
Journal on Satisfiability, Boolean Modeling and Computation 1 (2006) 89-110

Extending Existential Quantification

in Conjunctions of BDDs

Sean Weaver∗ fett@gauss.ececs.uc.edu

John Franco∗ franco@gauss.ececs.uc.edu

John Schlipf∗ schlipf@ececs.uc.edu

ECECS,

University of Cincinnati,

Cincinnati, OH 45221-0030, USA

Abstract

We introduce new approaches intended to speed up determining the satisfiability of
a given Boolean formula ϕ expressed as a conjunction of Boolean functions. A common
practice in such cases, when using constraint-oriented methods, is to represent the functions
as BDDs, then repeatedly cluster BDDs containing one or more variables, and finally
existentially quantify those variables away from the cluster. Clustering is essential because,
in general, existential quantification cannot be applied unless the variables occur in only a
single BDD. But, clustering incurs significant overhead and may result in BDDs that are
too big to allow the process to complete in a reasonable amount of time.

There are two significant contributions in this paper. First, we identify elementary
conditions under which the existential quantification of a subset of variables V ′ may be
distributed over all BDDs without clustering. We show that when these conditions are
satisfied, safe assignments to the variables of V ′ are automatically generated. This is
significant because these assignments can be applied, as though they were inferences, to
simplify ϕ.

Second, some efficient operations based on these conditions are introduced and can be
integrated into existing frameworks of both search-oriented and constraint-oriented methods
of satisfiability. All of these operations are relaxations in the use of existential quantification
and therefore may fail to find one or more existing safe assignments.

Finally, we compare and contrast the relationship of these operations to autarkies and
present some preliminary results.

Keywords: satisfiability, autarky, safe assignment, inference

Submitted November 2005; revised May 2006; published June 2006

1. Introduction

We are interested in determining the satisfiability of arbitrary Boolean formulae which are
expressed as conjunctions (logical “and”) of Boolean functions. Boolean formulae, arising
from real applications, are often expressed as conjunctions of Binary Decision Diagrams
(BDDs). BDDs are described in detail in section 2.3. The satisfiability of a formula can

∗ Supported by the U.S. Department of Defense under contracts MDA904-99-C-4547 and MDA904-02-C-

1162.

c©2006 Delft University of Technology and the authors.

S. Weaver et al.

be determined using either a search-oriented or constraint-oriented method. Most search-
oriented methods used in practice employ backtracking as a variation of the DPLL algo-
rithm [6]. Constraint-oriented methods primarily intend to create a monolithic BDD which
represents the same function as the conjunction; if such a BDD is created, all paths to its
1 node represent satisfying solutions.

The main ideas presented in this paper came about while looking at an operation,
called existential quantification, that is critical to the constraint-oriented method. Let v be
a Boolean variable in the support of a Boolean function ϕ. Denote the assignment of value
True (False) to variable v by v 7→ True (v 7→ False), respectively. Let ϕ |v (ϕ |v) denote
the result of the assignment v 7→ True (v 7→ False), respectively. Existentially quantifying
v away from ϕ means replacing ϕ with ϕ |v ∨ϕ |v. Existential quantification is described
in more detail in section 2.4. It is primarily used during the process of clustering BDDs to
remove variables which occur in a single BDD and is the essential component of the early
quantification method, first proposed in [5] and later specifically applied to satisfiability
in [11]. Since then, the method of early quantification has been used numerous times (for
example, see [10], [14], and [7]). It is generally thought that the existential quantification
of a variable, since it is not distributive over a conjunction of functions, can be applied only
when the variable occurs in just one BDD of the conjunction. We show that this is not
always the case.

Our results depend on the notion of safe assignment which is formalized as follows.
Note, if ϕ1 and ϕ2 are Boolean functions, then we use ϕ1 ≡ ϕ2 to mean “ϕ1 and ϕ2 are
logically equivalent” and ϕ1 → ϕ2 to mean ϕ1 ∨ ϕ2.

Definition 1. The assignment v 7→ True is safe in ϕ if any assignment satisfying ϕ |v also
satisfies ϕ |v, i.e. if (ϕ |v→ ϕ |v) ≡ True, and the assignment v 7→ False is safe in ϕ if
(ϕ |v→ ϕ |v) ≡ True.

The next theorem shows why we use the term safe to describe assignments of Defini-
tion 1.

Theorem 1.

1. If v 7→ True is safe in ϕ then ϕ |v is satisfiable if and only if ϕ is satisfiable.

2. If v 7→ False is safe in ϕ then ϕ |v is satisfiable if and only if ϕ is satisfiable.

Proof. Consider case 1. ϕ is satisfiable if and only if ϕ |v ∨ϕ |v is satisfiable. Since
ϕ |v→ ϕ |v≡ True then (ϕ |v ∨ϕ |v) ∧ (ϕ |v→ ϕ |v) = ϕ |v and ϕ is satisfiable if and only if
ϕ |v is satisfiable. A similar argument applies to case 2.

From Theorem 1 it is clear that if an assignment to v is safe, it may be applied instead
of existentially quantifying away v. However, we do not propose to use safe assignments
to replace existential quantification. Rather, we develop new tools which help the early
quantification method by reducing on quantifications before a variable has been totally
clustered into a single BDD.

In this article we present some elementary conditions under which a set of variables
occurring in multiple BDDs may be existentially quantified away without clustering (that
is, conjoining) those BDDs. Moreover, in the process of finding whether or not a set of

90

Extending Existential Quantification

variables may be existentially quantified away, we also find a safe assignment for those
variables. Thus, our results allow the choice of existentially quantifying or safely assigning.
We will show that sometimes one is preferred to the other. The operations we present for
finding safe assignments can be used by constraint- or search-oriented methods.

Andersson et.al. [2] identify the same notion of safe assignment which they call variable
instantiation. We believe the following points highlight the differences between their work
and ours:

1. The method proposed in [2] requires two tests on a single variable: for a safe True and
safe False value. Our method subsumes both tests in a single, distributed operation
which may automatically reveal safe assignments. We note that for both methods
it is possible that existing safe assignments are not revealed depending on how the
formula is represented.

2. Our method is able to consider several variables simultaneously, sometimes finding a
safe assignment that cannot be found considering those variables individually. The
method proposed in [2] applies to single variables.

3. Our method distributes computation over many constraints, without conjoining them.
In many cases this avoids having to deal with an unacceptably large intermediate
constraint that may be a by product of the conjunction. It also allows the possibility of
revealing a safe assignment before computation ends. The method stated in [2] creates
a single, conjoined constraint before trying to reveal a safe assignment. Therefore,
this method does not terminate early and may lose efficiency to large intermediate
constraints.

As reported in [2], significant improvements to traditional BDD and DPLL techniques are
possible when variable instantiation is employed. Therefore, we choose not to pay significant
attention to such comparisons here and focus instead on the nature of our optimizations.
Points 1., 2., 3., above are illustrated by examples given near the end of this article.

2. Background

2.1 Satisfiability

The question of determining whether there exists an assignment of values (True or False)
to input variables causing a Boolean formula to evaluate to True is called the Satisfiability
problem (or SAT for short). A solution, or satisfying assignment, to a Boolean formula is
an assignment of values to variables which causes the conjunction to evaluate to True. If a
solution exists the formula is said to be satisfiable; if no solution exists the formula is said
to be unsatisfiable.

2.2 Conjunctive Normal Form

Search-oriented methods such as DPLL [6] have historically been intended for formulae in
Conjunctive Normal Form (CNF): that is, a conjunction of Boolean functions, each of which
is expressed as a simple disjunction of literals. Although few real problems are naturally
expressed in CNF, it is well known that any propositional formula can be expressed as a CNF

91

S. Weaver et al.

formula with only a constant factor increase in size, but perhaps requiring the introduction of
considerably many variables that have nothing substantial to do with the given formula. An
advantage of search-oriented methods is they can be terminated without exploring an entire
search space if a solution is encountered early. Search-oriented methods originally suffered
from having rather large search spaces due to their inherent tree-like structure. However,
recent advances have replaced tree-like search spaces with DAG-like search spaces resulting
in much better general performance, particularly on unsatisfiable inputs. A fundamental
operation of search-oriented methods is assigning a value to a variable.

2.3 Binary Decision Diagrams

In contrast to search-oriented methods, constraint-oriented methods maintain constraint
structures and employ operations that combine those structures until a final constraint
structure is produced. That structure determines the satisfiability of the given formula. The
most common constraint structure used by these methods is the Binary Decision Diagram
(BDD).

BDDs were introduced by Lee [12] and Akers [1]. A BDD is a rooted directed acyclic
graph with nodes labeled by names of input variables, except for two special leaf nodes
labeled 1 and 0, corresponding to True and False, respectively. All nodes, except for the
two leaf nodes, have two outgoing edges, one labeled 1 and one labeled 0. The special nodes
have no outgoing edges.

A BDD is a compact representation of a Boolean function on a particular ordering of
input variables. Every path from root to leaf node represents an assignment of values to
input variables, where each variable associated with a node on the path is assigned the
value specified by the label of the edge taken on the path out of that node. A path ending
in the 1 node causes the function to evaluate to True, all other paths cause the function
to evaluate to False. In formulas of the type we consider in this paper there is one BDD
per Boolean function and the ordering of variables is arbitrary and the same for all those
BDDs. For convenience we will use comparisons on variables to indicate the relative order
of those variables. Thus, v1 > v2 will mean that variable v1 is “higher” in order than v2.
In other words, if both v1 and v2 associate with nodes on a BDD path from root to leaf,
variable v1 is considered to be closer (maybe the same as) the root. Also, v1 = v2 will mean
that v1 and v2 are the same variable.

We are concerned with a particular form of BDDs called Reduced Ordered Binary Deci-
sion Diagrams (ROBDDs) [4]. ROBDDs are canonical: that is, for every Boolean function
and fixed variable ordering, there is a unique logically equivalent ROBDD. In conformance
with the literature, from now on we will use the term BDD in place of ROBDD.

There exist operations for building and manipulating BDDs. Many have been incor-
porated in the well-known suite of operations that has been available for some time in
BDD packages such as CUDD [16]. The results of this paper use the following subset
of BDD operations: tbr, fbr, var, and, or, not, ite and ite constant. The tbr

(“true-branch”) and fbr (“false-branch”) operations take a BDD b with root variable v, as
input and return b |v and b |v, respectively. The var operation takes a Boolean variable v1

as input and returns a BDD representing v1. The and and or operation takes two BDDs
b1 and b2 as input and returns a BDD representing b1 ∧ b2 and b1 ∨ b2, respectively. The

92

Extending Existential Quantification

not operation takes a BDD b as input and returns b. The ite (“if-then-else”) operation
takes as input three BDDs b1, b2, and b3, and returns (b1 ∧ b2) ∨ (b1 ∧ b3). As used in this
paper, the ite constant operation takes as input three BDDs and returns False if the
result of the ite operation, given the three input BDDs, is False and returns True oth-
erwise. The ite constant operation does not build a BDD, but only simultaneously and
non-exhaustively traverses the three input BDDs. We use ite constant below to make
algorithms more efficient. These basic BDD operations are introduced and discussed in
more depth in [3].

2.4 Existential Quantification

Both search-oriented and constraint-oriented methods of satisfiability use Boolean existen-
tial quantification. In this paper we use existential quantification to motivate our algo-
rithms. In rough analogy to existential quantification in first order logic, for some variable
v and Boolean function b depending on v,

∃v(b) =def b |v ∨b |v .

The traditional aim of existential quantification is to remove a variable from a Boolean
formula without affecting its satisfiability. Let {b1, b2, · · · , bm} be a set of Boolean functions
and suppose variable v appears in only one of them, say bj . Then

∃v(b1 ∧ · · · ∧ bm) ≡ ∃v(bj) ∧ b1 ∧ · · · ∧ bj−1 ∧ bj+1 ∧ · · · ∧ bm. (1)

The right side of (1) can be computed in time proportional to the size of bj and is therefore
the preferred means of implementing existential quantification. In other words, variable v
is existentially quantified away from bj before conjoining {b1, b2, · · · , bm}.

The obvious extension of this idea to multiple BDDs is unwieldy. Suppose variable
v occurs in several BDDs, w.l.g. say b1, ..., bn, n ≤ m. To be able to compute the right
side of (1), one might first cluster {b1, ..., bn}: that is, replace them with a single BDD
b = b1∧, ...,∧bn. Then existentially quantify v away from b. The problem with clustering
is the size of b may become, in the worst case, exponential in the number of BDD nodes
of b1, ..., bn. Despite this, constraint-oriented methods existentially quantify variables away
in this manner, aiming in the end to create a single, final monolithic BDD with function-
ality equivalent to that of the given formula. Sometimes, these methods fail due to the
exponential explosion of the intermediate BDDs.

We show that clustering BDDs can be avoided in some cases with the added benefit of
being able to safely assign values to some variables. This results in bypassing the exponential
blowup that may be incurred by conjoining BDDs and, at the same time, simplification of
the formula through variable assignments. Details are in the following sections.

In what follows, b is used to represent a Boolean function and a BDD, interchangeably,
and ϕ is used to represent a Boolean formula, a conjunction of Boolean functions, and a
conjunction of BDDs, interchangeably.

3. Single Variable Safe Assignments

This section presents some elementary conditions under which a single variable may be
safely assigned a value in a Boolean formula, even if it occurs in multiple functions. We

93

S. Weaver et al.

illustrate these results by introducing an operation called safe assign which can find a safe
assignment, if one exists, to a given variable v occurring in a given conjunction of Boolean
functions ϕ, where all functions of ϕ are expressed as BDDs. As stated earlier, one way to
a safely remove v from ϕ is to existentially quantify it away from ϕ. However, in general, v
will be in support of many BDDs of ϕ and existential quantification may, in this case, result
in an impractically large intermediate formula because all those BDDs must be clustered in
order to apply the operation (Section 2.4). On the other hand, no clustering is required in
order for safe assign to be applied.

Sometimes clustering BDDs is desired because doing so can increase the number of safe
assignments that can be found using safe assign, even if the variables with safe assign-
ments are in support of more than one BDD after clustering. Thus, using clustering in
conjunction with safe assign we can accomplish at least as much as existential quantifi-
cation with a lower risk of producing overly large intermediate formulas.

Finally, we point out that the computation of safe assign is distributed over only
those BDDs which contain v. This ensures the efficiency of safe assign. Conditions under
which multiple variables may be safely assigned, even over multiple functions, are given in
Section 4. The remainder of this section lays the groundwork for that section.

Consider, first, the special case where a variable v occurs in only one Boolean function
b. If (b |v≡ ∃v(b)) or (b |v≡ ∃v(b)) then v can be safely assigned the value True or False,
respectively, instead of being existentially quantified away. The proof of this uses Lemmas 1
and 2. Although a shorter proof exists, we prefer to present the two Lemmas because their
proofs reveal some insights which get used in subsequent proofs. In the proof and elsewhere
in the article ϕ is used to denote the complement of Boolean function ϕ.

Lemma 1. Given a conjunction of Boolean functions ϕ = b1 ∧ · · · ∧ bm and variable v

occurring in one or more Boolean functions of ϕ, let ϕ1 be the conjunction of all Boolean
functions in ϕ which contain v. Let ψv = (ϕ1 |v) ∧ (ϕ1 |v). Let ψv = (ϕ1 |v) ∧ (ϕ1 |v).

1. If ψv ≡ False, then ϕ |v is satisfiable if and only if ϕ is satisfiable.

2. If ψv ≡ False, then ϕ |v is satisfiable if and only if ϕ is satisfiable.

Proof. We consider only case 1; case 2 is analogous. Re-index the functions of ϕ so that
ϕ1 = b1 ∧ · · · ∧ bn where n ≤ m. By definition,

ϕ |v= ϕ1 |v ∧bn+1 ∧ · · · ∧ bm.

Existentially quantifying away v from ϕ gives

∃v(ϕ) ≡ (ϕ1 |v ∨ϕ1 |v) ∧ bn+1 ∧ · · · ∧ bm

which is well known to be satisfiable if and only if ϕ is satisfiable.

ϕ |v ⊕∃v(ϕ) ≡ (ϕ |v ∧∃v(ϕ)) ∨ (ϕ |v ∧ ∃v(ϕ))

≡ False ∨ (ϕ1 |v ∧bn+1 ∧ · · · ∧ bm) ∧

(ϕ1 |v ∨ϕ1 |v) ∧ (bn+1 ∧ · · · ∧ bm)

≡ (ϕ1 |v) ∧ (ϕ1 |v) ∧ (bn+1 ∧ · · · ∧ bm)

≡ ψv ∧ (bn+1 ∧ · · · ∧ bm). (2)

94

Extending Existential Quantification

From (2), if ψv is False, then ϕ |v≡ ∃v(ϕ). Therefore, if ψv ≡ False, then ϕ |v is satisfiable
if and only if ϕ is satisfiable.

By Lemma 1, if ψv ≡ False (respectively, ψv ≡ False), then assigning True(resp.,
False) to v will cause ϕ to reduce to ∃v(ϕ), so the satisfiability of ϕ is not affected. We
emphasize that the value of v is not necessarily inferred, yet it may be safely assigned as is
shown by Lemma 2.

Lemma 2. Given a conjunction of Boolean functions ϕ = b1 ∧ · · · ∧ bm and variable v

occurring in one or more Boolean functions of ϕ, let ϕ1 be the conjunction of all Boolean
functions in ϕ which contain v. Let ψv = (ϕ1 |v) ∧ (ϕ1 |v). Let ψv = (ϕ1 |v) ∧ (ϕ1 |v).

1. Every assignment of values to variables of ϕ1 |v satisfying (ϕ1 |v→ ϕ1 |v) falsifies ψv.

2. Every assignment of values to variables of ϕ1 |v satisfying (ϕ1 |v→ ϕ1 |v) falsifies ψv.

Proof. For case 1: ϕ1 |v→ ϕ1 |v =def ϕ1 |v ∨ ϕ1 |v ≡ (ϕ1 |v ∧ϕ1 |v) ≡ ψv. Case 2 is
analogous.

Theorem 2. Let ϕ, ϕ1, and v be defined as in Lemmas 1 and 2. If ϕ1 |v≡ ∃v(ϕ1) then
v 7→ True is safe in ϕ. If ϕ1 |v≡ ∃v(ϕ1) then v 7→ False is safe in ϕ.

Proof. If ϕ1 |v≡ ∃v(ϕ1) then, for every assignment to variables of ϕ1 |v, (ϕ1 |v→ ϕ1 |v).
It follows from Lemmas 1 and 2 that ϕ |v is satisfiable if and only if ϕ is satisfiable and
v 7→ True is safe. A similar statement shows when v 7→ False is safe.

If Boolean functions are represented as BDDs, then the safe assign0 operation shown
in Figure 1 may be used to find a safe assignment to a single variable occurring in one
BDD. Once a safe assignment is found, standard BDD operations can be used to simplify ϕ
accordingly. (As noted in Section 2.3, the calls to ite constant in Algorithm safe assign0
are optimizations.) The proof of correctness of this operation relies on details contained in
the proof of Lemma 1 and of 2. This is presented as Lemma 3.

Lemma 3. Let b be any BDD, and v be any variable. Then safe assign0(b, v) returns
one of the following:

1. True if v does not occur in b,

2. a BDD consisting of a root corresponding to v, and leaves 0 and 1 (the returned BDD
specifies a safe assignment for v),

3. False if v occurs in b but no safe assignment exists for v in b.

Proof. By induction on the height of recursion.
At the bottom level, True is all that is returned by safe assign0 because, necessarily,

v cannot be the root of a True or False BDD, so the first line of safe assign0 is executed
in this case. Therefore, at the bottom level, v does not occur in the input BDD (parameter
b) and True is returned so hypothesis 1. only applies and is satisfied.

Suppose the hypotheses are true up to height k from the bottom. There are three cases
to consider.

95

S. Weaver et al.

1. Suppose v does not exist at or below the root of the input BDD: There are
two subcases.

(a) The index of v is greater than the index of the root variable: The third
line in safe assign0 (which tests for this) returns True. Hypothesis 1. applies
only and is satisfied.

(b) The index of v is less than that of the root variable: Then safe assign0 returns
the logical and of calls to safe assign0 on the two branches of the root. By the
induction hypothesis these calls return True. Thus, safe assign0 returns True.
Hypothesis 1. applies only and is satisfied.

2. Suppose v exists in the input BDD but is not at its root: (if v does not exist in that
portion of b then safe assign0 would have returned). There are three possible out-
comes as return values from calls of safe assign0 on the true and false branches from
the root.

(a) At least one value is False: Then safe assign0 returns False. By the induc-
tion hypothesis, this happens if there is no safe assignment to v in either the left
BDD or the right BDD. Hence there cannot be a safe assignment for v in the
input BDD and hypothesis 3. applies only and is satisfied.

(b) One value is True and the other is a safe assignment for one branch:
Then safe assign0 returns the logical and of True and a safe assignment for v
in a branch below the root. This is also a safe assignment for the input BDD.
Through implied BDD reductions, the logical and of True and a simple BDD is
the simple BDD so the assignment is returned as a BDD with root and leaves
only and, by the induction hypothesis, the root must be v. Therefore, hypothesis
2. applies only and is satisfied.

(c) Two BDDs specifying opposite assignments to v are returned: The logical and of
these is False and that is what safe assign0 returns. Since v occurs in b, there
cannot be both True and False safe assignments to v existing in b. Therefore,
the return value of False satisfies hypothesis 3. in this case.

(d) Two BDDs specifying the same assignment to v are returned: The logical and of
a BDD with itself is said BDD and that is what safe assign0 returns. This BDD
has a root and leaves only and, by the induction hypothesis, the root must be
v. This is also a safe assignment for the input BDD. Therefore, hypothesis 2.
applies only and is satisfied.

3. Suppose v is the root of the input BDD: safe assign0 returns at line 7 the value of
ite(var(v), not(e), not(r)). Due to the use of ite constant (see Section 2.3)
and line 6 of safe assign0, e=False if (b |v)∧ (b |v) is False and e=True otherwise;
and, from ite constant and line 5 of safe assign0, r=False if (b |v)∧(b |v) is False
and r=True otherwise. Now consider the four sub-cases on values of e and r.

(a) e=False and r=False: v does not exist in b and any assignment is safe. The
value returned is ite(var(v), True, True) which is True as needed to satisfy
hypothesis 1.

96

Extending Existential Quantification

Input: A BDD b and a variable v.

Output: Returns: True if v does not occur in b;

else a safe assignment for v, if one exists;

else False.

BDD safe assign0(BDD b, variable v) {

if b is True or False then return True // v is not in b

let vb = the root variable of b

if v > vb then return True // v is not in b

else if vb = v then { // v is the root of b

let BDD r := ite constant(tbr(b), not(fbr(b)), False)

let BDD e := ite constant(not(tbr(b)), fbr(b), False)

return ite(var(v), not(e), not(r))

}
let BDD r := safe assign0(tbr(b), v)

if r = False then return False

else return and(r, safe assign0(fbr(b), v))

}

Figure 1. Recursive pseudo-code, for finding a safe assignment for v in a single BDD.

(b) e=True and r=True: then Lemma 1 does not hold and no safe assignment can
be determined for v. The value returned is ite(var(v), False, False) which
is False as needed to satisfy hypothesis 3.

(c) e=False and r=True: by Lemma 1 it is safe to assign True to v. The value
returned is a BDD with root at v and the true branch incident with leaf 1 and
the false branch incident with leaf 0 as needed to satisfy hypothesis 2.

(d) e=True and r=False: by Lemma 1 it is safe to assign False to v. The value
returned is a BDD with root at v and the true branch incident with leaf 0 and
the false branch incident with leaf 1 as needed to satisfy hypothesis 2.

The complexity of safe assign0 is linear in the number of nodes of b.
We are now ready to consider the general case where v occurs in more than one Boolean

function.
Theorem 3 below provides the means to avoid clustering and instead distribute the

computation of ψv and ψv over all Boolean functions depending on v. The cost of improved
efficiency is that a safe assignment may not be always be determined via Theorem 3. The
theorem depends on the next lemma.

Lemma 4. Given a conjunction of Boolean functions ϕ = b1 ∧ · · · ∧ bm and a variable v
occurring in one or more Boolean functions of ϕ, let ϕ1 be the conjunction of all Boolean

97

S. Weaver et al.

functions in ϕ which contain v. Without loss of generality, suppose ϕ1 = b1 ∧ · · · ∧ bn where
n ≤ m. Let βv = (b1 |v∧b1 |v)∨· · ·∨(bn |v∧bn |v). Let βv = (b1 |v ∧b1 |v)∨· · ·∨(bn |v ∧bn |v).

1. If βv ≡ False, then ϕ |v is satisfiable if and only if ϕ is satisfiable.

2. If βv ≡ False, then ϕ |v is satisfiable if and only if ϕ is satisfiable.

Proof. We consider only case 1; case 2 is analogous. From Lemma 1, if ψv ≡ False then
ϕ |v is satisfiable if and only if ϕ is satisfiable. So, we show that βv ≡ False implies ψv ≡
False.

βv → ψv ≡ βv ∨ (ϕ1 |v) ∧ (ϕ1 |v)

≡ (b1 |v ∧ b1 |v) ∨ · · · ∨ (bn |v ∧ bn |v) ∨

((b1 |v ∧ · · · ∧ bn |v) ∧ (b1 |v ∧ · · · ∧ bn |v))

≡ (b1 |v ∧ b1 |v) ∨ · · · ∨ (bn |v ∧ bn |v) ∨

(b1 |v ∧ · · · ∧ bn |v) ∨ (b1 |v ∧ · · · ∧ bn |v)

≡ (b1 |v) ∨ · · · ∨ (bn |v) ∨ (b1 |v ∧ · · · ∧ bn |v) ∨ (b1 |v) ∨ · · · ∨ (bn |v)

≡ (b1 |v ∧ · · · ∧ bn |v) ∨ (b1 |v ∧ · · · ∧ bn |v) ∨ (b1 |v) ∨ · · · ∨ (bn |v)

≡ True. (3)

Every assignment of values to variables of βv which falsifies βv also falsifies ψv. Therefore,
if βv ≡ False, then ϕ |v is satisfiable if and only if ϕ is satisfiable.

Lemma 4 is the basis for the following theorem.

Theorem 3. Given a conjunction of Boolean functions ϕ = b1 ∧ · · · ∧ bm and variable v
occurring in one or more Boolean functions of ϕ, let ϕ1 be the conjunction of all Boolean
functions in ϕ which contain v. Without loss of generality, suppose ϕ1 = b1 ∧ · · · ∧ bn where
n ≤ m.

1. If for every 1 ≤ j ≤ n, (bj |v ∧ bj |v) ≡ False, then ϕ |v is satisfiable if and only if ϕ
is satisfiable.

2. If for every 1 ≤ j ≤ n, (bj |v ∧bj |v) ≡ False, then ϕ |v is satisfiable if and only if ϕ
is satisfiable.

Proof. We consider only case 1; case 2 is analogous. From Lemma 4, if βv ≡ False then
ϕ |v is satisfiable if and only if ϕ is satisfiable. For βv to be False, every term in βv must
be False. Therefore, if ∀1≤j≤n, (bj |v ∧ bj |v) ≡ False, then ϕ |v is satisfiable if and only if
ϕ is satisfiable.

If Boolean functions are represented as BDDs, then the safe assign operation of Fig-
ure 2 may be used to find a safe assignment to a single variable occurring in multiple
BDDs. The operation combines both cases of Theorem 3 and entails the application of
safe assign0 (see Figure 1) to every BDD containing v, individually. If the same assign-
ment for v is returned by every resulting BDD, then that assignment is safe for v; otherwise,

98

Extending Existential Quantification

Input: A set of BDDs ϕ = {b1, · · · , bm} and a variable v.

Output: True if v does not occur in ϕ,

a safe assignment to variable v, if one exists,

otherwise, False.

assignment safe assign(ϕ, v)

let BDD safeVal := True

for(j := 1 to m) {
safeVal := and(safe assign0(bj, v), safeVal)
if safeVal = False then return False

}
return safeVal

}

Figure 2. Pseudo-code to search for a safe assignment to a variable in more than one BDD.

nothing can be said about v. The implementation may return before considering all func-
tions of ϕ1 because a safe assignment can be found only if every term of either βv or βv is
False. Therefore, in some cases little work is done by safe assign.

We remark that the thrust of this section parallels ideas arising from generalizations
of the pure literal rule [6]: a literal whose complement does not exist in a conjunction of
clauses is called pure and any pure literal can be assigned the value True for all extensions
of the current assignment without affecting the correctness of the search.

4. Multiple Variable Safe Assignments

This section presents some elementary conditions under which a subset of variables may be
safely assigned values in a formula expressed as a conjunction of Boolean functions. We
also introduce an operation called safe search that is able to find safe assignments for a
subset of variables when the Boolean functions are expressed as BDDs.

Finding safe assignments for subsets of variables provides an additional, potentially
useful tool for both constraint-oriented and search-oriented SAT solving. For example, if
all variables of V ′ are in a single BDD, a constraint-oriented method might existentially
quantify away all variables in V ′, individually but, if a safe assignment M ′ is known for V ′,
it may be advantageous to apply some or all of those assignments to variables of V ′ instead
of existentially quantifying all of them away since assignments will reduce an expression to a
simpler one. Perhaps surprisingly, we show that M ′ can be computed without determining
whether ϕ |M ′≡ ∃V ′(ϕ) for all possible assignments to V ′.

First, we need to say what we mean by a safe assignment for a subset of variables.

Definition 2. Let V be the set of Boolean variables occurring in ϕ, let V ′ be a subset of V ,
suppose |V ′| = k, let ϕ1 be the conjunction of all Boolean functions of ϕ containing at least
one variable in V ′, and let M′ = {M ′

1, · · · ,M
′
2k} be the set of all possible truth assignments

99

S. Weaver et al.

to the variables in V ′. For all 1 ≤ i ≤ 2k define

ϕ̂i = (ϕ1 |M ′

1
∨ · · · ∨ ϕ1 |M ′

i−1
∨ϕ1 |M ′

i+1
∨ · · · ∨ ϕ1 |M ′

2k
).

Extending Definition 1 to multiple variables, we say M ′
i is a safe assignment for V ′ in ϕ if

(ϕ̂i → ϕ1 |M ′

i
) ≡ True.

If (ϕ̂i → ϕ1 |M ′

i
) ≡ True then applying M ′

i to ϕ will not affect the Satisfiability of ϕ
since the variables in V ′ exist only in ϕ1. Therefore, Definition 2 is sufficient to encapsulate
the concept of ‘safe’ assignments for a subset of variables.

We show how to find safe assignments for variables of V ′ collectively for two cases: 1)
the variables of V ′ occur in only one function, and 2) the variables of V ′ occur in multiple
functions. Case 1 is considered first. The next two lemmas provide the counterparts to
Lemmas 1 and 2 of Section 3. In the proof and elsewhere in the article we use ϕ1 ⊕ ϕ2 to
mean (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ2)

Lemma 5. Given ϕ = b1 ∧ · · · ∧ bm and a subset of variables V ′ = {v1, · · · , vk} occurring
in ϕ, let M′ = {M ′

1, · · · ,M
′
2k} be the set of all possible truth assignments to the variables

in V ′. Recall that ϕ1 denotes the conjunction of all bis containing at least one variable in
V ′. For any 1 ≤ i ≤ 2k, if (ϕ1 |M ′

i
∧ ϕ̂i) ≡ False then ϕ |M ′

i
is satisfiable if and only if ϕ

is satisfiable, where ϕ̂i is given in Definition 2.

Proof. Re-index the functions of ϕ so that ϕ1 = b1 ∧ · · · ∧ bn where n ≤ m. For any
1 ≤ i ≤ 2k, let ϕ |M ′

i
= ϕ1 |M ′

i
∧bn+1 ∧ · · · ∧ bm. Recall that

∃V ′(ϕ) ≡ (ϕ1 |M ′

1
∨ · · · ∨ ϕ1 |M ′

2k
) ∧ bn+1 ∧ · · · ∧ bm

which is satisfiable if and only if ϕ is satisfiable (Page 94). Then

(ϕ |M ′

i
⊕∃V ′(ϕ)) ≡ ((ϕ |M ′

i
∧∃V ′(ϕ)) ∨ (ϕ |M ′

i
∧ ∃V ′(ϕ))

≡ False ∨ ((ϕ1 |M ′

i
∧bn+1 ∧ · · · ∧ bm) ∧

(ϕ1 |M ′

1
∨ · · · ∨ ϕ1 |M ′

2k
) ∧ (bn+1 ∧ · · · ∧ bm))

≡ (ϕ1 |M ′

1
∨ · · · ∨ ϕ1 |M ′

i−1
∨ϕ1 |M ′

i+1
∨ · · · ∨ ϕ1 |M ′

2k
) ∧

(ϕ1 |M ′

i
) ∧ (bn+1 ∧ · · · ∧ bm)

≡ (ϕ1 |M ′

i
∧ ϕ̂i) ∧ (bn+1 ∧ · · · ∧ bm). (4)

From (4), for any 1 ≤ i ≤ 2k, if (ϕ1 |M ′

i
∧ ϕ̂i) ≡ False then ϕ |M ′

i
≡ ∃V ′(ϕ).

It follows that for any 1 ≤ i ≤ 2k, if (ϕ1 |M ′

i
∧ ϕ̂i) ≡ False then ϕ |M ′

i
is satisfiable if

and only if ϕ is satisfiable.

Lemma 6. Let M ′
i be an assignment satisfying the hypothesis of Lemma 5. Then M ′

i is a
safe assignment for V ′.

Proof. Analogous to Lemma 2.

100

Extending Existential Quantification

A BDD-based operation for finding a set of k variables that has a safe assignment may be
implemented based on Lemma 5. However, there are two problems with such an approach.
First, there are

(|V |
k

)

2k possible assignments to check. Second, and potentially much more
serious, as in the case of Lemma 1, every BDD in ϕ1 must be clustered into one BDD.

Fortunately, something can be done about the latter point; we next show how to find a
safe assignment of k variables without clustering any of the BDDs containing them. This
is accomplished by distributing the existential quantification of all variables of V ′ over
every BDD of ϕ1. This is interesting because existential quantification cannot generally be
distributed in this way. In other words, we present a way to achieve more than existential
quantification (namely, the safe assignment of values) without incurring a penalty due to
its inherit inefficiency. The next lemma is independent of BDDs but we use it to implement
an improved algorithm for finding a safe assignment to a subset of variables when the input
formula is expressed as a collection of BDDs.

Lemma 7. Given ϕ = b1 ∧ · · · ∧ bm and a subset of variables V ′ = {v1, · · · , vk} occurring
in ϕ, let M ′

d be an assignment to {v1, ..., vd−1} which is safe for ϕ′
d = ∃vd+1, ..., vk(b1) ∧

∃vd+1, ..., vk(b2) ∧ ... ∧ ∃vd+1, ..., vk(bm). Then, for 1 ≤ d ≤ k,

1. If vd 7→ True is safe for ϕ′
d |M ′

d
= ∃vd+1, ..., vk(b1 |M ′

d
) ∧ ∃vd+1, ..., vk(b2 |M ′

d
) ∧ ... ∧

∃vd+1, ..., vk(bm |M ′

d
), then M ′

d ∪ {vd 7→ True} is safe for ϕ′
d.

2. If vd 7→ False is safe for ϕ′
d |M ′

d
= ∃vd+1, ..., vk(b1 |M ′

d
) ∧ ∃vd+1, ..., vk(b2 |M ′

d
) ∧ ... ∧

∃vd+1, ..., vk(bm |M ′

d
), then M ′

d ∪ {vd 7→ False} is safe for ϕ′
d.

Proof. Suppose M ′
d is safe for ϕ′

d. Then ϕ′
d |M ′

d
is satisfiable if ϕ′

d is. If vd 7→ True is safe
for ϕ′

d |M ′

d
then there is an assignment to variables of ϕ′

d which includes M ′
d ∪ {vd 7→ True}

and satisfies ϕ′
d. Similarly for vd 7→ False.

Lemma 7 tells us what we can do if vd is safe for ϕ′
d |M ′

d
but does not say how to

determine if vd is safe for ϕ′
d |M ′

d
. We use Theorem 3 for that purpose. Based on Lemma 7

and Theorem 3, an algorithm, called safe search, for finding a safe assignment to a subset
of variables in multiple BDDs is given in Figure 3. The safe search algorithm calls the
recursive find safe assign procedure (also shown in Figure 3) which extends a potentially
safe assignment for {v1, ..., vd−1} to a safe assignment for {v1, ..., vd}. The find safe assign

procedure performs a search capable of testing all assignments to variables of V ′. But each
test is relatively efficient because its utilizes the memoized ϕ′

d functions which themselves
are constructed by distributing computation over input BDDs.

Actually, safe search is intended to answer the question: Given a set of BDDs and a
set of variables, is satisfiability preserved if the existential quantification of the variables
is distributed over the BDDs containing them? If the answer is yes, then as an artifact
safe search returns a safe assignment to these variables. The user may choose whether to
apply that assignment directly, distribute the existential quantification of these variables,
or do a mixture of the two. This point is revisited in the last paragraph of this subsection.
If the answer is no, safe search returns “unknown.”

Theorem 4. If an assignment τ to V ′ is returned by find safe assign, and therefore by
safe search, then τ is a safe assignment for V ′ in ϕ.

101

S. Weaver et al.

Proof. The ϕ′
d of safe search, computed prior to the first invocation of find safe assign,

are the same ϕ′
d of Lemma 7 except that the M ′

d assignment has not been set. By induction,
on the dth recursion of find safe assign, M ′

d is an assignment to {v1, ..., vd−1} which is
safe for ϕ′

d provided the assignment made to vd is safe for ϕ′
d |M ′

d
. But this is decided by

the first for loop of find safe assign plus one line above it. But this is the same code
as the safe assign code of Figure 2. If the value of safeVal is not False, it is either i.) a
3-node BDD rooted at vd which expresses a value for vd or ii.) True which expresses that
both values, True and False, are safe values for vd. By Theorem 3 and the fact that the
code is applied to bj |M ′

d
for all j, this value is safe for ϕ′

d |M ′

d
.

The complexity of safe search is O(k2m) for preprocessing and O(2km) for finding the
safe assignment.

The following remarks apply to safe search and find safe assign.

1. The precomputation and memoization of the existential quantifications in safe search

is important since each recursive step would take a lot longer if the quantifications
were not precomputed.

2. If safe search returns “unknown” and V ′ consists of all variables of ϕ then ϕ is
unsatisfiable. In fact, in this case, safe search performs a search over all assignments
and therefore can act as a complete SAT solver.

3. safe search may miss finding a safe assignment when at least one exists. An example
is shown in Figure 4.

4. In safe search, variables are considered one at a time in any arbitrary order (that
is, the search for a safe assignment does not need to consider all possible orders).

5. The order in which safe assign considers variables may affect the speed with which
a safe assignment is found.

6. We reiterate, it may be possible, using safe search, to find safe assignments to a
set of variables that could not be found using safe assign on all those variables
individually. An example is shown in Figure 5.

We emphasize that the results of this section afford the choice, for each variable in a given
subset, of existentially quantifying it away or applying its safe assignment, interchangeably.
For example, let V ′ = {v1, v2} and let M ′

1 = {v1 7→ True, v2 7→ False} where M ′
1 is a safe

assignment to ϕ with ϕ1 = b1 ∧ b2 and both b1 and b2 contain at least one variable of V ′.
Then

ϕ |M ′

1
≡ b1 |M ′

1
∧b2 |M ′

1
∧ · · ·

≡ ∃v1, v2(b1) ∧ ∃v1, v2(b2) ∧ · · ·

≡ ∃v1(b1 |v2) ∧ ∃v2(b2 |v1) ∧ · · · ,

so any permutation of existential quantifications and assignments of variables of V ′ applied
to each individual function of ϕ1 is valid.

102

Extending Existential Quantification

Input: A set of BDDs ϕ = {b1, · · · , bm},
a set of variables V ′ = {v1, · · · , vk},

Output: A safe assignment to variables V ′, if one is

found, ‘‘unknown’’ otherwise.

assignment safe search(ϕ, V ′) {
for(d := 1 to k-1) {

let ϕ′
d := {b1,d :=exist({vd+1, · · · , vk}, b1), · · · ,

bm,d :=exist({vd+1, · · · , vk}, bm)}
}
let ϕ′

k := ϕ

let Φ := {ϕ′
1, · · · , ϕ

′
k}

let d := 1
let M ′

0 be an empty assignment to V ′

return find safe assign(Φ, V ′, M ′
0, d) {

}

assignment find safe assign(Φ, V ′, M ′
d, d) {

if(d = k + 1) return M ′
d

apply M ′
d to {v1, ..., vd−1} of V ′

let BDD safeVal := True

for(j := 1 to m) {
safeVal := and(safe assign0(bj,d,vd), safeVal)
if(safeVal = False) return ‘‘unknown’’

}
if(and(safeVal , var(vd)) = var(vd)){

let M ′′ := find safe assign(Φ, V ′, (M ′
d ∪ {vd 7→ True}), d+ 1)

if(M ′′ 6= ‘‘unknown’’) return M ′′

}
if(and(safeVal, not(var(vd)))) = not(var(vd)))){

let M ′′ := find safe assign(Φ, V ′, (M ′
d ∪ {vd 7→ False}), d+ 1)

if(M ′′ 6= ‘‘unknown’’) return M ′′

}
return ‘‘unknown’’

}

Figure 3. Recursive pseudo-code to search for a safe assignment to a set of variables V ′ in a
conjunction of BDDs ϕ.

103

S. Weaver et al.

1

0 1

v
1

v2

v
3

v
4

v
3

0

10

0

0 0

0

1

1

1

1
1

v
4

0 1

v
1

v2

v
3

v
3

v
4 v

4

0

0

0

0

0

01

1
1

1

1

1

10

v
1

v
2

v
3

0

11

1

0

0

0 1

v
1

v
2

v
3

v
3

0

0

01
10

1

a) Suppose the two BDDs shown above
represent ϕ1 with V ′ = {v2, v4}. Call
the left BDD b1 and the right BDD b2.

b) Result of applying safe assign to ϕ1

of a) above. First, ∃v4(b1) (shown
left) and ∃v4(b2) (shown right) are
computed. The return values of
safe assign0 on these are v2 = False

(left) and False (right). Therefore,
safe assign does not find a safe as-
signment for ϕ1.

1

0 1

v1

v2

v3

v4 v4

0

0

0

0 0

1

1

11

0 1

v1

v2

v3

0

0

11

1

0

0 1

v1

v3

v4 v4

0

0

1

1

1

1

0

0

c) However, if b1 and b2 are conjoined, ϕ1

is the single BDD shown above...
d) then eliminating v4 gives the BDD

on the left and safe assign0 returns
v2 = False. Applying this to the
BDD of c) gives the BDD shown on
the right, on which safe assign0 re-
turns v4 = False. Therefore, there is
a safe assignment, namely v2 = v4 =
False in this case.

Figure 4. Example showing that safe search may miss finding a safe assignment when at
least one exists. Frames a) and b) show the result of applying safe search to a simple example:
no safe assignment is found. Frames c) and d) demonstrate that a safe assignment exists, and that
safe search finds it if the BDDs of ϕ1 are conjoined first.

104

Extending Existential Quantification

v2

v
1

v2

v
3

10

v
3

0 1

0

0 0

0

1

1

1

1

Suppose the BDD shown to the left is the only BDD of
ϕ. safe assign will not find any safe assignments given
v1, v2, or v3. safe search given V ′ = {v1, v2} will find
the safe assignment v1 = v2 = True. safe search given
V ′ = {v1, v3} will find the safe assignment v1 = True and
v3 = False. safe search given V ′ = {v2, v3} will not
find any safe assignments.

Figure 5. Example showing that, in certain cases, it is possible, using safe search, to find safe
assignments to a set of variables that could not be found using safe assign on all those variables
individually.

5. Relationship to Autarkies

The notion of an autark assignment first appeared for CNF formulae in [13]. Let ϕ be
a CNF formula containing literals taken from a set V of variables. Suppose M ′ is some
assignment of values to a subset V ′ ⊂ V of variables and that ϕ′ is the CNF formula (said
to be a residual formula) that remains after clauses satisfied by and literals falsified by M ′

are removed from ϕ. Then an assignment M ′′ of values to a subset V ′′ ⊆ V \V ′ of variables
is said to be autark with respect to M ′ if all clauses of ϕ′ which are not satisfied by M ′′

contain no literals taken from V ′′.

The importance of autark assignments during search is that, if one is found with respect
to the assignment yielding the current residual formula ϕ′, then the values of the variables
of the autark assignment can be fixed for all extensions of that assignment, not including
the variables of the autark assignment. An elementary example of this is known as the
pure literal rule, briefly discussed in Section 3. Observe this is different from existentially
quantifying the autark variables away in that an actual assignment to those variables is
imposed. Yet, observe also that the values of autark variables are not inferred.

One straightforward way to extend the notion of autarkies to conjunctions of BDDs could
require that an assignment satisfy every BDD containing a variable in the assignment. The
safe assignments described in this paper do not require each entire BDD to be satisfied, just
the paths of each BDD which are dependent upon the assignment.

Another extension of autarkies to BDDs involves representing a set of clauses as an
individual BDD. Any autarky that exists for a set of CNF clauses will also exist as a safe
assignment in the corresponding BDD. However, since BDDs are canonical (Page 92), a safe
assignment may exist in a BDD but not exist in some of the, possibly many, corresponding
logically equivalent sets of CNF clauses. This means that if a safe assignment exists for a
Boolean function represented as a BDD, it will be found immediately. Whereas the autarky
is not guaranteed to be found using a CNF representation of the same Boolean function.
Therefore, the idea of finding safe assignments to a set of variables in conjunctions of BDDs
is potentially more powerful than finding autarkies in CNF formulae.

105

S. Weaver et al.

6. Experimental Validation

We wish to show that the safe assignment tools described here help the early quantification
method by reducing on a variable before it has been totally clustered into a single BDD.
Early quantification entails the existential quantification of variables while clustering BDDs
in search for the monolithic BDD. Doing so is useful because it tends to control the growth
of intermediate BDDs during the clustering process. In this section we show, by experi-
ment, that the methods of safely assigning values to some of these variables can control
intermediate BDD growth even further without introducing significant overhead.

The particular clustering schedule we used is a greedy one in which a variable v occurring
in the least number of BDDs is chosen and clustering continues with focus on getting that
variable into one BDD so it can be existentially quantified away. If more than one variable
occurs in the same number of BDDs, the tie is broken by choosing a variable at random
from among the pool. If clustering is successful, v is existentially quantified away from
its BDD. Clustering may not be successful if an intermediate BDD is created whose size
exceeds a certain threshold which is determined by the amount of memory available on
the host. If no further clustering is possible, it is restarted, possibly several times, each
time removing all nodes that are not in the original set of BDDs, recording and applying
all newly learned implications, and increasing the threshold if no new implications have
recently been found. Controlling the threshold in this way allows for the near exhaustion
of possible implications while also keeping memory usage low. By using this clustering
schedule, we found it becomes possible to cluster BDDs with a large number of variables.

Runs were made on a collection of benchmarks as listed in Table 1. These are taken
from the ISCAS’85 suite. They are miter circuits which are used for checking whether two
functions are equivalent. A good property of these benchmarks is that the maximum number
of variables in an input BDD is rather limited. This allows us to collect results without
complications due some ancillary operations that would otherwise become necessary, such as
splitting BDDs. Since the benchmarks represent circuits, numerous variables, corresponding
to internal circuit points, are dependent and therefore, intuitively, can be easily existentially
quantified away. Thus, the benchmarks are good candidates for testing early quantification
and safe assignments. The benchmarks used are all unsatisfiable.

For each benchmark, 100 runs were made. Each run was started with a different random
seed for tie breaking, as described above. Doing so mitigates the effect of clustering choices
on the results. The results under the heading w/o S are obtained using the above clustering
schedule without making safe assignments. There are three columns of results: the average
runtime of completed runs, the number of completed runs (in parentheses), and the average
size of an intermediate BDD in any of the 100 runs (under the heading BDD Size).

To test the effect of safe assignments, we interleave the safe assign() operation with
clustering, as described above, in the following way: immediately after any two BDDs
have been clustered, we run safe assign() on all the variables occurring in the combined
BDD. Safe assignments are recorded as implications and are inferred immediately after each
restart. Intuitively, the clustering algorithm above supports safe assignments in this way;
however, the extra implications delay the threshold increase, sometimes causing an increase
in execution time. Moreover, the interleaving of clustering and making safe assignments is
easy to implement and seems to work well. However, we emphasize that safe assignments

106

Extending Existential Quantification

can be used in any schema involving early quantification. Results are shown in Table 1 under
the heading w/ S. In addition, there is a column with the heading Avg. safe assigns where
the average number of safe assignments found is reported. This may be contrasted with the
column of heading # vars which shows the number of variables in each benchmark.

The results of Table 1 show that between 1% and 5% of these benchmark’s total variables
can be safely assigned, using the technique described in this paper, during early quantifi-
cation as we have implemented it. Probably the most significant effect of applying these
safe assignments is that roughly twice as many normal implications were found during the
clustering process. On average, this kept the number of variables per BDD lower by up
to 30%. Since smaller BDDs were created, RAM usage was kept generally lower, solving
times were generally significantly better on hard benchmarks which were generally able to
be solved more successfully.

The effectiveness of safe assignments can be better appreciated by the results shown in
Figure 6 which compare RAM usage and inference generation as the c7552-s benchmark is
being solved. The results show that RAM usage with safe assignments levels off at about
the same time that finding safe assignments and making inferences from them begin to
snowball. This behavior is typical of other benchmarks. Without safe assignments RAM
usage rises unabated and in some cases becomes too high to proceed to completion.

Our experiments have been run using our own BDD tool which is designed to support
research and not for speed. In particular, a number of features which make production
BDD tools fast are missing, including implementation of complemented edges, and optimal
variable ordering algorithms, among others. The results we report here are not intended
to show that our BDD tool is competitive. Rather, they are intended to demonstrate the
usefulness of adding safe assignments to any BDD tool.

Table 1. Results of experiments on solving a family of benchmarks with and without making
safe assignments.

Avg. safe Avg. runtime (s) BDD Size Impl.
Benchmark # vars assigns w/ S w/o S w/ S w/o S w/ S w/o S

c499.cnf 606 33.3 0.90 (100) 0.87 (100) 22.0 21.4 454 248
c499-s.cnf 606 33.5 0.86 (100) 0.87 (100) 21.8 21.4 456 242
c880.cnf 957 42.3 6.14 (98) 8.19 (99) 25.0 29.2 605 393

c880-s.cnf 957 41.7 5.74 (99) 9.78 (100) 25.5 29.8 602 392
c1355.cnf 1294 65.4 2.56 (100) 1.32 (100) 22.1 20.7 1067 298

c1355-s.cnf 1294 66.2 2.53 (100) 1.38 (100) 22.3 20.2 1055 306
c1908.cnf 1917 18.7 62.5 (99) 154 (95) 45.3 56.0 1450 1004

c1908-s.cnf 1919 20.5 33.2 (100) 106 (91) 39.2 55.0 1493 1002
c2670.cnf 2703 98.6 5.72 (100) 12.1 (100) 25.9 35.4 2207 1462

c2670-s.cnf 2940 101 6.09 (100) 5.83 (100) 18.8 29.2 2399 1653
c5315.cnf 5399 215 41.47 (100) 31.2 (100) 23.5 28.5 4308 2726

c5315-s.cnf 5408 201 40.48 (99) 36.6 (100) 23.4 28.5 4274 2714
c7552.cnf 7652 216 315 (65) 287 (17) 31.9 43.8 6353 3990

c7552-s.cnf 7767 220 98.8 (95) 122 (73) 27.9 39.3 6535 3938

7. Conclusion

This paper describes some elementary conditions under which one or more variables may
be safely assigned values even though no values may be inferred for those variables. Some
practical operations based on these conditions are presented. These operations can be inte-
grated into the existing framework of both search-oriented and constraint-oriented methods
of satisfiability. An operation suitable for search-oriented methods, and which attempts to

107

S. Weaver et al.

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

R
A

M
 U

se
d

(M
eg

ab
yt

es
)

Runtime (Seconds)

Two Sample Runs of c7552-s.cnf Showing RAM Usage

Without Safe Assignments
With Safe Assignments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120

Im
pl

ic
at

io
ns

 F
ou

nd

Runtime (Seconds)

Two Sample Runs of c7552-s.cnf Showing Implications Found

Imp. Found Without Safe Assigments
Imp. Found With Safe Assignments

Safe Assignments Found * 10

Figure 6. Progressive RAM usage and inference generation for the c7552-s benchmark with and
without safe assignments. The top graph shows that RAM usage, both with and without safe as-
signments, is about the same early in the computation. Then a split occurs. For some time this split
diverges as RAM usage for both cases increases. But at some point the RAM usage with safe assign-
ments levels off while RAM usage without safe assignments continues to grow. The reason for this
can be seen in the bottom graph where, at the same time the RAM usage levels off, the number of
inferences due to safe assignments increases dramatically. The number of safe assignments found
is displaced by a factor of 10 so that it can be shown on the graph. Approximately 100 safe assign-
ments appear responsible for each additional 1000 inferences. Data points were collected during
restarts.

108

Extending Existential Quantification

find a safe assignment to a set of variables, is also presented. All of these operations are
relaxations in the use of existential quantification and therefore may fail to find one or more
existing safe assignments.

There is virtually no research targeted at finding values for existentially quantified vari-
ables before all BDDs have been clustered. We have introduced an efficient operation that
can find some values for quantified variables prior to creating the monolithic BDD. Com-
bining this idea with BDD restarting has potential for being a powerful BDD manipulation
tool that can be used in SAT preprocessing as well as BDD solving.

References

[1] S.B. Akers. Binary decision diagrams. IEEE Transactions on Computers C-27(6): 509–
516, 1978.

[2] G. Andersson, , P. Bjesse, B. Cook, and Z. Hanna. A Proof Engine Approach to Solving
Combinational Design Automation Problems. Proc. 39th ACM/IEEE Design Automa-
tion Conf. 725–730, 2002.

[3] K.S. Brace, R.R. Rudell, and R.E. Bryant. Efficient implementation of a BDD package.
Proc. 27th ACM/IEEE Design Automation Conf. 40–45, 1990.

[4] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
on Comp. C-35(8): 677–691, 1986.

[5] J. Burch, E. Clark, and D. Long: Symbolic model checking with partitioned transi-
tions relations. In: Intnl. Conf. on VLSI (Halaas, A., and Denyer, P.B., eds.), IFIP
Transactions, North-Holland 49–58, 1991.

[6] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem Proving.
Communications of the Association of Computing Machinery 5: 394–397, 1962.

[7] M. Dransfield, and R.E. Bryant. Using ordered binary decision diagrams to solve
highly structured satisfiability problems. Unpublished technical report CMU-CS-1996,
Carnegie Mellon University, 1996.

[8] J. Franco, M. Dransfield, W.M. Vanfleet, and J.S. Schlipf. State-based propositional
Satisfiability Solver. US Patent Application Serial No. 10/164,203, 2005.

[9] J. Franco, M. Kouril, J.S. Schlipf, J. Ward, S. Weaver, M. Dransfield, and W.M. Van-
fleet. SBSAT: a state-based, BDD-based Satisfiability solver. Lecture Notes in Computer
Science 2919, Springer, New York: 398–410, 2004.

[10] J. Franco, M. Kouril, J.S. Schlipf, S. Weaver, M. Dransfield, and W.M. Vanfleet.
Function-complete lookahead in support of efficient SAT search heuristics. Journal of
Universal Computer Science 12: 1655–1692, 2004.

[11] J.F. Groote. Hiding propositional constants in BDDs. Formal Methods in System De-
sign 8: 91–96, 1996.

109

S. Weaver et al.

[12] C.Y. Lee. Representation of switching circuits by binary-decision programs. Bell System
Technical Journal 38: 985–999, 1959.

[13] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10: 117–133, 1983.

[14] G. Pan and M.Y. Vardi. Search vs. symbolic techniques in satisfiability solving. In:
Proc. Seventh International Conference on Theory and Applications of Satisfiability
Testing (SAT 2004).

[15] A. San Miguel Aguirre and M.Y. Vardi. Random 3-SAT and BDDs: The plot thickens
further. In: Principles and Practice of Constraint Programming: 121-136, 2001.

[16] F. Somenzi. Colorado University Decision Diagram package. Available from
http://vlsi.colorado.edu/∼fabio/CUDD/.

110

http://vlsi.colorado.edu/~fabio/CUDD/

	Introduction
	Background
	Satisfiability
	Conjunctive Normal Form
	Binary Decision Diagrams
	Existential Quantification

	Single Variable Safe Assignments
	Multiple Variable Safe Assignments
	Relationship to Autarkies
	Experimental Validation
	Conclusion

