
Journal on Satisfiability, Boolean Modeling and Computation 1 (2005) 49-60

A Faster Clause-Shortening Algorithm for SAT

with No Restriction on Clause Length

Evgeny Dantsin edantsin@roosevelt.edu

Alexander Wolpert awolpert@roosevelt.edu

Department of Computer Science

Roosevelt University

430 S. Michigan Av.

Chicago, IL 60605, USA

Abstract

We give a randomized algorithm for testing satisfiability of Boolean formulas in con-
junctive normal form with no restriction on clause length. This algorithm uses the clause-
shortening approach proposed by Schuler [14]. The running time of the algorithm is
O

(

2n(1−1/α)
)

where α = ln(m/n) + O(ln ln m) and n, m are respectively the number
of variables and the number of clauses in the input formula. This bound is asymptotically
better than the previously best known 2n(1−1/ log(2m)) bound for SAT.1.
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1. Introduction

During the past few years there has been considerable progress in obtaining upper bounds
on the complexity of solving the Boolean satisfiability problem. This line of research has
produced new algorithms for k-SAT. They were further used to prove nontrivial upper
bounds for SAT (no restriction on clause length).

Upper bounds for k-SAT. The best known upper bounds for k-SAT are based on two
approaches: the satisfiability coding lemma [9, 8] and multistart random walk [12, 13]; both
give close upper bounds on the time of solving k-SAT. Schöning’s randomized algorithm in
[12] has the (2− 2/k)n bound where n is the number of variables in the input formula. The
randomized algorithm in [8] has a slightly better bound (this algorithm is often referred
to as the PPSZ algorithm). The multistart-random-walk approach is derandomized using
covering codes in [3], which gives the best known (2 − 2/(k + 1))n bound for deterministic
k-SAT algorithms. The PPSZ algorithm is derandomized with the same bound for Unique-
k-SAT [11]. For small values of k, these bounds are improved: for example, 3-SAT can
be solved by a randomized algorithm with the 1.324n bound [7] and by a deterministic
algorithm with the 1.473n bound [2].

1. The results of this paper (without proofs) appeared in the proceedings of SAT 2005 [6]
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Upper bounds for SAT (no restriction on clause length). The first nontrivial upper
bound for SAT is given in [10]: the 2n(1−1/2

√
n) bound for a randomized algorithm that uses

the PPSZ algorithm as a subroutine. A close bound for a deterministic algorithm is proved
in [4]. A much better bound for SAT is the 2n(1−1/ log(2m)) bound, where m is the number of
clauses in the input formula. This bound is due to Schuler [14]. His randomized algorithm is
based on an approach that can be called clause shortening : the algorithm repeatedly applies
a k-SAT subroutine to formulas obtained by shortening input clauses to length k. Schuler’s
algorithm is derandomized in [5]; the derandomization gives a deterministic algorithm that
solves SAT with the same bound.

In this paper we improve the 2n(1−1/ log(2m)) bound: we give a randomized algorithm
that solves SAT with the following upper bound on the running time:

2
n

„

1− 1
ln(m

n )+O(ln ln m)

«

(1)

Idea of the algorithm. Our algorithm for SAT is a repetition of a polynomial-time
procedure P that tests satisfiability of an input formula F . If F is satisfied by a truth
assignment A, the procedure P finds A with probability at least p. As usual, repeating P
on the input formula O(1/p) times, we can find A with a constant probability.

When describing P, we view clauses as sequences (rather than sets) of literals. Each
clause l1, l2, . . . , ls such that s > k is divided into two segments as follows:

First segment: l1, . . . , lk, Second segment: lk+1, . . . , ls

We say that the first segment is true under an assignment A if at least one of its literals is
true under A; otherwise we say that the first segment is false under A. If A is clear from
the context, we omit the words “under A”.

Let F consist of clauses C1, . . . , Cm and let A be a fixed satisfying assignment to F .
The procedure P is based on the following dichotomy:

Case 1. The input formula F has “many” clauses in which the first segment is false. We
call such clauses bad. Suppose that the number of bad clauses is greater than or equal
to some d. Then if we choose a clause Ci from C1, . . . , Cm at random, the first segment
in Ci is false with probability at least d/m. Assuming that Ci is bad, we can simplify
F by assigning “false” to all literals occurring in the first segment of Ci.

Case 2. The input formula F has “few” (less than d) bad clauses. If we consider a formula
made up of the first segments of all input clauses, we get a k-CNF formula in which
“almost” all clauses contain true literals. Only the first segments of bad clauses
prevent us from finding A by applying a k-SAT algorithm to this formula. To fix it,
we guess all bad clauses and replace their first segments by clauses of length k that
contain true literals. More exactly, for each bad clause, we replace its first segment
by k literals chosen at random from this clause. The probability that the resulting
k-CNF formula is satisfied by A is easily estimated.

The procedure P first assumes that Case 2 holds. To process this case, P invokes
a subroutine (denoted S) that transforms F into a k-CNF formula and applies a k-SAT
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algorithm. If no satisfying assignment is found, Case 1 is considered to hold. Then P
simplifies the input formula and recursively invokes itself on the simplified formula.

The procedure P (and the subroutine S) uses k and d as parameters. Clearly, the
success probability of P depends on values of the parameters. What values of k and
d maximize the success probability? In Sect. 4 we find values of the parameters (k ≈
log(m/n) + O(log log(m)) and d ≈ n/ log3 m) that give the following lower bound on the
success probability:

2
−n

„

1− 1
ln(m

n )+O(ln ln m)

«

Sect.2 contains basic definitions and notation. In Sect. 3 we describe the procedure P
and the subroutine S. In Sect. 4 we prove a lower bound on the success probability of P. In
Sect. 5 we define our algorithm for SAT and prove the claimed upper bound on its running
time.

2. Definitions and Notation

We deal with Boolean formulas in conjunctive normal form (CNF). By a variable we mean
a Boolean variable that takes truth values t (true) or f (false). A literal is a variable x or
its negation ¬x. If l is a literal then ¬l denotes its complement, i.e. if l is x then ¬l denotes
¬x, and if l is ¬x then ¬l denotes x. Similarly, if v denotes one of the truth values t or f,
we write ¬v to denote its complement. A clause C is a set of literals such that C contains
no complementary literals. A formula F is a set of clauses; n and m denote, respectively,
the number of variables and the number of clauses in F . If each clause in F contains at
most k literals, we say that F is a k-CNF formula.

An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to {t, f}. This
mapping is extended to literals: each literal ¬xi is mapped to the complement of the truth
value assigned to xi. We say that a clause C is satisfied by an assignment A (or, C is true
under A) if A assigns t to at least one literal in C. Otherwise, we say that C is falsified by
A (or, C is false under A). The formula F is satisfied by A if every clause in F is satisfied
by A. In this case, A is called a satisfying assignment for F .

Let F be a formula and l1, . . . , ls be literals. We write F [l1 = f, . . . , ls = f] to denote the
formula obtained from F by assigning the value f to all of l1, . . . , ls. This formula is obtained
from F as follows: the clauses that contain any literal from ¬l1, . . . ,¬ls are deleted from F ,
and the literals l1, . . . , ls are deleted from the other clauses. Note that F [l1 = f, . . . , ls = f]
may contain the empty clause or may be the empty formula.

Let A and A′ be two assignments that differ only in the values assigned to a literal l.
Then we say that A′ is obtained from A by flipping the value of l.

By SAT we mean the following computational problem: Given a formula F in CNF,
decide whether F is satisfiable. The k-SAT problem is the restricted version of SAT that
allows only clauses consisting of at most k literals.

We write log x to denote log2 x.
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3. Procedure P and Subroutine S

Both procedures S and P use the parameters k and d; their values are determined in the
next section.

3.1 Description of S
Suppose that an input formula F has a satisfying assignment A such that F has only “few”
(< d) clauses in which the first segment is false under A, i.e. Case 2 of the dichotomy holds.
Then the subroutine S finds such an assignment (with the probability estimated in Sect. 4).
The subroutine takes two steps:

1. Reduction of F to a k-CNF formula F ′ such that any satisfying assignment to F ′

satisfies F .

2. Use of a k-SAT algorithm to find a satisfying assignment to F ′.

First, S guesses all “bad” clauses, i.e. clauses in which the first segment is false under
A. More exactly, the subroutine guesses a set {B1, . . . , Bd−1} of clauses such that all “bad”
clauses are contained in this set. For each clause Bi, the subroutine guesses k literals in Bi

such that this “guessed” set contains a true literal. Then the subroutine replaces each clause
in F by a set of k literals chosen from this clause – either the guessed set for B1, . . . , Bd−1

or the first segments for the other clauses in F . The resulting formula is denoted by F ′. It
is obvious that if we guessed right then A satisfies F ′.

To test satisfiability of k-CNF formulas at the second step, S uses a polynomial-time
randomized algorithm that finds a satisfying assignment with an exponentially small prob-
ability. We choose Schöning’s algorithm [12] to perform this testing (we could use any
algorithm that has at least the same success probability, for example the PPSZ algorithm
[8]). More exactly, we use “one random walk” of Schöning’s algorithm, which has the success
probability at least (2 − 2/k)−n up to a constant [13].

If S finds a satisfying assignment then the procedure returns it and halts. Otherwise, S
should return “no” but for technical reasons, instead of “no”, we require S return F ′ which
is used in the external procedure P.

Note that if d = 1, i.e. there is no “bad” clause, then S simply finds a satisfying
assignment to the k-CNF formula made up of the m first segments. Also note that the
smaller d, the higher the probability of guessing F ′.

Subroutine S

Input: Formula F with m clauses over n variables, integers k and d.

Output: Satisfying assignment or k-CNF formula.

1. Reduce F to a k-CNF formula F ′ as follows:

(a) Choose d − 1 clauses B1, . . . , Bd−1 in F at random.

(b) Replace each clause that does not belong to {B1, . . . , Bd−1} by its first segment.

(c) For each Bi, choose k literals in Bi at random and replace Bi by the chosen set.
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2. Test satisfiability of F ′ using one random walk of length 3n (see [12] for details):

(a) Choose an initial assignment a uniformly at random;

(b) Repeat 3n times:

i. If F ′ is satisfied by the assignment a then return a and halt;

ii. Pick any clause C in F ′ such that C is falsified by a. Choose a literal l in C
uniformly at random. Modify a by flipping the value of l.

(c) Return F ′.

3.2 Description of P
Suppose that an input formula F has a satisfyimg assignment A. The procedure first calls
Subroutine S. The result of S depends on which case of the dichotomy holds.

1. The input formula F has “many” (≥ d) bad clauses. Then S never finds A.

2. The input formula F has “few” (< d) bad clauses. Then S returns A (with some
probability).

If S does not return a satisfying assignment, the procedure P simplifies F and recursively
invokes itself on the simplified formula, i.e. P processes Case 1 of the dichotomy. To simplify
the formula, P uses the fact that A falsifies at least one clause in F ′. Note that such a
clause has been obtained from a “long” clause (longer than k) in F because each “short”
clause must contain a true literal. Therefore, P chooses a clause at random from those
clauses in F ′ that are obtained from “long” clauses in F . Let l1, . . . , lk be all literals of the
chosen clause. Then P assigns f to these literals and reduces F to F [l1 = f, . . . , lk = f].

Procedure P

Input: Formula F with m clauses over n variables, integers k and d.

Output: Satisfying assignment or “no”.

1. Invoke S on F , k, and d.

2. Choose a clause at random from those clauses in F ′ that are obtained from “long”
(longer than k) clauses of F . Let the chosen clause consist of literals l1, . . . , lk.

3. Simplify F by assigning f to all l1, . . . , lk, i.e. reduce F to F [l1 = f, . . . , lk = f].

4. Recursively invoke P on F [l1 = f, . . . , lk = f].

5. Return “no”.

Note that Schuler’s algorithm [14] is a special case of P: take d = 1, k = dlog(2m)e, and
use the PPSZ algorithm instead of Schöning’s algorithm at step 2 in S.
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4. Success Probability of Procedure P

Given an input formula F and some values of the parameters k and d, Procedure P finds
a fixed satisfying assignment A or returns “no”. What is the probability of finding A? In
this section, we give a lower bound on the success probability of P and choose values of k
and d that maximize this bound.

We define the minimum success probabilities for S and P as follows:

• s(n, m, k, d) is the minimum success probability of S where the minimum is taken over
all pairs F, A such that (i) A satisfies F ; (ii) F has n variables and m clauses; (iii) F
has less than d bad clauses.

• p(n, m, k, d) is the minimum success probability of P where the minimum is taken
over all pairs F, A such that (i) A satisfies F ; (ii) F has n variables and m clauses.

In all next lemmas we assume that m > d ≥ 2.

Lemma 1. Subroutine S has the following lower bound on the success probability:

s(n, m, k, d) > (emn)−(d−1) 2−n(1− log e

k
)

Proof. Let A be a fixed satisfying assignment to F . The probability of finding A is the
product of three probabilities s1, s2, and s3. The probability s1 is the probability that the
set {B1, . . . , Bd−1} of chosen clauses contains all bad clauses (step 1a in S). The probability
s2 is the probability of guessing sets with true literals for all B1, . . . , Bd−1 (step 1b in S).
The probability s3 is the probability of finding A by one random walk (step 2 in S).

Since B1, . . . , Bd−1 are chosen at random from m input clauses, we have (using Stirling’s
approximation as in [1, page 4]):

s1 ≥ 1

( m

d−1)
≥

√

2πm
(

d−1
m

) (

1 − d−1
m

)

· 2−H( d−1
m

) m > 3
2 · 2−H( d−1

m
) m

For further estimation we use the inequality log(1 + x) < x log e:

s1 > 3
2 · 2−H( d−1

m
) m

= 3
2 · 2−(d−1) log( m

d−1)−(m−d+1) log(1+ d−1
m−d+1)

> 3
2 · 2−(d−1) log( m

d−1)−(m−d+1) ( d−1
m−d+1) log e

= 3
2

(

em
d−1

)−(d−1)

To estimate s2, we estimate the probability of guessing a set with a true literal for each
Bi. Obviously, Bi has at most

(

n
k

)

subsets of literals of size k. For a fixed true literal in Bi,

there are at most
(

n−1
k−1

)

of such subsets that contain this literal. Hence

s2 ≥
(

(n−1
k−1)
(n

k
)

)d−1

=
(

k
n

)d−1
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A lower bound on s3 is proved in [13]: 2
3

(

2 − 2
k

)−n
. Using the inequality 1−x ≤ 2−x log e,

we have
s3 ≥ 2

3

(

2 − 2
k

)−n
= 2

3 · 2−n
(

1 − 1
k

)−n

≥ 2
3 · 2−n 2

n log e

k = 2
3 · 2−n(1− log e

k
)

The product of the above bounds for s1, s2, and s3 gives the following bound:

s1 · s2 · s3 > 3
2

(

em
d−1

)−(d−1)
·
(

n
k

)−(d−1) · (2/3) 2−n(1− log e

k
)

=
(

emn
k(d−1)

)−(d−1)
2−n(1− log e

k
)

Finally, we relax the above bound to (emn)−(d−1) 2−n(1− log e

k
).

Our goal is to choose values of the parameters k and d (viewed as functions of n and
m) so as to maximize the success probability of Procedure P. We choose the functions
k0 = k0(n, m) and d0 = d0(n, m) in two steps. First, we find a lower bound on the success
probability of P. The maximum of this bound is attained when k is a certain function of n,
m, and d. Then, substituting this function in the bound, we find d0(n, m) that maximizes
the bound.

Lemma 2. For all k such that

k ≥ log
(

em
d

)

1 + (d−1) log e
n

(2)

Procedure P has the following lower bound on the success probability:

p(n, m, k, d) > (emn)−(d−1) 2−n(1− log e

k
)

Proof. Let A be a fixed satisfying assignment to F . Suppose that Procedure P finds A with
t recursive calls, where t is some integer in the interval 0 ≤ t ≤ bn/kc. Then P simplifies
formulas t times. For each simplification, the probability of guessing a clause in F ′ that
consists of false literals is at least d/m. Therefore, with probability at least (d/m)t, we get
a formula G such that

• G is still satisfied by A;

• G has less than d bad clauses;

• G has at most n − kt variables.

Using Lemma 1, we get the following lower bound on the probability of finding A with t
recursive calls:

p(n, m, k, d) >
(

d
m

)t
(em(n − kt))−(d−1) 2−(n−kt)(1− log e

k
)

=
(

d
m

)t
(emn)−(d−1)

(

1 − kt
n

)−(d−1)
2−n(1− log e

k
)+kt(1− log e

k
)

= β(n, m, k, d) ·
(

d
m

)t (

1 − kt
n

)−(d−1)
2kt(1− log e

k
)

= β(n, m, k, d) · 2−t log( m

d
) − (d−1) log(1− kt

n
) + kt(1− log e

k
)
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where β denotes the lower bound in the claim:

β(n, m, k, d) = (emn)−(d−1) 2−n(1− log e

k
)

Note that the β bound is the same as the bound given by Lemma 1. Since log(1 − x) <
−x log e for all 0 ≤ x < 1, we have

p(n, m, k, d) > β(n, m, k, d) · 2t
“

− log( m

d
)+

k(d−1)
n

log e+k−log e
”

= β(n, m, k, d) · 2t
“

k
“

1+
(d−1) log e

n

”

−log( em

d
)

”

≥ min
t

[

β(n, m, k, d) · 2t
“

k
“

1+
(d−1) log e

n

”

−log( em

d
)

”]

where the minimum is taken over all t such that 0 ≤ t ≤ bn/kc. The second inequality in
(2) is equivalent to

k
(

1 + (d−1) log e
n

)

− log
(

em
d

)

≥ 0.

Therefore, the minimum is attained when t = 0, which proves the claim.

It follows from Lemma 2 that Procedure P has the following lower bound on the success
probability:

p(n, m, k, d) > min
t

[

β(n, m, k, d) · 2t
“

k
“

1+
(d−1) log e

n

”

−log( em

d
)

”]

(3)

What value of k maximizes this bound for given n, m, and d? A more thorough analysis
shows that this bound is maximum when the inequality on k is replaced by the equality:

k =
log

(

em
d

)

1 + (d−1) log e
n

Consider the bound obtained from (3) by substituting this value for k. Differentiation by d
shows that this bound is maximum when d is close to n/ log3(em). However, k and d must
be integers, so we take the ceilings of those values of k and d.

Lemma 3. For all n and m such that 10 ≤ n < em ≤ 2
3
√

n/2, take the following values of
k and d:

k0 =









log
(

em
n

)

+ 3 log log(em)

1 + log e
log3(em)









d0 =

⌈

n

log3(em)

⌉

(4)

Then

p(n, m, k0, d0) > 2
−n

“

1− log 2
k0+2

”
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Proof. First, we show that Lemma 2 can be applied for k0 and d0, i.e. we show that (2)
holds. It is straightforward to check the first inequality in (2). For the second inequality
we have

k0

(

1 + (d0−1) log e
n

)

− log
(

em
d0

)

=

k0

(

1 + (d0−1) log e
n

)

− log(em) + log d0 ≥
log

(

em
n

)

+ 3 log log(em) − log(em) + log
(

n
log3(em)

)

= 0.

Next, we substitute k0 and d0 in the bound given by Lemma 2. Note that d0 = n/ log3(em)+
δ where 0 ≤ δ < 1. Then we have (using n < em)

p(n, m, k0, d0) > (emn)−(d0−1) 2
−n

“

1− log e

k0

”

= (emn)−δ+1 (emn)
− n

log3(em) 2
−n

“

1− log e

k0

”

> (emn)
− n

log3(em) 2
−n

“

1− log e

k0

”

= 2
−

“

n

log2(em)

” “

log(emn)
log(em)

”

−n
“

1− log e

k0

”

> 2
−

“

n

log2(em)

” “

log(em·em)
log(em)

”

−n
“

1− log e

k0

”

= 2
−n

“

2
log2(em)

”

−n
“

1− log e

k0

”

It remains to prove that

− 2n

log2(em)
− n +

n log e

k0
≥ −n

(

1 − log e

k0 + 2

)

This inequality is equivalent to

log e

k0
− log e

k0 + 2
≥ 2

log2(em)

which, in turn, is equivalent to

(

k0

log(em)

)2 (

1 +
2

k0

)

≤ log e (5)

Our assumption em ≤ 2
3
√

n/2 implies k0 < log(em). Indeed,

k0 < log
(em

n

)

+ 3 log log(em) + 1

= log(em) −
[

log
(n

2

)

− log(log3(em))
]

≤ log(em)

Therefore, the first factor in (5) is less than 1 under the assumption. To make sure that
the second factor is less than log e ≈ 1.44, we notice that k0 ≥ 5. Indeed, if n ≥ 10 then
k0 > 3 log log(em) > 3 log log(10) > 5.
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5. Main Result

The main algorithm (Algorithm A) is a repetition of Procedure P. Lemma 3 shows that if
we substitute k0 and d0 defined in (4) for the parameters of P then the success probability
of P is at least

2
−n

“

1− log 2
k0+2

”

The number r of repetitions is taken to be the inverse to this probability:

r =

⌈

2
n

“

1− log e

k0+2

”⌉

(6)

which gives a constant success probability of Algorithm A.

Algorithm A

Input: Formula F in CNF with m clauses over n variables.

Output: Satisfying assignment or “no”.

1. Compute k0 and d0 as in (4) and r as in (6).

2. Repeat the following r times:

(a) Run P(F, k0, d0);

(b) If a satisfying assignment is found, return it and halt.

3. Return “no”.

Theorem 1. Algorithm A runs in time

O(n2m) 2
n

“

1− log e

k0+2

”

For any satisfiable input formula such that 10 ≤ n < em ≤ 2
3
√

n/2, Algorithm A finds a
satisfying assignment with probability greater than 1/2.

Proof. To prove the first claim, we need to estimate the running time of Procedure P. The
procedure recursively invokes itself at most bn/k0c times. Each call scans the input formula
and eliminates at most k0 variables. Therefore, the procedure performs less than n scans.
Algorithm A repeats the procedure at most r times, which gives the bound in the claim.

Let pA(n, m) be the success probability of Algorithm A. Then

pA(n, m) ≥ 1 − (1 − p(n, m, k0, d0))
r

Using Lemma 3 and the inequality (1 − x)r ≤ e−xr, we have pA(n, m) ≥ 1 − e−1.

Remark 1. Note that we can write the bound in Theorem 1 as

O(n2m) 2
n

„

1− 1
ln(m

n )+O(ln ln m)

«

.
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Remark 2. For formulas with a constant clause density, i.e. if m is linear in n, our bound
is better than in the general case:

2
n

“

1− 1
O(ln ln m)

”

Remark 3. Our algorithm is based on the clause-shortening approach proposed by Schuler
[14]. His algorithm is derandomized with the same upper bound on the running time [5].
It would be natural to try to apply the same method of derandomization to our algorithm.
However, the direct application gives a deterministic algorithm with a much worse upper
bound. Is it possible to derandomize Algorithm A with the same or a slightly worse upper
bound?
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