.562 0.381 0.251 0.174 0.203 0.154 2.768

|Wε(imp)| 0.528 0.375 0.232 0.159 0.162 0.088 3.259
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Figure 5: Phase transition of psat(imp), and its scaling windows (Model S)

instances appear at the lower edge of a scaling window (marked with a large black dot)
where unsatisfiable sets emerge with a low probability.
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The average impurity of sets generated with a constant pul is apart from the lower
edge of the corresponding scaling windows controlled by imp for most values of r, so, many
hardest unsatisfiable instances are omitted in the common experiments with SAT. Table 8
compares for different values of r and n the run time (in thousands of assignments) of the
hardest unsatisfiable sets generated by Model V with that of unsatisfiable sets produced by
Model P with pul = 0.5. The last columns of the table present parameters a and b of the
function a2n/b that approximates run time with errors within 6%. (For r = 3.1 Model P
does not produce a significant proportion of unsatisfiable sets). The table gives values of
impurity of sets with the corresponding run time.

In the table, for the same values of n and r, the run time of the hardest unsatisfiable
sets produced by Model V is consistently larger than that produced by Model P . This
result accords with the study by Bayardo and Schrag [3] who showed that the larger the
structural regularity of a set, the harder checking its satisfiability. Indeed, Table 4 shows
that the standard deviation of impurity of variables σ(var) in sets of Model V is smaller
than that of Model P .

6. Conclusion: More parameters controlling phase transition

The previous sections show that besides the clause-to-variable ratio r of sets of clauses that
controls the phase transition of their satisfiability there is a different parameter, impurity,
that controls the satisfiability very similarly to r. By this virtue both r and imp provide
partial information regarding the satisfiability of a given set. Unless P = NP no syntactic
measure can determine satisfiability of a set of clauses with certainty. So, there is room for
more information of the satisfiability that may be provided by another parameter of the
sets.

At the present state of the art, checking satisfiability of a set of clauses may require
time exponential in the size of the set. So, if the available machine resources and time
limitation do not facilitate solving SAT for a given set of clauses, it would be helpful to
exploit parameters of the set that can be computed effectively, and provide an estimation of
the probability that it is satisfiable. Let us call such a parameter a witness to satisfiability.
The clause-to-variable ratio r, and impurity are such witnesses. Table 4 shows that a larger
σ(var) indicates a larger psat, so σ(var) is a candidate for a witness. Besides, this means
that an increase of the structural regularity of a set of clauses causes not only an increase
of its expected hardness [3], but also a decrease of probability of its satisfiability.

Consider a set of clauses F (n,m, k). As imp(F ) is the average impurity of its variables,
there are variables in F having impurity larger or smaller than imp(F ). By the argument
of Section 2 supported by the experiments, the larger imp(F ) the smaller the probability
that F is satisfiable. However, the impact of each variable vi of F on its satisfiability should
depend not only on imp(vi), but also on the number lit(vi) of clauses in which vi occurs. It
is reasonable to assume that for a constant imp(F ), the larger the number of occurrences of
variables with larger values of imp(vi) (and smaller that of variables with smaller impurity),
the smaller the probability of satisfiability of F . Consider the following measure of a set of
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clauses F (n,m, k) – balance:

bal(F ) =
1

nrk

n
∑

i=1

lit(vi) ∗ imp(vi), (20)

Since nrk is the number of all literals in F , and for all vi, 0 ≤ imp(vi) ≤ 1, it holds

0 ≤ bal(F ) ≤ 1. (21)

Conjecture 2. Let S(n, r, k, imp) denote a set of all random sets of clauses with constant
values of n, r, k and constant impurity δ < imp < 1 − δ for a small δ > 0. Then psat(S)
for a set S ∈ S(n, r, k, imp) is a monotone decreasing function of bal(S), and undergoes a
phase transition while bal(S) increases.
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Table 8: Hardest unsatisfiable sets (run time in thousands of assignments)

n
r

40 60 80 100 120
a b

run time 0.695 3.739 20.30 110.2 21.38 8.10
3.1 Model V

imp 0.83 0.85 0.88 0.88

run time 0.691 3.689 19.11 97.91 506.6 24.31 8.33
Model V

imp 0.45 0.45 0.49 0.49 0.49
4.26

Model P run time 0.618 2.697 11.89 53.48 235.7 29.35 9.22

pul = 0.5 imp 0.57 0.59 0.59 0.60 0.61

run time 0.649 2.741 11.91 51.96 223.4 34.15 9.44
Model V

imp 0.31 0.32 0.34 0.34 0.35
6.0

Model P run time 0.416 1.332 4.351 14.21 47.40 37.42 11.61

pul = 0.5 imp 0.59 0.61 0.63 0.63 0.64

There are famous and extensively investigated cases of phase transition.
The probability that a graph G(n,m) chosen randomly and uniformly out of the set

of all undirected graphs with n vertices and m edges is connected increases monotonously
with m, and undergoes a sharp phase transition at the value of m = (n lnn)/2 [11, 12].

The probability that a bag of integers (a multi-set containing possibly identical integers)
B(n,m) containing m integers randomly and uniformly chosen from a range [1, . . . , 2n] can
be divided into two distinct parts with equal sums of elements (a perfect partition) is a
monotone function of m, and has a sharp phase transition at m = n [14, 18, 5, 20]

Conjecture 3. Various properties (such as graph connectivity and perfect integer partition)
that undergo phase transition vs. a syntactic parameter, have phase transition under control
of several different syntactic measures.

Candidates for these secondary measures are standard parameters of distribution of
degree of vertices within a G(n,m), and of distribution of integers in a B(n,m).
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