Journal on Satisfiability, Boolean Modeling and Computation 1 (2006) 111-122

Improved Bound for the
PPSZ/Schoéning-Algorithm for 3-SAT

Daniel Rolf rolf@informatik.hu-berlin.de
Humboldt- University Berlin

Department of Computer Science

Logic in Computer Science

Unter den Linden 6

10099 Berlin, GERMANY

Abstract

The PPSZ Algorithm presented by Paturi, Pudlak, Saks, and Zane in 1998 has the
nice feature that the only satisfying solution of a uniquely satisfiable 3-SAT formula can
be found in expected running time at most O(1.3071™). Its bound degenerates when the
number of solutions increases. In 1999, Schoning proved an O(1.3334™) bound for 3-SAT.
In 2003, Iwama and Tamaki combined both algorithms to yield an @(1.3238™) bound. We
tweak the PPSZ-Bound to get a slightly better contribution to the combined algorithm and
prove an 0(1.32216™) bound.

KEYWORDS: 3-SAT, worst case bound, bounded resolution, randomized local search

Submitted January 2006; revised October 2006; published November 2006

1. Introduction

The problem of deciding whether a k-CNF G has a satisfying assignment is well known
as the k-SAT problem, which is NP-complete for £ > 2. Hence, if NP # P holds (which
is widely assumed), there is no hope to find a polynomial time algorithm for the k-SAT
problem for k£ > 2.

For a CNF G on n variables, a naive approach is to enumerate all possible assignments
and to check for each one whether it satisfies G. This algorithm has O (poly(|G|) - 2™)
running time at most. There are significantly more sophisticated algorithms known, and
the evolution of expected running time bounds for 3-SAT, which are somewhat below the
deterministic ones, is given as [1, 2, 3, 4, 5, 6] with bounds of O(1.334™), O(1.3302"),
0(1.32971™), O(1.3290™), O(1.32793™), and O(1.3238™).

Using an elegant simple random walk algorithm, Schoning showed in 1999 that a sat-
isfying assignment for a satisfiable 3-SAT formula can be found in O(1.3334™) expected
running time, cf. [1].

In [7], Paturi, Pudlak, Saks, and Zane proved that for a uniquely satisfiable 3-CNF, the
solution can be found in O(1.3071") expected running time at most. We refer to their algo-
rithm as the PPSZ Algorithm. This is the best randomized bound known for Unique-3-SAT
and it is possible to derandomize it, essentially yielding the same bound deterministically,
cf. [8]. But paradoxically, the bound gets worse when the number of solutions increases.

(©2006 Delft University of Technology and the authors.

D. RoLF

The best known randomized bounds for 3-SAT is O(1.3238"), established in [6] by Iwama
and Tamaki. Their bound automatically improves to O(1.32266™) by modifying their anal-
ysis to use the latest bound for the PPSZ Algorithm that was presented in Corollary 14 in
[9]. However, we tune the bound to improve their result to O(1.32216™).

2. Preliminaries

Firstly, we make some common definitions. A literal is a variable or its negation. An
assignment (3 to a set of variables X maps each variable in X to 0 or 1. A literal [is
satisfied by 3 if X(I) = 1 if [is not negated resp. X (I) = 0 if [is negated. A clause is a
set of literals based on different variables. A clause is satisfied by some assignment [if at
least one literal is satisfied by 8. A formula is a set of clauses. A formula is satisfied by 3
if each clause is satisfied by 8. For a formula G, we define sat(G) to be the set of satisfying
assignments of G. A k-clause is a clause of size k and a k-CNF is a set of clauses of size
at most k. Finally, a 1-clause is commonly known as unit clause. For a set of clauses G,
let vars(G) be the set of variables occurring in G. Moreover, for G, we denote with ng the
number of variables in G.

We will not consider polynomial factors in complexity calculations because we always
expect an exponential expression which outweighs all polynomials for large problems, and
because the number of clauses is O(|vars(G)|*), polynomials that depend on the number
of clauses can also be replaced by some polynomial in |vars(G)|. Note that there could be
an exponential number of clauses in the formula if we allow the same clause to occur more
than once. However, in our setting, we do not allow repeated clauses.

For a CNF G and a literal [, we denote with G|; the formula obtained by making [true
in G, i.e. we remove all clauses that contain [and remove [from all clauses that contain it.

A clause pair (C1,C9) is a resolvent pair if they have only one variable v in common
whereby v € C; and v € Cy. Their resolvent R(C1,C5) is the clause (C7 — v) U (Cy —
7). Because any satisfying assignment of C; and Cy must also satisfy R(C1,Cs), adding
R(Cq,C%) to a CNF does not change its set of satisfying assignments.

s-bounded resolution means to add to G all resolvent pairs of clauses in G where the size
of the resolvent is at most s, over and over again until there is nothing more to do. Note
that, if s is a constant, this has polynomial time and space complexity in |vars(G)].

3. The Algorithm

As proposed by Iwama and Tamaki in [6], we combine both PPSZ and Schéning to a new
algorithm.

112

IMPROVED BOUND FOR THE PPSZ/SCHONING-ALGORITHM FOR 3-SAT

Algorithm 1. PPSZ(k-CNF G, integer d, assignment [3)

1 G := do k?bounded resolution on G

2 7 := permutation of vars(G) uniformly at random

3 for each variable v € vars(G) ordered by 7 {

4 if G contains a unit clause v resp. U

5 then Set the value of v in § to satisfy that unit clause

6 Choose G := G|, or G := G|y depending on ((v) =1 or B(v) = 0.
T}

8 return

Algorithm 2. SCH(k-CNF G, assignment [3)

1 repeat 3|vars(G)| times {

2 if 3 satisfies G then break

3 Select an arbitrary clause C' € G that is not satisfied by ¢

4 Choose a variable in C' uniformly at random and flip its value in 3
5}

6 return

Algorithm 3. COM B(k-CNF G,integer d)
[:= assignment to G drawn uniformly at random

1

2 g .= PPSZ(G,d,f)

3 if (3’ satisfies G then return [’
4§ :=SCH(G,B)

5 if (3 satisfies G then return [’
6

return null

4. The Analysis
4.1 Main Result

Iwama and Tamaki proved in [6] that the expected number of repetitions of COMB(G, d)
is 0(1.3238"¢) (resp. O(1.32266"¢) as noted in the introduction) for a satisfiable 3-CNF
formula G and some large but fixed d. We improve that result to:

Proposition 4.1. For a satisfiable 3-CNF formula G and some large but fized d, the ex-
pected number of repetitions of COMB(G,d) is O(1.32216"¢).

In Section 4.2, we show how to disassemble the analysis for the combined algorithm into
two separate ones. We provide bounds for both algorithms in Section 4.3 resp. Section 4.4.
After that, we combine the bounds for both algorithm to prove the main result in Section 4.5.
Finally, we consider some technical details in Section 5 and 6 that were left out in Section 4.4.

Jsam] 113

D. RoLF

4.2 Disassembling COMB

For a set of variables D C vars(G) and some assignment 3 of G, we define the set B(D, [3)
to be the set of all assignments that agree with § on at least the variables in D, i.e. the
subcube of the solution space where the variables in D are fixed to their values according
to B and the others take all possible combinations.

For example, assume vars(G) = {a,b,c,d}, D = {a,b} and let 3 assign 0 to all variables
in vars(G). Then B(D,) contains the following assignments:

From [9], we know:

Lemma 4.2. For a satisfiable k-CNF formula G, there exists a family of sets of variables
(Dg : B € sat(Q)) so that the family of the corresponding subcubes (B(Dg,3) : B € sat(G))
partitions the solution space (i.e. covering completely while being pairwise distinct). More-
over, it is true that

> oaPel=1,

Besat(G)

So, throughout the rest of this chapter, fix (Dg3) to be one of the families defined in the
preceding lemma, and let (Bg) be the corresponding subcubes.

For some * € sat(G), let B be drawn uniformly at random from § € Bg+. Then the
success probability of Algorithm COMB is at least

max{P[PPSZ : § € Bg-),P[SCH : € Bg-]}

where PPSZ and SCH denote the events that Algorithm PPSZ(G, d, 3) resp. SCH(G, f3)
return some satisfying assignment. For a random (3, the probability that 3 € Bg+ holds is
equal to 271251 Observe that 8 is still distributed uniformly on Bg-. To get the success
probability, we just sum up the success probabilities over all subcubes. Hence Algorithm
COMB succeeds with probability at least

Z 2_‘D,6*| . max{P[PPSZ . ﬁ S Bﬁ*],P[SCH ‘ ﬂ S Bg*]}
B*€sat(G)

> 5 min(G) max{P[PPSZ : § € Bg:|,P[SCH : f € Bg-]}.
*esat

The inequality follows because we know that » B*esat(Q) 2 1P+l = 1.

Therefore, to have a lower bound on the success probability, we can focus on computing
a lower bound for the success probability given a single satisfying assignment §* and its
subcube. Hence, fix some §* € sat(G), B = Bg«, D = Dg~, and N = vars(G) \ D to the
end of this chapter.

114

IMPROVED BOUND FOR THE PPSZ/SCHONING-ALGORITHM FOR 3-SAT

4.3 Bound for SCH

To bound the running time of his algorithm, Schoning proved the following theorem,
which bounds the success probability of Algorithm SCH in terms of the hamming distance
dist((, 5*) of some initial assignment 5 and some satisfying assignment 3*:

Theorem 4.3. Let G be a satisfiable k-CNF on n variables and 5% be a satisfying assign-
ment for F. For each initial assignment (3, the probability that Algorithm SCH(G,) finds
a satisfying assignment is at least (k — 1)~4stB5")—o(n)

Conditioning on 3 € Bg«, we know that 3 agrees with 8* on D, whereby the assignment
to N is uniformly distributed. So we have that

P[SCH : § € Bg-|
> E [(k — 1)~ 700) ; g e .|
=27°0¢) TT(P[B(v) = B*(v)] - (k = 1)° + P[B(v) # B*(v)] - (k — 1))

vEN

=200 TT(1/2- (k= 1)°+1/2- (k- 1))
vEN

=(2- g/k)—lN\—o(nc)
=(2- Q/k)—nGHD\—O(NG)
— 9—0k(na—|D])—o(ng)

where o, = logy(2 — 2/k).
Obviously, the success probability of Algorithm SCH increases with increasing | D|.

4.4 Bound for PPSZ

Let us define a nice distribution H. H is a nondecreasing, continuous mapping from [0, 1]
to [0,1] with H(0) = 0 and H(1) = 1. Moreover, it must be differentiable in all but at most
a finite number of points. Finally, its derivate A must be uniformly bounded on [0,1]. We
set

1
@zlmm%wmw

1
7H2/0 min{H(r)k_l,Rk(r)}dr

where Ry(r) is the smallest non-negative = that satisfies fi(z,7) = = with fi(z,r) =
(r+ (1 —r)x)k-L.
In Section 5, we will prove:

Lemma 4.4. The probability that Algorithm PPSZ finds a satisfying assignment given [3 €
Bg- 1s at least

9—Bu|D|=(1=vu)(ng—|D|)—eng—o(ng)

where € can be made arbitrary small positive by choosing d large enough.

Jsam] 115

D. RoLF

Of course, H is only a parameter in the analysis, it actually does not change the success
probability of Algorithm PPSZ. However, B and g are subject to H. Hence choosing H
affects the upper bound on the number of repetitions needed for Algorithm PPSZ in terms
of |D|/ng.

For k = 3, we are not able to find H in such a way that the success probability does not
decrease for small |D|. But, we will see that we can tweak H so that the bound does not
decrease too much until Schéning’s can take over.

4.5 Reassembling COM B

We saw that the bound for SCH and the bound for PPSZ depend on |D|, where the first
increases with increasing |D| and the second decreases with increasing |D| if H is chosen
appropriately. Hence we have to find the ‘worst’ |D|. Clearly, the worst case |D] is attained
when max{P[PPSZ : 3 € Bg-|,P[SCH : 3 € Bg+]} is minimized.

Assuming that we have a distribution H so that the success probability of PPSZ de-
creases with increasing |D|, we can compute the worst |D| since the success probability of
SCH increases with increasing |D|. Thus

max{P[PPSZ : § € Bs-),P[SCH : 3 € Bg-~|}
is minimized if
ox(ng — |D|) + o(ng) = Bu|D| + (1 — vu)(ne — |D|) + o(ne)

’D‘:TLG O'k—l—f—’}/]-[

+ o(ng
o — 1+ + B (nc)

holds.
We have proved:

Proposition 4.5. Let H be a nice distribution so that the bound for PPSZ decreases with
increasing |D|, and let

_ og—1l+m
o —1+vu + By

be well defined with 0 < § < 1. For a satisfiable k-CNF formula G, the success probability
of Algorithm COMB(G,d) is at least

2—Jk(1—6)ng—enc—o(ng)

where € can be made arbitrary small positive by choosing d large enough.

In Section 6, we will provide some H3 with Bp, < 0.90625, yg, > 0.61229, and thus d3 >
0.02927. Therefore, we have a lower bound of €2(1.322167"¢) for the success probability
of COMB for a satisfiable 3-CNF formula G. This finishes the proof of the main result,
Proposition 4.1.

116

IMPROVED BOUND FOR THE PPSZ/SCHONING-ALGORITHM FOR 3-SAT

5. Proof of the PPSZ Bound

At first, we have to recapitulate some technical features around the PPSZ algorithm, some
of which have been dismissed from the latest version of [9] because they are not necessary
anymore by their analysis, but we need them for this one.!

For some permutation m, let F(mw) denote the set of variables in N that have been
reduced to unit clauses during a run of Algorithm PPSZ. When § agrees with 5* on the
variables in vars(G) \ F(r), the algorithm will find 5*. Given that 8 € Bg,, we know that
G and B* already agree on D. Thus we have:

P[PPSZ:B € Bs]>2" K [21’ (ﬂ}

In order to have a good bound on the expectation, we will choose some subset I' of the
permutation space and compute instead:

P[PPSZ:B € Bg]>2"N Plrel]-E [2'““)' me r]

A placement « is a function that maps each variable to a real value in [0, 1]. With 7(«),
we denote the permutation obtained by ranking the variables of G' due to the values o takes
on them with some arbitrary rule for breaking ties. Hence a uniform distribution of «(.)
yields a uniform distribution of 7(«(.)).

Let v be a variable in N. For a set of placements I', we define Qr(r) to be the probability
that v is in F(w(«)) where « is a random placement from I' having «(v) = r. Then we
have:

1
Pv e F(r(a)) :ael'] > Qr = /0 Qr(r)dr

For every A € [0,1), we consider the set of placements I'fyx p to be the set of all
placements where for each r € [\, 1], at least H(r)|D| variables v € D have a(v) < r.
From Lemma 26 in the old version of [9], we know that:

Lemma 5.1. Define the recursive function Q%(r) by QY(r) = 0 and Q¥ (r) = fr(Q{ ' (r),r)
ford>0. ForT'=Tpp and r € [\ 1], it is true that

Qr(r) = min{H(r)* 1, Q{(r)} — p(H(r))

where p(x) =0 for x € {0,1} and p(x) = min {’r%d (ﬁ) ,1} forz € (0,1).

1. An older version of [9] is still available in the citeseer-cache at
http://citeseer.ist.psu.edu/paturi98improved.html.

Jsam] 117

http://citeseer.ist.psu.edu/paturi98improved.html

D. RoLF

We compute Qr for I' = I'y) p:
1
Qr = /0 Qr(r)dr
1
>//\ Qr(r)dr
1
> /0 (min{H (1)1, QA(r)} — p(H (1)) dr — A
1 1
> [mingr) Qb [o) dr = »

Paturi et al evaluated fol p(H (7)) dr to be o(1) when |D| > \/n as ng tends to infinity.
We omit the analysis for [D| < \/n here since it is very likely for less than /n. variables
to appear at the very beginning of the permutation = before all variable in V. For those,
Paturi et al showed that Qr > fol Q%(r). We conclude:

. k-1 ~d
QFZ/O min{H (r)" ", Q%(r)} dr — o(1) — A

In Proposition 3 in [7], they also show that Q{(r) converges to Ry (r) for every r € [0, 1].
Hence for every small positive €, there exists a large d. so that for every d > d, Q‘,f(r) >
Ry(r) — € is true for all r € [0,1]. We conclude that

1
Qr > /0 min{H(r)k_l, Ry(r) —e}dr — X —o(1)

1
> /0 min{H(r)kil, Ry(r)}dr —e—X—o(1)

is true.

For the reader familiar with the details of [9], it is noticable that we have just proved
a generalized version of Lemma 24 in the old version of [9]. In that lemma, they restricted
H(r) to be at most Ry (r)" 1. The corresponding lemma in the latest version, Lemma 13
in [9], does not make use of any function H at all. Nevertheless, comparing the details, the
new lemma looks like using H(r) = min{r - (k — 1)/(k — 2),1} in the old one. But, that H
violates the (unnecessary) restriction H(r) < Ry (r)/(*=1)_ Therefore, in the proof above,
we only unified both approaches.

Since we have computed Qr, we can consider the expected number of variables that will

be in F(7(a)):

E 2\F(7r(a))\ A FH,)\,D]
> 9E[|F(m(a)):a€l 1 x, D]

> 97H|N[—€¢[N|=AIN|—o(|N])

Thus we conlude:

P[PPSZ: (3 € Bg:| > Pla € Ty p]- 9—(1=7H)|N|—€|N|=A|N|—-o(|NT)

118

IMPROVED BOUND FOR THE PPSZ/SCHONING-ALGORITHM FOR 3-SAT

For Pla € 'y » p|, Paturi et al proved a nice lower bound, cf. Lemma 23 in the old
version of [9]:

Lemma 5.2. For A > 0, it is true that
Pla € Tyap] > 9—Bu|D|—o(|D])
Because € and A are both arbitrary small positive values, we have
P[PPSZ : 3 € Bg.] > 2~ PulPI=(1=vm)(ng=ID)=e'na—olng)

where € is some arbitrary small positive real. This finishes the proof of Lemma 4.4.

6. Optimized Nice Distributions for 3-SAT

By Proposition 4.5, the running time bound depends on the choice of some H which produces
a large §. Experiments showed that we should consider functions H where there is some
ro < 1/2 with H(r)? > R3(r) for r < ro and H(r)? < R3(r) for r > 7o. In this case, we
have:

70 1
v = / Rs(r)dr + / H(r)?dr
0 0

For r € [0,1/2], we have:

0 r—1

As a simple example, we consider the function Hy(r) = min{1,r/60} for some 6 € [1/2,1].
Firstly, for r € [0,1 — 8], we have Hg(r)? > R3(r). Secondly, for r € [1 — 6,6], we have
Hy(r)? < R3(r), and finally, for r € [0, 1], we have Hy(r)> = R3(r) = 1. Hence the following
holds:

1-6 0
VH, = / Rs(r)dr + H@(T)2 dr+1—-20
0

1-6
_ 6In(A)62+660 —46° —1
N 362
0
1 1
ﬂHG :/0 alogQ <9) dr
= —log,(0)

We insert this into the formula for ¢ in Proposition 4.5 and compute the root of the
derivate with respect to 6 to get the optimal 6 = 0.5109968782. For this 0, we get By, <
0.9686136176, vr, > 0.613242472, and thus 0 > 0.28368. This yields an upper bound of
0(1.3225"¢) for the expected number of repetitions of Algorithm COMB.

Jsam] 119

D. RoLF

But, we can do better. In order to find an optimal H, we can set up a continuous function
H consisting of linear pieces and try to optimize it until we hit the best result. Experiments
showed that the resulting curve is perfectly resembled by the following function, with some
appropriate parameters a and b:

Hr) r/6 if ref0,1-0)
T)=
1—(—aln(r)® ifrel—0,1]
dH 1/60 if re[0,1—-6)
h(r)=—-=1_, Came
dr 7bT(7’) 1f7“€[1f9,1)

H(r) must be continuous, and naturally, it should also be differentiable completely.
Moreover, we propose that H(r) should hit R3(r)'/? exactly when the linear part finishes,
i.c. at 1 — @ since R3(r)"/2 =r/(1 —r) for r € [0,1/2]. Using these constraints, i.e.

H(1—6)=R3(1—6)/? and
h(1—6) =1/6,

we can eliminate a and b:

20—1 1(12(;;(19 i)
a:—(9_> (In(1—0))"*

,_ (-1
N 260 —1

For the antiderivative of h(r)logh(r), we have

_TlogH

Bi(r) = 7 +C

for r € [0,1 — 6) and

~(=alnr)? (blnr =62 4+ 1+ (b+) In (— Sopete)) C
+

rinr
Ba(r) = (b+02)In2

for r € [1 —60,1). Observe that S2(r) is not defined for » = 1. However, when r approaches
17, then (B2(r) tends to C. We have:

1
By :/ h(r)log h(r) dr
0
= f1(1—=0) = 51(0) + rl_if{l_ Ba(r) — B2(1 —0)
= f1(1—0) — 51(0) — B2(1 - 0)
For the antiderivative of H(r)?, we have

Yo(r) =r—2T(1+b,—Inr)-a” +T(1+2b,—In7) - a®

120

IMPROVED BOUND FOR THE PPSZ/SCHONING-ALGORITHM FOR 3-SAT

for r € [1 —60, 1] where I'(a, x) is the (upper) incomplete gamma function. For r € [0,1—6),
we need the antiderivative of R3(r), which is

rP—r—1

’71(7‘) = 2111(]. — T) + ﬁ + C
Since H(r)? > R3(r) for r € [0,1 — 6] and H(r)? < R3(r) for r € [0, 1], we conclude:
1-6 1
Yo = Rs(r)dr + H(r)?dr
0 1-6

=711 =60) =71(0) +12(1) —72(1 - 0)

To find 6 so that ¢ in Proposition 4.5 is maximized, we just insert the terms for vz and
B in the formula for § and find the optimum with respect to §. Numerical optimization
yields that ¢ is maximized using:

f# = 0.5111885981...

a = 1.1437170697...

b = 15.635592073...
B < 0.9062404894
vu > 0.6122939734
dpr > 0.0292762355

203(1=01) < 13221508262
This yields an upper bound of 0(1.32216"¢) for the expected number of repetitions of
Algorithm COMB.
Acknowledgements
The author would like to thank Mario Szegedy and the unknown referees for valuable
remarks.
References

[1] U. Schéning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 410-414, 1999.

[2] R. Schuler, U. Schoning, and O. Watanabe. A probabilistic 3-SAT algorithm further
improved. In: Proceedings of the 19th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), 192-202, 2002.

[3] D. Rolf. 3-SAT € RTIM E(1.32971™). Diploma thesis, Department Of Computer Sci-
ence, Humboldt University Berlin, Germany, 2003.

[4] S. Baumer and R. Schuler. Improving a probabilistic 3-SAT algorithm by dynamic search
and independent clause pairs. In: Proceedings of the 6th International Conference on
Theory and Applications of Satisfiability Testing (SAT), 150-161, 2003.

Jsam] 121

[5]

122

D. RoLF

D. Rolf. 3-SAT € RTIME(0O(1.32793™)) - improving randomized local search by initial-
izing strings of 3-clauses. Electronic Colloguium on Computational Complexity (ECCC),
2003.

K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In: Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 328-328, 2004.

R. Paturi, P. Pudlak, M.E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 628-637, 1998.

D. Rolf. Derandomization of PPSZ for Unique-k-SAT. In: Proceedings of the Sth
International Conference on Theory and Applications of Satisfiability Testing (SAT),
216-225, 2005.

R. Paturi, P. Pudlak, M.E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. Journal of the Association for Computing Machinery 52(3): 337-364, 2006.

	Introduction
	Preliminaries
	The Algorithm
	The Analysis
	Main Result
	Disassembling COMB
	Bound for SCH
	Bound for PPSZ
	Reassembling COMB

	Proof of the PPSZ Bound
	Optimized Nice Distributions for 3-SAT

