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Abstract

Semidefinite optimization, commonly referred to as semidefinite programming, has been
a remarkably active area of research in optimization during the last decade. For combi-
natorial problems in particular, semidefinite programming has had a truly significant im-
pact. This paper surveys some of the results obtained in the application of semidefinite
programming to satisfiability and maximum-satisfiability problems. The approaches pre-
sented in some detail include the ground-breaking approximation algorithm of Goemans
and Williamson for MAX-2-SAT, the Gap relaxation of de Klerk, van Maaren and Warners,
and strengthenings of the Gap relaxation based on the Lasserre hierarchy of semidefinite
liftings for polynomial optimization problems. We include theoretical and computational
comparisons of the aforementioned semidefinite relaxations for the special case of 3-SAT,
and conclude with a review of the most recent results in the application of semidefinite
programming to SAT and MAX-SAT.
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1. Introduction

Semidefinite optimization, commonly referred to as semidefinite programming (SDP), has
been a remarkably active area of research in optimization during the last decade. The
rapidly growing interest is likely due to a convergence of several developments: the ex-
tension to SDP of efficient interior-point algorithms for linear programming; the richness
of the underlying optimization theory; and the recognition that SDP problems arise in
several areas of applications, such as linear control theory, signal processing, robust op-
timization, statistics, finance, polynomial programming, and combinatorial optimization.
The handbook [68] provides an excellent coverage of SDP as well as an extensive bibliog-
raphy covering the literature up to the year 2000. The impact of SDP in combinatorial
optimization is particularly significant, including such breakthroughs as the theta number
of Lovász for the maximum stable set problem [47], and the approximation algorithms of
Goemans and Williamson for the maximum-cut and maximum-satisfiability problems [24].
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The focus of this paper is on recent progress in the application of SDP to satisfia-
bility (SAT) and maximum-satisfiability (MAX-SAT) problems. This is one of the latest
developments in the long history of interplay between optimization and logical inference,
which dates back at least to the pioneering work of Williams, Jeroslow, and others (see e.g.
[12, 38, 66, 67]). The optimization perspective on propositional logic has mostly focussed on
the formulation of SAT and MAX-SAT as 0-1 integer linear programming problems. This
formulation can then be relaxed by allowing the 0-1 variables to take any real value between
0 and 1, thus yielding a linear programming relaxation, which is far easier to solve. For
some types of problems, such as Horn formulas and their generalizations, close connections
exist between the logic problem and its linear programming relaxation (see e.g. [13]). We
refer the reader to the book of Chandru and Hooker [15] for an excellent coverage of results
at the interface of logical inference and optimization.

This survey presents some of the approaches developed in recent years for obtaining
SDP relaxations for SAT and MAX-SAT problems; the main theoretical properties of these
relaxations; and their practical impact so far in the area of SAT. We discuss two types of
contributions of SDP researchers to satisfiability, namely

• polynomial-time approximation algorithms for MAX-SAT problems; and

• polynomial-time computational proofs of unsatisfiability for SAT.

Our focus in this paper is on the construction, analysis, and computational application of
SDP relaxations for SAT and MAX-SAT, and thus we do not discuss algorithms for solving
SDP problems in any detail. However, all the work presented is motivated by the fact
that SDP problems can be solved efficiently using one of the algorithms that have been
implemented and benchmarked by researchers in the area. We refer the reader to Monteiro
[51] for a survey of the state-of-the-art in SDP algorithms.

The remainder of this paper is organized as follows. After concluding this Introduction
with some preliminaries and notation, we provide in Section 2 a short introduction to SDP:
the definition of an SDP problem and examples of SDP relaxations for the maximum-cut
(max-cut) and MAX-SAT problems; some basic properties of positive semidefinite matrices;
a few results on the geometry of SDP for max-cut; the basic concepts of duality in SDP; and
a few comments on the computational complexity of SDP. Most of these results are referred
to in later sections, and the remainder are included for completeness of the presentation.
Section 2 may be skipped without loss of continuity by a reader familiar with SDP and its
application to combinatorial optimization problems.

Section 3 focuses on SDP-based approximation algorithms for the MAX-SAT problem.
We begin by presenting the ground-breaking random hyperplane rounding algorithm of
Goemans and Williamson for MAX-2-SAT [24]. We then provide an overview of subse-
quent improvements on their approach, including the vector rotation technique of Feige
and Goemans [22], and the biased hyperplane algorithm of Matuura and Matsui [50]. For
MAX-3-SAT, we present the algorithm of Karloff and Zwick whose performance ratio is
optimal (unless P=NP). We also mention some of the proposed extensions of these ideas to
general MAX-SAT.

In Section 4, we introduce the Gap relaxation of de Klerk and others [19, 20]. This
SDP relaxation is based on the concept of elliptic approximations for SAT. We show how
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this relaxation displays a deep connection between SAT and eigenvalue optimization. It also
characterizes unsatisfiability for a class of covering problems, including mutilated chessboard
and pigeonhole instances, in the sense that the Gap relaxation for this class is always
infeasible. Since it is possible to compute a certificate of infeasibility for this type of SDP
problem (see Section 2.3), this approach provides a proof of unsatisfiability in polynomial-
time for these problems in a fully automated manner.

We then introduce in Section 5 the concept of higher semidefinite liftings for polynomial
optimization problems. This concept was first applied to the max-cut problem in [9], and
more generally to 0-1 optimization problems in [42]. The higher liftings approach generalizes
the Gap relaxation, but the resulting SDP problems grow very rapidly in dimension. Hence,
the concept of partial higher liftings for SAT was proposed and analyzed in [3, 5]. The
objective here is the construction of SDP relaxations which are linearly-sized with respect
to the size of the SAT instance, and are thus more amenable to practical computation than
the entire higher liftings. The construction of such partial liftings for SAT is particularly
interesting because the structure of the SAT instance directly specifies the structure of
the SDP relaxation. The resulting SDP relaxations as well as some of their properties are
presented.

Finally, in Section 6, we compare the feasible sets of four of the aforementioned SDP
relaxations for the special case of 3-SAT, and in Section 7, we review the most recent results
in the application of SDP to SAT and MAX-SAT.

1.1 Preliminaries and Notation

We consider the satisfiability (SAT) problem for instances in conjunctive normal form
(CNF). Such instances are specified by a set of proposition letters p1, . . . , pn, and a proposi-

tional formula Φ =
m
∧

j=1
Cj , with each clause Cj having the form Cj =

∨

k∈Ij

pk ∨
∨

k∈Īj

p̄k where

Ij , Īj ⊆ {1, . . . , n}, Ij ∩ Īj = ∅, and p̄i denotes the negation of pi. Given such an instance,
we consider the following two questions:

SAT Determine whether Φ has a model, that is, whether there is a truth assignment to
the variables p1, . . . , pn such that Φ evaluates to TRUE;

MAX-SAT Find a truth assignment to the variables p1, . . . , pn which maximizes the num-
ber of clauses in Φ that are satisfied. This is the unweighted version of MAX-SAT.
If each clause Cj has a weight wj associated with it, then the weighted MAX-SAT
problem seeks a truth assignment so that the total weight of the satisfied clauses is
maximized.

It is clear that MAX-SAT subsumes SAT, and indeed it is likely a much harder problem. For
k ≥ 2, k-SAT and MAX-k-SAT refer to the instances of SAT and MAX-SAT respectively
for which all the clauses have length at most k.

The optimization problems we consider here are generally represented by a constraint
set F and an objective (or cost) function f that maps the elements of the constraint set
into real numbers. The set F represents all possible alternatives x, and for each such x,
the value f(x) of the objective function is a scalar measure of the desirability of choosing
alternative x. Thus, an optimal solution is an x∗ ∈ F such that f(x∗) ≥ f(x) for all x ∈ F .
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MAX-SAT problems are clearly optimization problems: given any truth assignment, the
objective function counts the number of satisfied clauses, and the constraints describe the
2n possible truth assignments. On the other hand, from an optimization perspective, the
SAT problem can be approached in two different ways:

1. we may convert it to a MAX-SAT instance with wj = 1 for every clause, solve it, and
determine that it is satisfiable (resp. unsatisfiable) if the optimal objective value is
equal to (resp. strictly less than) the number of clauses; or

2. we may view it as a feasibility problem, that is, we look for a set of constraints F

that must be satisfied by every model, but not by every truth assignment, and thus
we reduce the SAT problem to the problem of determining whether F has a feasible
solution (which will correspond to a model) or F = ∅ (which means the SAT instance
is unsatisfiable).

In this survey, we focus on the latter approach, but the former is briefly mentioned in
Section 7.

2. A Brief Introduction to Semidefinite Programming

Semidefinite programming refers to the class of optimization problems where a linear func-
tion of a symmetric matrix variable X is optimized subject to linear constraints on the
elements of X and the additional constraint that X must be positive semidefinite. This
includes linear programming (LP) problems as a special case, namely when all the matrices
involved are diagonal. A variety of polynomial-time interior-point algorithms for solving
SDPs have been proposed in the literature, and several excellent solvers for SDP are now
available. We refer the reader to the semidefinite programming webpage [33] as well as the
books [18, 68] for a thorough coverage of the theory and algorithms in this area, as well
as a discussion of several application areas where semidefinite programming researchers
have made significant contributions. In particular, SDP has been successfully applied in
the development of approximation algorithms for several classes of hard combinatorial op-
timization problems beyond the results that we present in this paper. The survey articles
[8, 45] provide an excellent overview of the results in this area.

Like LP problems, SDP problems also come in pairs. One of the problems is referred
to as the primal problem, and the second one is the dual problem. Either problem can be
chosen as “primal”, since the two problems are dual to each other. In this paper, we choose
the standard formulation of SDP as follows:

(P) max C • X (D) min bT y

s.t. Ai • X = bi, i = 1, . . . , ` s.t. Z =
∑̀

i=1
yiAi − C

X � 0 Z � 0

(1)

where (P) denotes the primal problem, and (D) the dual problem; the variables X and Z
are in Sn, the space of n × n real symmetric matrices; X � 0 denotes that the matrix X is
positive semidefinite; the data matrices Ai and C may be assumed to be symmetric without
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loss of generality; and b ∈ <` and y ∈ <` are column vectors. Furthermore, we use the
scalar product between two matrices in Sn defined as

R • S := TrRT S =
n
∑

i=1

n
∑

j=1

Ri,jSi,j

where TrM denotes the trace of the square matrix M , which is the sum of the diagonal
elements. In summary, SDP is the problem of optimizing a linear function subject to linear
equality constraints and the requirement that the matrix variable be positive semidefinite.
The set of positive semidefinite matrices has a surprisingly rich structure. In the next
subsection, we present some of the properties of such matrices that will be relevant for the
application of SDP to SAT and MAX-SAT.

Before proceeding, we provide two examples that illustrate how SDP can be applied to
combinatorial optimization problems. The first example is a derivation of the basic SDP
relaxation for the max-cut problem which, following the ground-breaking work of Goemans
and Williamson [24], has become one of the flagship problems for studying applications of
semidefinite programming to combinatorial optimization. The max-cut SDP relaxation is
of interest in the context of SAT because it is also a relaxation of the so-called cut polytope,
an important and well-known structure in the area of integer programming which is closely
related to the SAT relaxations in this survey. The reader is referred to [21] for a wealth
of results about the cut polytope. The second example below shows how the max-cut
relaxation can be extended to a basic SDP relaxation for MAX-SAT.

Example 1 (A basic SDP relaxation for max-cut). The max-cut problem is a combinatorial
optimization problem on undirected graphs with weights on the edges. Given such a graph
G = (V, E) with node set V and edge set E, the problem consists in finding a partition of
V into two parts so as to maximize the sum of the weights on the edges that are cut by the
partition. (An edge is said to be cut if it has exactly one end on each side of the partition.)
We assume without loss of generality that G is a complete graph since non-edges can be
added in with zero weight to complete the graph without changing the problem.

Let the given graph G have node set {1, . . . , n} and let it be described by its weighted
adjacency matrix W = (wij). Let the vector v ∈ {−1, 1}n represent any cut in the graph
via the interpretation that the sets {i : vi = +1} and {i : vi = −1} specify a partition of the
node set of the graph. Then max-cut may be formulated as:

max
∑

i<j

wij

(

1−vivj

2

)

s.t. v2
i = 1, i = 1, . . . , n,

(2)

so that the term multiplying wij in the sum equals one if the edge (i, j) is cut, and zero

otherwise. Since wij = wji,
∑

i<j

wij

(

1−vivj

2

)

=
∑

i,j

wij

(

1−vivj

4

)

, and the objective function
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can be expressed as:

1

4

∑

ij

(1 − vivj)wij =
1

4

∑

i





∑

j

wijv
2
i −

∑

j

wijvivj





=
1

4





∑

i

(
∑

j

wij)vivi −
∑

ij

vivj





=
1

4
(vT Diag(We)v − vT Wv)

=
1

4
vT Lv,

where L := Diag (We)−W denotes the Laplacian matrix associated with the graph, e denotes
the vector of all ones, and Diag denotes a diagonal matrix with its diagonal formed from
the vector given as its argument. We can thus rewrite (2) as:

max vT Qv
s.t. v2

i = 1, i = 1, . . . , n,

where Q := 1
4L.

To obtain an SDP relaxation, we now formulate max-cut in Sn. Consider the change
of variable X = vvT , v ∈ {−1, 1}n. Then X ∈ Sn and vT Qv = Tr vT Qv = TrQX (using
the fact that TrAB = TrBA), and it can be shown (see Theorem 8 below) that max-cut is
equivalent to

max TrQX
s.t. Xi,i = 1, i = 1, . . . , n

rank (X) = 1
X � 0, X ∈ Sn

(3)

Removing the rank constraint (which is not convex) gives the basic SDP relaxation:

max TrQX
s.t. diag (X) = e

X � 0
(4)

where diag denotes a vector containing the diagonal entries of the matrix argument. The
dual SDP problem is

min eT y
s.t. Z = Diag (y) − Q

Z � 0
(5)

Example 2 (A basic SDP relaxation for MAX-SAT). Given an instance of MAX-SAT, we
represent each boolean variable pk by a ±1 variable vk, and each negation by p̄k by a ±1
variable vn+k, k = 1, . . . , n. Furthermore, introduce v0 ∈ {−1, 1} with the convention that
pk is TRUE if vk = −v0, and FALSE if vk = v0. Now the general MAX-SAT problem can

6



Semidefinite Optimization Approaches for SAT and MAX-SAT

be formulated as:

max
m
∑

j=1
wjzj

s.t. zj ≤
∑

i∈Ij

1−v0vi

2 +
∑

i∈Īj

1+v0vi

2 , j = 1, . . . , m

0 ≤ zj ≤ 1, j = 1, . . . , m
vkvn+k = −1, k = 1, . . . , n
vi ∈ {−1, 1}, i = 0, 1, . . . , 2n,

where zj = 1 if and only if clause Cj is satisfied.
To relax this to an SDP, we replace the requirement that vi ∈ {−1, 1} by vi ∈ S

n , where
S

n denotes the unit sphere in <n+1. The matrix variable X for the SDP relaxation is now
obtained by letting Xs,t := vT

s vt, s, t = 0, 1, . . . , 2n. This gives a (2n + 1) × (2n + 1) matrix
and the SDP is:

max
m
∑

j=1
wjzj

s.t. zj ≤
∑

i∈Ij

1−X0,i

2 +
∑

i∈Īj

1+X0,i

2 , j = 1, . . . , m

0 ≤ zj ≤ 1, j = 1, . . . , m
Xk,n+k = −1, k = 1, . . . , n
‖vi‖2 = 1, i = 1, . . . , 2n
X = V T V

(6)

where V = (v0, v1, . . . , v2n). Since

X = V T V, ‖vi‖2 = 1 ∀i ⇔ diag (X) = e, X � 0

(see Theorem 5 below), this problem can be rewritten as an SDP problem closely related to
the basic max-cut relaxation:

max
m
∑

j=1
wjzj

s.t. zj ≤
∑

i∈Ij

1−X0,i

2 +
∑

i∈Īj

1+X0,i

2 , j = 1, . . . , m

0 ≤ zj ≤ 1, j = 1, . . . , m
Xk,n+k = −1, k = 1, . . . , n
diag (X) = e
X � 0

(7)

In both examples, the SDP problem is a relaxation of the original problem. Thus, the
optimal value of the SDP problem provides in each case a global upper bound on the true
optimal value of the combinatorial problem.

Note also that these two examples illustrate two different, but equivalent, ways of de-
riving (and interpreting) SDP relaxations for combinatorial problems:

1. Embed the vector of binary variables into a rank-one matrix, formulate the combi-
natorial problem exactly using the entries of this matrix, and then remove the rank
constraint to obtain an SDP; or
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2. Replace the binary variables with real vectors of a suitably chosen length, and interpret
their inner products as entries in a positive semidefinite matrix.

Both of these will be used in the sequel.

2.1 Positive Semidefinite Matrices

We begin with the definition of positive semidefiniteness.

Definition 1. A matrix A ∈ Sn is said to be positive semidefinite (psd) if

yT Ay =
∑

i,j

Ai,jyiyj ≥ 0 for all y ∈ <n.

When the condition holds with strict positivity for all y 6= 0, A is said to be positive definite
(pd).

We use the notation A � 0 for A positive semidefinite, and A � 0 for A positive definite.

We use Sn
+ (resp. Sn

++) to denote the set of psd (resp. pd) matrices.

Example 3. The matrix A =





1 −1 1
−1 1 −1

1 −1 1



 is a rank-1 feasible solution for max-cut.

To prove this, observe that A = vvT with v =
(

1 −1 1
)T

. Hence, yT Ay = (yT v)2 ≥ 0
for all y ∈ <n.

The 3 × 3 identity matrix is also feasible, and it is easy to check that it is pd.

It follows immediately from Definition 1 that:

• Every non-negative linear combination of psd matrices is psd:

yT





∑

j

λjXj



 y =
∑

j

λj

(

yT Xjy
)

≥ 0

whenever λj ≥ 0, Xj � 0 for all j.

• If λj ≥ 0,
∑

j λj > 0, Xj � 0 for all j, then the linear combination
∑

j λjXj satisfies

yT





∑

j

λjXj



 y =
∑

j

λj

(

yT Xjy
)

> 0

for all y 6= 0, and hence is pd.

• If X, Y ∈ Sn
+, then λX + (1 − λ)Y ∈ Sn

+ for all 0 ≤ λ ≤ 1. The same holds for Sn
++,

and thus both are convex sets. Note however that only Sn
+ is closed.

Consider the following definition:
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Definition 2. A subset K ⊂ Sn is called a cone if it is closed under positive scalar multi-
plication, i.e.

λX ∈ K whenever X ∈ K and λ > 0.

Note that the origin may or may not be included. Clearly, both Sn
+ and Sn

++ are convex
cones. The cone Sn

+ further possesses the following properties:

Definition 3. A cone K is pointed if

K ∩ (−K) = {0}.

It is proper if it has nonempty interior in Sn and is closed, convex, and pointed.
For a proper cone K, we define the dual cone K∗ as

K
∗ := {X ∈ S

n : X • Z ≥ 0 for all Z ∈ K}.

A proper cone K is self-dual if K∗ = K.

The self-duality of Sn
+ follows from the following theorem:

Theorem 1. [37, Corollary 7.5.4] A � 0 ⇐⇒ A • B ≥ 0 for all B � 0.

Hence,

(Sn
+)∗ = {Y ∈ S

n : X • Y ≥ 0 ∀X ∈ S
n
+}

= S
n
+ by Theorem 1.

Theorem 1 above is only one of many properties of psd matrices. We present here a few
more that will be of use in the sequel. First we have the following well-known theorem.

Theorem 2. [37, Theorem 4.1.5] (Spectral theorem) A ∈ Sn ⇐⇒ there is a real matrix
U s.t.

A = UDUT

with UT U = UUT = I, and D a real diagonal matrix of the eigenvalues of A.

Corollary 1. All the eigenvalues of A ∈ Sn are real.

This leads to a first characterization of psd matrices.

Theorem 3. [37, Theorem 7.2.1] For A ∈ Sn,

A � 0 ⇐⇒ all the eigenvalues of A are non-negative.

Corollary 2. The trace and determinant of a psd matrix are non-negative.

Another useful characterization of psd matrices is formulated in terms of the principal
minors of the given matrix.

Definition 4. Given A ∈ Sn and a subset I ⊆ {1 . . . n}, the principal submatrix of A
corresponding to I is the submatrix with rows and columns indexed by I. Its determinant
is called the principal minor.
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Example 4. For I = {2, 3} and

A =





1 2 3
2 4 3
3 3 6



 ,

the principal submatrix is

A(I) =

(

4 3
3 6

)

and the principal minor is det A(I) = 15.

The corresponding characterization of psd matrices is:

Theorem 4. [37, p.405] A � 0 ⇐⇒ all principal minors are non-negative.

Hence, by considering I = {1, 3}, we can prove that the matrix in Example 4 is not psd.
A property which will be useful for the application to MAX-SAT is the existence of a

square root of a psd matrix, which follows immediately from Theorems 2 and 3:

Theorem 5. A � 0 ⇐⇒ ∃ set of vectors {w1, . . . , wn} such that Ai,j = wT
i wj, i.e.,

A = W T W where W = (w1, . . . , wn).

Note that the matrix W is not unique. Indeed, for any orthogonal matrix Q ∈ <n, let WQ :=
Q W . Then W T

QWQ = W T QT QW = W T W = A, since QT Q = I by the orthogonality of
Q. A specific choice of W which is very useful from a computational point of view is the
Cholesky decomposition:

A � 0 ⇐⇒ A = LLT

where L is a lower triangular matrix. (If A is pd, then L is nonsingular with strictly positive
entries on the diagonal.) The Cholesky decomposition can be computed efficiently (see for
example [25]) and is useful in many practical algorithms for solving SDP problems.

Finally, there are two more properties which we will make use of:

Theorem 6. [37, Theorem 7.7.6] (Schur Complement theorem) If

M =

(

A B
BT C

)

,

and A is pd, then M � 0 ⇐⇒ C − BT A−1B � 0.

Theorem 7. [37, Theorem 6.1.10] Let A ∈ Sn with strictly positive diagonal, and strictly
diagonally dominant, i.e.

|Aii| >
n
∑

j 6=i,j=1

|Aij | for i = 1, . . . , n.

Then all the eigenvalues of A are strictly positive, i.e. A is pd.
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2.2 The Geometry of SDP for Max-cut

We present here some results about the feasible set of the basic SDP relaxation of max-cut.
We refer the reader to the excellent book of Deza and Laurent [21] which brings together
the large body of results in this area, and focus here on results that will be useful in the
sequel.

Definition 5. The cut matrices in Sn are the matrices of the form

(

1

x

)(

1

x

)T

for some x ∈ {−1, 1}n−1.

The cut matrices are real, symmetric, psd, and rank-1. Furthermore, all their entries
are ±1, and in particular diag (X) = e. The following theorem, based on results in [2], gives
two characterizations of these matrices involving positive semidefiniteness.

Theorem 8. Consider the following subsets of Sn:

χ :=

{

X ∈ S
n : X =

(

1

x

)(

1

x

)T

x ∈ {−1, 1}n−1

}

χ1 := {X ∈ S
n : diag X = e, rank X = 1, X � 0}

χ2 := {X ∈ S
n : Xij ∈ {−1, 1}, X � 0}.

Then χ = χ1 = χ2.

Proof: The inclusions χ ⊆ χ1 and χ ⊆ χ2 are clear. It remains to prove the reverse
inclusions.

Let X ∈ χ1. Then X is symmetric and rank-1, and thus it has the form X = yyT . Since
diag (X) = e, y2

i = 1 for every i, and we can choose y such that y1 = 1 (replace y by −y if
necessary), we deduce that X ∈ χ.

Let X ∈ χ2 and partition it as

(

1 xT

x X̄

)

, where the vector x is the first column of

X minus the initial 1. Then by Theorem 6, X̄ − xxT � 0. Since diag (xxT ) = e, it follows
that diag (X̄ −xxT ) = 0 and hence X̄ −xxT = 0 (apply Theorem 4 to every 2× 2 principal

minor). Therefore, X =
(

1
x

)(

1
x

)T
, so X ∈ χ.

Note that χ consists of 2n−1 isolated points in Sn. We now consider convex relaxations of
χ, particularly some over which it is possible to optimize in polynomial-time.

The smallest convex set containing χ is the cut polytope, defined as the convex hull of
the cut matrices:

Cn := conv

{

(

1

x

)(

1

x

)T

: x ∈ {−1, 1}n−1

}

. (8)

However, optimizing a linear function over Cn is equivalent to solving the max-cut problem,
and is hence NP-hard. A fruitful approach is to approximate the cut polytope by a larger
polytope containing it and over which we can optimize in polynomial time using LP. A
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well-known relaxation is the metric polytope Mn defined as the set of all matrices satisfying
the triangle inequalities:

Mn := {X ∈ Sn : diag (X) = e, Xij + Xik + Xjk ≥ −1,
Xij − Xik − Xjk ≥ −1,−Xij + Xik − Xjk ≥ −1,
−Xij − Xik + Xjk ≥ −1, ∀ 1 ≤ i < j < k ≤ n}.

(9)

The triangle inequalities model the fact that for any assignment of ±1 to the entries of x,
the entries Xij , Xik, Xjk of the corresponding cut matrix must comprise an even number of
negative ones.

Alternatively, it is possible to approximate the cut polytope with non-polyhedral convex
sets. For instance, if we relax χ1 by removing the rank constraint, we obtain another convex
relaxation:

En := {X ∈ S
n : diag (X) = e, X � 0}.

The set En is precisely the feasible set of the basic SDP relaxation of max-cut (4). It is also
known as the set of correlation matrices, and it has applications in several areas, including
statistics, finance, and numerical analysis (see e.g. [17, 34] and the references therein).

For 3× 3 principal submatrices of elements of En, the following Lemma from [7] will be
quite useful in the sequel.

Lemma 1. Suppose




1 a b
a 1 c
b c 1



 � 0.

Then

1. If a2 = 1 then c = a b;

2. If b2 = 1 then a = b c;

3. If c2 = 1 then a = c b.

Proof: Using Theorems 4 and 6, we have:





1 a b
a 1 c
b c 1



 � 0 ⇒
(

0 c − a b
c − a b 1 − b2

)

� 0 ⇒ c − a b = 0

which proves the first claim.

The other two claims follow by similar arguments.

2.3 Duality in SDP

For (P) and (D) in the primal-dual pair (1) defined above, we have (as in LP):

Theorem 9. (Weak Duality) If X̃ is feasible for (P) and ỹ, Z̃ for (D), then C • X̃ ≤ bT ỹ.

12
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Proof:

C • X̃ − b̃T ỹ =

(

m
∑

i=1

ỹiAi − Z̃

)

• X̃ −
∑

i

ỹiAi • X̃ = −Z̃ • X̃ ≤ 0,

by Theorem 1.

However, because of the nonlinear psd constraint, SDP duality has some cases that do not
occur in LP. We illustrate this with the following two examples from [68, pp. 71-72].

Positive Duality Gap In LP, if both (P) and (D) are feasible, then there is no duality
gap. This may fail for SDP. For example,

(P) max −ax11

s.t. x11 + 2x23 = 1
x22 = 0
X � 0.

(D) min −y2

s.t.





y2 − a 0 0
0 y1 y2

0 y2 0



 � 0

It is easy to see that (P) has optimal objective value −a, while (D) has 0.

Weak Infeasibility Even if there is no duality gap at optimality, the optimal value may
not be attained for (P) and (D). Consider the primal-dual pair

(P) max 2x12

s.t.

(

1 x12

x12 0

)

� 0

(D) min y1

s.t.

(

y1 −1
−1 y2

)

� 0

and observe that the optimal objective value 0 is attained for (P), but not for (D).

To avoid these difficulties, we require that the SDP pair satisfy a constraint qualification.
This is a standard approach in nonlinear optimization. The purpose of a constraint qualifi-
cation is to ensure the existence of Lagrange multipliers at optimality. These multipliers are
an optimal solution to the dual problem, and thus the constraint qualification ensures that
strong duality holds: it is possible to achieve primal and dual feasibility with no duality
gap. For applications to combinatorial optimization problems such as SAT and MAX-SAT,
Slater’s constraint qualification is usually easy to verify: simply exhibit a feasible matrix
which is pd (and not psd) for each of the SDP primal and dual problems.

Example 5 (Slater’s Constraint Qualification for max-cut). To illustrate Slater’s constraint
qualification, we show that it holds for the basic SDP relaxation of max-cut. Clearly, the
n × n identity matrix is pd and feasible for the primal SDP (4). For the dual, choose y

with entries sufficiently large such that yi >
n
∑

j=1
Qij for each i = 1, . . . , n. Then the matrix

Z = Diag (y) − Q will be pd (by Theorem 7) and feasible for the dual SDP (5).

Finally, we will use SDP to prove that certain instances of SAT are unsatisfiable. To
prove that an SDP is infeasible, it suffices to compute a certificate of infeasibility, that is,
a pair (y, Z) such that

bT y = −1 and Z −
∑̀

i=1

yiAi = 0.

13
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The existence of such a pair implies that the dual SDP problem is unbounded below, and by
weak duality (Theorem 9) the primal problem must be infeasible (since any primal feasible
solution implies a lower bound on the optimal solution of the dual).

2.4 Computational Complexity and SDP Relaxations

When considering optimization approaches, we must assess the computational complexity of
these problems. It is well known that SAT was the first problem shown to be NP-complete
[16], although several important special cases can be solved in polynomial time, and that
the MAX-SAT and MAX-k-SAT problems are known to be NP-hard. The hardness of these
problems motivates the study of optimization problems which are not exact formulations of
the SAT and MAX-SAT problems, but rather relaxations that can be solved in polynomial-
time. These relaxations then lead to either approximation algorithms with polynomial-time
complexity and provable approximation guarantees, or branch-and-bound (enumerative)
approaches which solve the problem exactly, but have no guaranteed polynomial-time com-
plexity. For completeness, we summarize here (based on [18, Section 1.9] and [45, Section
2.3]) a few facts about the complexity of SDP.

The fact that SDP problems can be solved in polynomial-time to within a given accuracy
follows from the complexity analysis of the ellipsoid algorithm (see [28]). More specifically
for our purposes, consider the SDP problem (P) defined in (1) with integer data, a given
rational ε > 0, and a given integer R > 0 such that either (P) is infeasible or ‖X‖ ≤ R
for some feasible X. Then it is possible to find in polynomial-time either a matrix X∗ at
distance at most ε from the feasible set of (P) such that C •X∗−p∗ ≤ ε, or a certificate that
the feasible set of (P) does not contain a ball of radius ε. The complexity of the algorithm
is polynomial in n, `, log(R), log( 1

ε
), and the bit length of the input data.

It is worth pointing out that, in contrast to LP, some peculiar situations may occur in
SDP. First, there are SDP problems with no rational optimal solution. For instance, the
pair of constraints (taken from [45])

(

1 x
x 2

)

� 0 and

(

2x 2
2 x

)

� 0

have x =
√

2 as the unique feasible solution (apply Corollary 2).
Another situation that may occur in SDP is that all feasible solutions are doubly expo-

nential. Consider the set of constraints (taken from [54])

x1 ≥ 2
(

1 xi−1

xi−1 xi

)

� 0, i = 2, . . . , n.

Then any feasible solution must satisfy xi ≥ 22i−1, i = 1, . . . , n, which means that every
rational feasible solution has exponential bitlength.

3. Approximation Algorithms for MAX-SAT

A ρ-approximation algorithm for MAX-SAT is a polynomial-time algorithm that computes
a truth assignment such that at least a proportion ρ of the clauses in the MAX-SAT instance

14
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are satisfied. The number ρ is the approximation ratio or guarantee. H̊astad [31] proved
that for any ε > 0, there is no ( 21

22 + ε)-approximation algorithm for MAX-2-SAT, and no
(7
8 + ε)-approximation algorithm for MAX-SAT (unless P=NP). This section, based on the

excellent presentation by Laurent and Rendl in [45, Section 6.6], presents an overview of
the approximation algorithms in the literature, and a detailed description of the ground-
breaking algorithm of Goemans and Williamson.

The first approximation algorithm for MAX-SAT is a 1
2 -approximation algorithm due

to Johnson [39]. Given n values πi ∈ [0, 1], i = 1, . . . , n, the algorithm sets each variable pi

to TRUE independently and randomly with probability πi. Therefore, the probability that
clause Cj =

∨

k∈Ij

pk ∨ ∨

k∈Īj

p̄k is satisfied equals

1 −
∏

k∈Ij

(1 − πk)
∏

k∈Īj

πk.

If we choose πi = 1/2 for all i = 1, . . . , n, this probability is 1 − 2−l(Cj), and thus the total
expected weight of the satisfied clauses is

∑

j

wj

(

1 − 2−l(Cj)
)

≥ 1

2

∑

j

wj .

This gives a randomized 1
2 -approximation algorithm for MAX-SAT.

Improved approximation algorithms have since been obtained. The first 3
4 -approximation

algorithm for MAX-SAT was proposed by Yannakakis [69] and makes use of solutions to
maximum flow problems, and subsequently Goemans and Williamson [23] presented another
3
4 -approximation algorithm using LP. However, the best-known approximation guarantees
for MAX-SAT problems make use of SDP relaxations and appropriate randomized rounding
schemes.

3.1 SDP-based Approximation Algorithms for MAX-2-SAT

The breakthrough was achieved by Goemans and Williamson [24] who proposed an SDP-
based approximation algorithm for the MAX-2-SAT problem with a 0.87856 guarantee.
Their algorithm uses an extension of the SDP relaxation (6) in Example 2 above, obtained
by adding for each 2-clause the appropriate inequality as follows:

pi ∨ pj : zj ≤ 1 −
(

1+v0vi

2

)

(

1+v0vj

2

)

=
3−v0vi−v0vj−vivj

4

p̄i ∨ pj : zj ≤ 1 −
(

1−v0vi

2

)

(

1+v0vj

2

)

=
3+v0vi−v0vj+vivj

4

pi ∨ p̄j : zj ≤ 1 −
(

1+v0vi

2

)

(

1−v0vj

2

)

=
3−v0vi+v0vj+vivj

4

p̄i ∨ p̄j : zj ≤ 1 −
(

1−v0vi

2

)

(

1−v0vj

2

)

=
3+v0vi+v0vj−vivj

4

For clarity of presentation, we assume for the remainder of this section that Īj = ∅ for
all clauses. It is straightforward to modify the relaxations and the analysis to account for
negated variables.
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The Goemans-Williamson SDP relaxation for MAX-2-SAT is thus

max
m
∑

j=1
wjzj

s.t. zj ≤
∑

i∈Ij

1−X0,i

2 , j = 1, . . . , m

zj ≤ 3−X0,i1
−X0,i2

−Xi1,i2

4
for j such that {i1, i2} = Ij ∪ Īj , j = 1, . . . , m

0 ≤ zj ≤ 1, j = 1, . . . , m
Xk,n+k = −1, k = 1, . . . , n
diag X = e
X � 0

(10)

Furthermore, it follows from Lemma 1 that Xk,n+k = −1 ⇒ Xs,n+k = −Xs,k for s =
0, 1, . . . , 2n, i.e. the columns k and n + k of X are the negative of each other, which is
consistent with the definition of the vectors vi in Example 2.

The algorithm of Goemans and Williamson proceeds as follows:

Step 1 Solve the SDP relaxation (10), obtaining an optimal value θ∗GW and a corresponding
optimal solution X∗.

Step 2 Compute a Gram decomposition of X∗ using, for instance, the Cholesky decompo-
sition (Theorem 5).

Thus obtain a set of 2n + 1 vectors v0, v1, v2, . . . , vn, vn+1, . . . , v2n with the property
that X∗

ij = vT
i vj and vn+k = −vk for k = 1, . . . , n.

Step 3 Randomly generate a vector η ∈ S
n and let Hη denote the hyperplane with normal

η.

Step 4 For i = 1, . . . , n, let

pi =

{

TRUE, if Hη separates the vectors v0 and vi

FALSE, otherwise.

We now sketch the analysis of the algorithm’s performance. Let ξij := arccos(vT
i vj)

denote the angle between vi and vj , p(i) denote the probability that the clause xi is satisfied,
and p(i, j) denote the probability that the clause xi∨xj is satisfied. Our goal is to establish
a relationship between θ∗GW and the expected number of satisfied clauses.

First, the probability that Hη separates v0 and vi is equal to ξ0i

π
. Therefore, p(i) = ξ0i

π
,

which implies that
p(i)

zi
=

2

π

ξoi

1 − cos ξoi
≥ α0

where

α0 := min
0≤ξ≤π

2

π

ξ

(1 − cos ξ)
≈ 0.87856. (11)

Thus, p(i) ≥ α0zi for every clause of length 1.
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For clauses of length 2, p(i, j) is equal to the probability that at least one of the vectors
vi, vj is separated from v0 by Hη. Let p̄(i, j) denote the probability that v0, vi and vj all
lie on the same side of Hη, so that p(i, j) = 1 − p̄(i, j). A straightforward way to calculate
this probability is to observe that it is equal to

1

2

(

ξ0i

π
+

ξ0j

π
+

ξij

π

)

and hence,

p(i, j)

z(Cj)
≥

1
2π

(ξ0i + ξ0j + ξij)
3−X0i−X0j−Xij

4

=
2

π

ξ0i + ξ0j + ξij

(1 − cos ξ0i) + (1 − cos ξ0j) + (1 − cos ξij)
≥ α0.

Hence, the expected total weight of the satisfied clauses is at least α0 times the optimal
value of the SDP relaxation.

Theorem 10. For an instance of MAX-2-SAT, the Goemans-Williamson algorithm as
described above provides a truth assignment for which

(expected number of satisfied clauses) ≥ α0θ
∗
GW ,

where θ∗GW is the optimal value of (10), and α0 is as defined in (11).

Since the optimal value of the MAX-2-SAT problem is at least the expected value of the
randomized truth assignment, this proves that the algorithm is an α0-approximation algo-
rithm for MAX-2-SAT. The randomized hyperplane rounding procedures can be formally
derandomized using the techniques in [49]. This MAX-2-SAT algorithm led to an improved
0.7584-approximation algorithm for general MAX-SAT in [23].

For MAX-2-SAT, a further significant improvement was achieved by Feige and Goe-
mans [22] who proposed a 0.931-approximation algorithm for MAX-2-SAT. They start with
the SDP relaxation (10) augmented by the

(

n
3

)

triangle inequalities (9). From the opti-
mal solution X∗ of this strengthened SDP relaxation, they obtain a set of n + 1 vectors
v0, v1, . . . , vn as in step 2 of the algorithm of Goemans and Williamson above. However,
instead of applying the random hyperplane rounding technique to these vectors directly,
Feige and Goemans use them to generate a set of rotated vectors to which they then apply
the hyperplane rounding.

The general idea is as follows. We define a rotation function to be a continuous function
r : [0, π] → [0, π] such that r(0) = 0 and r(π−ξ) = π−r(ξ). Given such a rotation function,
and the vectors v0, v1, . . . , vn, then for i = 1, . . . , n, we define vr

i , the rotated version of vi,
to be the vector obtained by rotating vi in the plane spanned by v0 and vi until the angle
between v0 and vi equals r(ξ0i). As in the analysis above, it now follows that pr(i, j), the
probability that at least one of the vectors vr

i , v
r
j is separated from v0 by Hη, is

r(ξ0i) + r(ξ0j) + r(ξij)

2π

and therefore
pr(i, j)

z(Cj)
≥ 2

π

r(ξ0i) + r(ξ0j) + r(ξij)

(1 − cos ξ0i) + (1 − cos ξ0j) + (1 − cos ξij)
.
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The goal now is to choose the rotation function r so that the performance ratio of the
algorithm is as high as possible in the worst case, and knowing that the quantities cos ξ0i,
cos ξ0j , and cos ξij satisfy the triangle inqualities (9).

Feige and Goemans [22] consider a family of rotation functions of the form

rλ(ξ) = (1 − λ)ξ + λ
π

2
(1 − cos ξ)

and claim a performance ratio of at least 0.93109 for the rotation function defined by
λ = 0.806765. A precise performance ratio of 0.931091 for this algorithm was subsequently
proved rigorously by Zwick [70].

Matuura and Matsui [50] obtained a higher performance ratio with an approximation
algorithm which, like that of Feige and Goemans, uses the SDP relaxation (10) with the
triangle inequalities (9) added. Matuura and Matsui fix v0 = (1, 0, . . . , 0)T , and the remain-
ing vectors v1, . . . , vn are obtained from X∗ as usual. Note that the restriction on v0 can
be easily handled via an appropriate orthogonal matrix (see Theorem 5 and the discussion
thereafter). Instead of rotating the set of vectors, Matuura and Matsui change the way of
choosing the random hyperplane. Instead of using a uniform distribution, they select the
random hyperplane using a distribution function on the sphere which is skewed towards
v0, and uniform in every direction orthogonal to v0. A judicious choice of the distribution
function yields a 0.935 performance ratio for their algorithm.

Finally, Lewin, Livnat and Zwick [46] proposed a combination of the Feige-Goemans
and Matuura-Matsui approaches, namely the rotation of the set of vectors and the skewed
hyperplane rounding, and obtained a 0.940-approximation algorithm for MAX-2-SAT.

3.2 SDP-based Approximation Algorithms for MAX-3-SAT

The MAX-2-SAT approach of Goemans and Williamson was extended to MAX-3-SAT by
Karloff and Zwick [40]. Karloff and Zwick use the following SDP relaxation:

max
m
∑

j=1
wjzj

s.t. zj ≤ 1−X0,i1

2 for j such that Ij ∪ Īj = {i1}
zj ≤ 3−X0,i1

−X0,i2
−Xi1,i2

4 for j such that Ij ∪ Īj = {i1, i2}
zj ≤ 1 − X0,i2

+X0,i3
+Xi1,i2

+Xi1,i3

4 , zj ≤ 1 − X0,i1
+X0,i3

+Xi1,i2
+Xi2,i3

4 ,

zj ≤ 1 − X0,i1
+X0,i2

+Xi1,i3
+Xi2,i3

4 , for j such that Ij ∪ Īj = {i1, i2, i3}
0 ≤ zj ≤ 1 j = 1, . . . , m
Xk,n+k = −1, k = 1, . . . , n
diag (X) = e
X � 0

(12)

and extend the analysis of Goemans and Williamson to obtain an optimal (unless P=NP)
7
8 -approximation algorithm for MAX-3-SAT [40, 70].

We use the same notation as above, and further let θ∗KZ denote the optimal value of
the SDP relaxation (12), and p(i, j, k) denote the probability that the clause xi ∨ xj ∨ xk

is satisfied. Our goal is to establish a relationship between θ∗KZ and the expected number
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of satisfied clauses. Since α0 > 7
8 , the analysis of Goemans and Williamson for clauses of

lengths 1 and 2 gives the desired performance ratio.
For clauses of length 3, however, a more careful analysis is required. Using the random

hyperplane rounding technique, we still have that p(i, j, k) is equal to the probability that
the random hyperplane Hη separates v0 from at least one of the vectors vi, vj , vk. Therefore,
p(i, j, k) = 1 − p̄(i, j, k), where p̄(i, j, k) is the probability that v0, vi, vj and vk all lie on
the same side of Hη. By symmetry, it follows that p̄(i, j, k) equals two times the probability
that ηT v0, ηT vi, ηT vj , and ηT vk are all non-negative. Denote this probability by q̄(i, j, k).
The estimation of q̄(i, j, k) is the main step of the performance analysis.

Since we are only interested in the four inner products above, we can restrict ourselves
to the 4-dimensional space spanned by v0, vi, vj , and vk, with the vector η replaced by its
normalized projection onto this space, which is uniformly distributed on the unit sphere S

3.
Hence, we may assume without loss of generality that we are working in <4 and that all
five vectors of interest lie in S

3. If we define

T (0, i, j, k) := {ν ∈ S
3 : νT vt ≥ 0, ∀t = 0, i, j, k},

then q̄(i, j, k) = volume(T (0,i,j,k))
volume(S3)

, where volume(·) denotes the 3-dimensional spherical vol-

ume. Since volume(S3) = 2π2, it follows that

p(i, j, k) = 1 − volume(T (0, i, j, k))

π2
.

It remains to estimate the spherical volume of T (0, i, j, k). When the vectors v0, vi, vj , and
vk are linearly independent, T (0, i, j, k) is a spherical tetrahedron. However, there is no
known closed-form formula for this volume, and it is possible that none exists.

Karloff and Zwick [40] proved that if the instance of MAX-3-SAT is satisfiable, that is,
if θ∗KZ = 1, then p(i, j, k) ≥ 7

8 . Zwick [70] proved rigorously the performance ratio of 7
8 for

general MAX-3-SAT. It is worth noting that both proofs were computer assisted: the first
result involved one computation carried out using Mathematica with 50 digits of precision,
and the second result was obtained using Zwick’s RealSearch system, which makes use of
interval arithmetic rather than floating point arithmetic, thus providing a rigorous proof.

3.3 Further Extensions of the SDP-based Approach to MAX-SAT

Karloff and Zwick [40] also proposed a general construction of SDP relaxations for MAX-
k-SAT. For MAX-4-SAT specifically, Halperin and Zwick [30] proposed an SDP relaxation,
studied several rounding schemes, and obtained approximation algorithms that almost at-
tain the theoretical upper bound of 7

8 . Halperin and Zwick also consider strengthened SDP
relaxations for MAX-k-SAT. Most recently, Asano and Williamson [10] have combined ideas
from several of the aforementioned approaches and obtained a 0.7846-approximation algo-
rithm for general MAX-SAT.

4. First Lifting: The Gap Relaxation

We now turn to the application of SDP to SAT in terms of a feasibility problem. The initial
work in this area is due to de Klerk, van Maaren, and Warners [19, 20] who introduced
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the Gap relaxation for SAT. This SDP relaxation was motivated by the concept of elliptic
approximations for SAT instances. Elliptic approximations were first proposed in [60] and
were applied to obtain effective branching rules as well as to recognize certain polynomially
solvable classes of SAT instances [59, 62, 63, 64, 65].

We let TRUE be denoted by 1 and FALSE by −1, and for clause j and k ∈ Ij ∪ Īj ,
define

sj,k :=







1, if k ∈ Ij

−1, if k ∈ Īj

0, otherwise.
(13)

The SAT problem is now equivalent to the integer programming feasibility problem

find x ∈ {−1, 1}n

s.t.
∑

k∈Ij∪Īj

sj,kxk ≥ 2 − l(Cj), j = 1, . . . , m (14)

where l(Cj) = |Ij ∪ Īj | denotes the number of literals in clause Cj .
If every xk = ±1, then the corresponding truth assignment satisfies Cj precisely when

l(Cj) ≥
∑

k∈Ij∪Īj

sj,kxk ≥ 2 − l(Cj) ⇔



1 −
∑

k∈Ij∪Īj

sj,kxk





2

≤ (l(Cj) − 1)2

This motivates the definition of the elliptic approximation of Cj , denoted Ej :

Ej :=







x ∈ <n :



1 −
∑

k∈Ij∪Īj

sj,kxk





2

≤ (l(Cj) − 1)2







(15)

This is called elliptic because the set of points in <n contained in Ej forms an ellipsoid.
Using these approximations, we can reformulate SAT as the problem of finding a ±1 vector
x in the intersection of the m ellipsoids. However, it is difficult to work directly with
intersections of ellipsoids, but we can use these ellipsoids to obtain an SDP relaxation of
this problem.

At this point, there are two ways to use the concept of elliptic approximation for con-
structing an SDP relaxation for SAT, both of which lead to the Gap relaxation. The first
derivation we present shows a deep connection between SAT and eigenvalue optimization,
and justifies the name of the relaxation. The second derivation is more direct, and sets the
stage for the subsequent development of tighter SDP relaxations.

4.1 First Derivation of the Gap Relaxation

This derivation is motivated by the transformation of the SAT problem into one involv-
ing the optimization of eigenvalues, which can be reformulated as an SDP problem. Our
presentation is based on the derivation in [20].

First, we consider the aggregation of this information into a single ellipsoid by taking
the sum of the m ellipsoids. This again yields an ellipsoid. Furthermore, rather than giving
each ellipsoid equal weight in the sum, we can associate a non-negative weight wj with each
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clause Cj , and thus define the weighted elliptic approximation of the given SAT formula Φ:

E(Φ, w) :=







x ∈ <n :

m
∑

j=1

wj



1 −
∑

k∈Ij∪Īj

sj,kxk





2

≤
m
∑

j=1

wj(l(Cj) − 1)2







(16)

It is straightforward to prove that

Theorem 11. [20, Theorem 2.1] Let Φ be a CNF formula with associated parameters sj,k

and weighted elliptic approximation E(Φ, w). If x ∈ {−1, 1}n is a satisfying truth assignment
of Φ, then x ∈ E(Φ, w) for any choice of w ≥ 0.

The contrapositive of Theorem 11 gives a sufficient condition for proving unsatisfiability.

Corollary 3. Let Φ be a CNF formula. If there exists w ≥ 0 such that x 6∈ E(Φ, w) for all
x ∈ {−1, 1}n, then Φ is unsatisfiable.

Since x ∈ {−1, 1}n implies xT x = n, another sufficient condition for unsatisfiability is:

Corollary 4. Let Φ be a CNF formula. If there exists w ≥ 0 such that x 6∈ E(Φ, w)
whenever xT x = n, then Φ is unsatisfiable.

Next, we rewrite condition (16) as

xT ST WSx − 2wT Sx ≤ rT w

where W = Diag (w), S = (sj,k) is an m × n matrix, and r is an m-vector with rj =
l(Cj)(l(Cj) − 2). Furthermore, we introduce an extra boolean variable xn+1 to obtain a
homogeneous quadratic inequality:

xT ST WSx − 2xn+1w
T Sx − rT w ≤ 0. (17)

Note that Theorem 11 and Corollaries 3 and 4 still hold for this homogenized inequality.
With x̃ := (x1, x2, . . . , xn, xn+1)

T and the (n + 1) × (n + 1) matrix

Q(w) :=

(

ST WS − rT w
n

I −ST w
−wT S 0

)

and since xT x = n, we can rewrite (17) as x̃T Q(w)x̃ ≤ 0. Finally, we add a correcting
vector u ∈ <n to obtain

Q̃(w, u) :=

(

ST WS − rT w
n

I − Diag (u) −ST w
−wT S eT u

)

and it is easy to check that x̃T Q̃(w, u)x̃ = x̃T Q(w)x̃.
The upshot of this derivation is that the given formula Φ is unsatisfiable if we can find a

pair (w, u) with w ≥ 0 for which x̃T Q̃(w, u)x̃ > 0 for all x̃ ∈ {−1, 1}n+1. Thus, we consider
the problem

max (n + 1)λ

s.t. Q̃(w, u) � λI
w ≥ 0

(18)

The optimal value of problem (18) is the gap of formula Φ. We have the following result:
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Corollary 5. If the formula Φ has a positive gap, then it is unsatisfiable.

Proof: If the optimal value of the problem (18) is positive, then there exists λ∗ > 0
and a pair (w, u) with w ≥ 0 such that Q̃(w, u) is pd, since Q̃(w, u) � λ∗I � 0 holds. By
Corollary 4, Φ must be unsatisfiable.

Note that problem (18) is an SDP. To write down its dual, we rewrite the matrix
Q̃(w, u) as follows:

Q̃(w, u) =
m
∑

j=1

wj

(

sjs
T
j − rj

n
I −sj

−sT
j 0

)

+
n
∑

k=1

uk

(

−eke
T
k 0

0 1

)

where sj denotes the jth column of ST , and ej denotes the n × n unit vector with a 1 in

the jth position and zeros elsewhere. Rewriting problem (18) as

−min −(n + 1)λ

s.t.
m
∑

j=1
wj





sjs
T
j − rj

n
I −sj 0

−sT
j 0 0

0 0 eje
T
j



 +
n
∑

k=1

uk





−eke
T
k 0 0

0 1 0
0 0 0





+λ





−I 0 0
0 −1 0
0 0 0



 � 0

we have a problem in the form (D) of Section 2. Therefore, the corresponding dual is the
problem of the form

max 0

s.t. Tr (sjs
T
j Y (1)) − rj

n
Tr (Y (1)) − 2sT

j y + Y
(2)
j,j = 0, j = 1, . . . , m

−Y
(1)
k,k + ȳ = 0, k = 1, . . . , n

−
n
∑

k=1

Y
(1)
k,k − ȳ = −(n + 1)







Y
(1)
n×n y 0
yT ȳ 0

0 0 Y
(2)
m×m






� 0

We make the following observations:

1. Since the objective function is constant, this is equivalent to a feasibility problem.

2. Y
(2)
m×m � 0 implies Y

(2)
j,j ≥ 0 for all j, hence the first set of constraints is equivalent to

sjs
T
j Y (1) − rj

n
Y (1) − 2sT

j y ≤ 0.

3. The constraints −
n
∑

k=1

Y
(1)
k,k − ȳ = −(n+1) and −Y

(1)
k,k + ȳ = 0, k = 1, . . . , n are precisely

equivalent to the constraints diag (Y (1)) = e and ȳ = 1.
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4. Hence, Tr (Y (1)) = n for every feasible solution.
Furthermore, Tr (sjs

T
j Y (1)) = Tr (sT

j Y (1)sj) = sT
j Y (1)sj .

Hence, the dual problem is equivalent to

find Y ∈ S
n+1

s.t. sT
j Y (1)sj − 2sT

j y ≤ rj , j = 1, . . . , m

diag (Y ) = e

Y =

(

1 yT

y Y (1)

)

Y � 0.

4.2 Second Derivation of the Gap Relaxation

Recall the inequality defining the ellipsoid approximation Ej of clause Cj :



1 −
∑

k∈Ij∪Īj

sj,kxk





2

≤ (l(Cj) − 1)2}

Expanding it, we obtain:

∑

k∈Ij∪Īj

∑

k′∈Ij∪Īj

sj,ksj,k′xkxk′ − 2
∑

k∈Ij∪Īj

sj,kxk ≤ l(Cj)
2 − 2 l(Cj)

and since every term in the double sum with k = k′ equals 1 (for ±1 solutions), we have

∑

k∈Ij∪Īj

∑

k′∈Ij∪Īj ,k′ 6=k

sj,ksj,k′xkxk′ − 2
∑

k∈Ij∪Īj

sj,kxk ≤ l(Cj)
2 − 3 l(Cj)

Letting Y = xxT and applying Theorem 8, we obtain the formulation

find Y ∈ S
n+1

s.t.
∑

k∈Ij∪Īj

∑

k′∈Ij∪Īj ,k′ 6=k

sj,ksj,k′Yk,k′ − 2
∑

k∈Ij∪Īj

sj,kY0,k ≤ l(Cj)
2 − 3 l(Cj)

diag (Y ) = e
rank Y = 1
Y � 0

where we refer to the first row (and column) of the matrix variable Y =

(

1 yT

y Y

)

as the

0th row (and column), so that Y has rows and columns indexed by {0, 1, . . . , n}. Omitting
the rank constraint, we obtain an SDP relaxation. It is straightforward to check that this
is the same SDP as that obtained using the first derivation.
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4.3 Properties of the Gap Relaxation

The Gap relaxation characterizes unsatisfiability for 2-SAT problems (see Theorem 12 be-
low). More interestingly, it also characterizes satisfiability for a class of covering problems,
such as mutilated chessboard and pigeonhole instances. Rounding schemes and approxima-
tion guarantees for the Gap relaxation, as well as its behaviour on so-called (2 + p)-SAT
problems, are studied in [19]. We present here some details about the first two properties
of the Gap relaxation, and refer the reader to the cited papers for more details.

First we note that for each clause of length 1 or 2, the elliptic approximation inequality
can be set to equality. Therefore we henceforth consider the Gap relaxation in the following
form:

find Y ∈ S
n+1

s.t.
∑

k∈Ij∪Īj

∑

k′∈Ij∪Īj

sj,ksj,k′Yk,k′ − ∑

k∈Ij∪Īj

sj,kY0,k = −1,

for j such that l(Cj) = 2
∑

k∈Ij∪Īj

∑

k′∈Ij∪Īj ,k′ 6=k

sj,ksj,k′Yk,k′ − 2
∑

k∈Ij∪Īj

sj,kY0,k ≤ l(Cj)
2 − 3 l(Cj),

for j such that l(Cj) ≥ 3
diag (Y ) = e
Y � 0

(19)

A first result about the Gap relaxation is:

Theorem 12. [20, Theorem 5.1] The Gap relaxation for a 2-SAT formula Φ has a positive
gap if and only if Φ is unsatisfiable.

Therefore, the Gap relaxation is feasible if and only if Φ is satisfiable. Furthermore,
given a feasible solution Y for the relaxation (19), it is straightforward to extract a truth
assignment satisfying the 2-SAT formula by the following algorithm:

1. For every k such that Y0,k 6= 0, set xk = sign (Y0,k);

2. For every remaining constraint j that remains unsatisfied, we have the constraint’s two
variables k and k′ such that Y0,k = 0 and Y0,k′ = 0. Hence, Yk,k′ = −sj,k sj,k′ = ±1.
Considering all these ±1 elements, the matrix can be completed to a rank-1 matrix
that is feasible for (19).

See [20, 22] for more details. We will make use of this result in the sequel.
The next result about the Gap relaxation is concerned with a class of covering instances.

Let {V1, . . . , Vq} and {Vq+1, . . . , Vq+t} be two partitions of the set of variables {p1, . . . , pn}
such that t < q. We consider CNF formulas Φ of the form:

q
∧

j=1





∨

k∈Vj

pk



 ∧
q+t
∧

j=q+1





∧

k1,k2∈Vj ,k1 6=k2

(p̄k1
∨ p̄k2

)



 . (20)

We show that the SDP approach, using the Gap relaxation, can prove such formulas to
be unsatisfiable in polynomial-time in a fully automated manner, i.e. without using any
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problem-specific information. For these instances, the Gap relaxation can be written as

find Y ∈ S
n+1

s.t.
∑

k∈Vj

∑

k′∈Vj ,k′ 6=k

Yk,k′ − 2
∑

k∈Vj

Y0,k ≤ |Vj |(|Vj | − 3), for j = 1, . . . , q

Yk,k′ + Y0,k + Y0,k′ = −1, for k, k′ ∈ Vj , k > k′, j = q + 1, . . . , q + t
diag (Y ) = e
Y � 0

(21)

We prove the following theorem.

Theorem 13. [20, Theorem 6.1] The SDP relaxation (21) is infeasible if and only if t < q
(i.e. the corresponding instance Φ is unsatisfiable).

Proof: If t ≥ q, then the formula is satisfiable, and clearly the SDP relaxation is feasible.

Suppose now that t < q. Consider the following partition of Y feasible for (21):

Y =

(

1 yT

y Ỹ

)

where Ỹ is n × n and diag (Ỹ ) = e. By Theorem 6 and the positive semidefiniteness of Y ,

(

1 yT

y Ỹ

)

� 0 ⇒ Ỹ − yyT � 0 ⇒ sT
j Ỹ sj − sT

j yyT sj ≥ 0 ⇒ sT
j Ỹ sj ≥ (sT

j y)2

for every vector sj . Hence, for each of the first q constraints,





∑

k∈Vj

Y0,k





2

≤
∑

k∈Vj

∑

k′∈Vj

Yk,k′ = |Vj | +
∑

k∈Vj

∑

k′∈Vj ,k′ 6=k

Yk,k′

and therefore





∑

k∈Vj

Y0,k





2

− 2
∑

k∈Vj

Y0,k ≤ |Vj | +
∑

k∈Vj

∑

k′∈Vj ,k′ 6=k

Yk,k′ − 2
∑

k∈Vj

Y0,k

≤ |Vj | + |Vj |(|Vj | − 3) = |Vj |(|Vj | − 2)

which implies that

2 − |Vj | ≤
∑

k∈Vj

Y0,k ≤ |Vj |.

Summing these inequalities over j = 1, . . . , q, we obtain

2q − n ≤
n
∑

k=1

Y0,k ≤ n (22)
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Now consider the remaining t constraints. For j = q + 1, . . . , t, adding up all the
corresponding constraints yields

∑

k∈Vj

∑

k′∈Vj ,k′>k

Yk,k′ + (|Vj | − 1)
∑

k∈Vj

Y0,k = −
(|Vj |

2

)

which is equivalent to
∑

k∈Vj

∑

k′∈Vj ,k′ 6=k

Yk,k′ + 2 (|Vj | − 1)
∑

k∈Vj

Y0,k = −|Vj | (|Vj | − 1)

and therefore




∑

k∈Vj

Y0,k





2

− |Vj | + 2 (|Vj | − 1)
∑

k∈Vj

Y0,k ≤ −|Vj | (|Vj | − 1)

which is equivalent to





∑

k∈Vj

Y0,k





2

+ 2 (|Vj | − 1)
∑

k∈Vj

Y0,k ≤ −|Vj | (|Vj | − 1) + |Vj | = −|Vj | (|Vj | − 2)

which implies that

−|Vj | ≤
∑

k∈Vj

Y0,k ≤ 2 − |Vj |, for j = q + 1, . . . , t.

Summing these inequalities over j = q + 1, . . . , t, we obtain

−n ≤
n
∑

k=1

Y0,k ≤ 2t − n (23)

Equations (22) and (23) together imply

2q ≤
n
∑

k=1

Y0,k ≤ 2t

which is a contradiction since t < q.

Theorem 13 shows that for the class of instances (20), the SDP approach not only proves that
infeasibility can be shown in polynomial-time, but also provides a certificate of infeasibility
in polynomial-time without making explicit use of any additional knowledge about the
instance.

On the other hand, for any instance of SAT in which all the clauses have length three
or more, the identity matrix is always feasible for the Gap relaxation. Therefore, this
relaxation cannot prove unsatisfiability for any such instances. The work presented in the
following section was partly motivated by the search for an SDP relaxation which can be
used to prove that a given SAT formula is unsatisfiable independently of the lengths of the
clauses in the instance.
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5. Strengthened SDP Relaxations via Higher Liftings

The SDP relaxations presented in this Section are strengthenings of the Gap relaxation,
and they inherit many of its properties. They are constructed using ideas from a “higher
liftings” paradigm for constructing SDP relaxations of discrete optimization problems.

The concept of lifting has been proposed by several researchers and has led to different
general purpose hierarchical frameworks for solving 0-1 optimization problems. The idea of
applying SDP relaxations to 0-1 optimization dates back at least to Lovász’s introduction of
the so-called theta function as a bound for the stability number of a graph [47]. Hierarchies
based on LP relaxations include the lift-and-project method of Balas, Ceria and Cornuéjols
[11], the reformulation-linearization technique of Sherali and Adams [55], and the matrix-
cuts approach of Lovász and Schrijver [48]. Researchers in the SAT community have studied
the complexity of applying some of these techniques, and generalizations thereof, to specific
classes of SAT problems (see the recent papers [14, 27, 26]). We note that semidefinite
constraints may also be employed in the Lovász-Schrijver matrix-cuts approach, but in a
different manner from that of the lifting paradigm we consider in this section.

The higher-liftings paradigm we consider is based on the Lasserre hierarchy of SDP
relaxations of polynomial optimization problems. The idea behind this paradigm can be
summarized as follows. Suppose that we have a discrete optimization problem on n binary
variables. The SDP relaxation in the space of (n+1)× (n+1) symmetric matrices is called
a first lifting. (For SAT, this corresponds to the Gap relaxation.) Note that, except for the
first row, the rows and columns of the matrix variable in this relaxation are indexed by the
binary variables themselves. To generalize this operation, we allow the rows and columns
of the SDP relaxations to be indexed by subsets of the discrete variables in the formulation.
These larger matrices can be interpreted as higher liftings, in the spirit of the second lifting
for max-cut proposed by Anjos and Wolkowicz [9], and its generalization for 0-1 optimization
independently proposed by Lasserre [41, 42]. A detailed analysis of the connections between
the Sherali-Adams, Lovász-Schrijver, and Lasserre frameworks was done by Laurent [43].
In particular, Laurent showed that the Lasserre framework is the tightest among the three.
This fact motivates the study of its application to the SAT problem.

For higher liftings of the max-cut problem, one of the theoretical questions that has
been considered is to prove conditions on the rank of an optimal matrix for the SDP relax-
ation which ensure that the optimal value of the SDP is actually the optimal value of the
underlying discrete problem. This question was settled for liftings of max-cut as follows.
First, the rank-1 case is obvious since the optimal solution of the SDP is then a cut matrix
(Theorem 8). For second liftings, a rank-2 guarantee of optimality was proved by Anjos and
Wolkowicz [7]. This result was extended to the whole of the Lasserre hierarchy by Laurent
[44] who showed that as the higher liftings for max-cut in the Lasserre hierarchy increase in
dimension, correspondingly increasing rank values become sufficient for optimality. These
rank-based conditions for optimality can be interpreted as a measure of the relative strength
of the relaxations.

Applying directly the Lasserre approach to SAT, we would use the SDP relaxations
QK−1 (as defined in [41]) for K = 1, 2, . . . , n where the matrix variable of QK−1 has rows
and columns indexed by all the subsets I with |I| ≤ K. (Hence for K = 1, we obtain
the matrix variable of the Gap relaxation.) The results in [42] imply that for K = n,

27



M.F. Anjos

the feasible set of the resulting SDP relaxation is precisely the cut polytope. However,
this SDP has dimension exponential in n. Indeed, the SDPs that must be solved when
using this approach quickly become far too large for practical computation. For instance,
even for second liftings (corresponding to K = 2) of max-cut problems, only problems
with up to 27 binary variables were successfully solved in [2]. This limitation motivated
the study of partial higher liftings, where we consider SDP relaxations which have a much
smaller matrix variable, as well as fewer linear constraints. The objective of this approach
is the construction of SDP relaxations which are linearly-sized with respect to the size of
the SAT instance, and are thus more amenable to practical computation than the entire
higher liftings. The construction of such partial liftings for SAT is particularly interesting
because we can let the structure of the SAT instance specify exactly the structure of the
SDP relaxation. We now outline the construction of these relaxations.

5.1 Derivation of Two SDP Relaxations

The strengthened SDP relaxations are based on the following proposition.

Proposition 1. For l(Cj) ≥ 2, clause Cj =
∨

k∈Ij

xk ∨ ∨

k∈Īj

x̄k is satisfied by xk = ±1, i ∈

Ij ∪ Īj, if and only if

l(Cj)
∑

t=1

(−1)t−1





∑

T⊆Ij∪Īj ,|T |=t

(

∏

k∈T

sj,k

)(

∏

k∈T

xk

)



 = 1.

where the coefficients sj,k are as defined in (13) above.

Proof: By construction of the coefficients sj,k, the clause is satisfied if and only if sj,kxk

equals 1 for at least one k ∈ Ij ∪ Īj , or equivalently, if
∏

k∈Ij∪Īj

(1 − sj,kxk) = 0. Expanding

the product, we have

1 +

l(Cj)
∑

t=1

(−1)t





∑

T⊆Ij∪Īj ,|T |=t

(

∏

k∈T

sj,kxk

)



 = 0.

The result follows.

Using Proposition 1, we formulate the satisfiability problem as follows:

find x1. . . . , xn

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

k∈T

sj,k

)(

∏

k∈T

xk

)

]

= 1, j = 1, . . . , m

x2
k = 1, k = 1, . . . , n

The next step is to formulate the problem in symmetric matrix space. Let P denote the set
of nonempty sets I ⊆ {1, . . . , n} such that the term

∏

k∈I

xk appears in the above formulation.
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Also introduce new variables

xI :=
∏

k∈I

xk,

for each I ∈ P, and thus define the rank-one matrix

Y :=











1
xI1
...

xI|P|





















1
xI1
...

xI|P|











T

,

whose |P|+1 rows and columns are indexed by {∅}∪P. By construction of Y , we have that
Y∅,I = xI for all I ∈ P. Using these new variables, we can formulate the SAT problem as:

find Y ∈ S
1+|P|

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

k∈T

sj,k

)

Y∅,T

]

= 1, j = 1, . . . , m

diag (Y ) = e
rank (Y ) = 1
Y � 0

(24)

Relaxing this formulation by omitting the rank constraint would give an SDP relaxation
for SAT. However, in order to tighten the resulting SDP relaxation, we first add redundant
constraints to this formulation. This approach of adding redundant constraints to the
problem formulation so as to tighten the resulting SDP relaxation is discussed in detail for
the max-cut problem in [8].

The constraint rank (Y ) = 1 implies that for every triple I1, I2, I3 of subsets of indices
in P such that the symmetric difference of any two equals the third, the following three
equations hold:

Y∅,I1 = YI2,I3 , Y∅,I2 = YI1,I3 , and Y∅,I3 = YI1,I2 . (25)

Hence we can add some or all of these redundant constraints to formulation (24) without
affecting its validity. We choose to add the equations of the form (25) for all the triples
{I1, I2, I3} ⊆ P satisfying the symmetric difference condition and such that (I1 ∪ I2 ∪ I3) ⊆
(Ij ∪ Īj) for some clause j. Beyond the fact that they tighten the SDP relaxation, this
particular subset of redundant constraints was chosen because it suffices for proving the
main theoretical result (Theorem 14 below). We refer to the resulting SDP relaxation as
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the R3 relaxation:

(R3)

find Y ∈ S
1+|P|

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

k∈T

sj,k

)

Y∅,T

]

= 1, j = 1, . . . , m

Y∅,I1 = YI2,I3 , Y∅,I2 = YI1,I3 , and Y∅,I3 = YI1,I2 , ∀{I1, I2, I3} ⊆ P

such that I1∆I2 = I3 and (I1 ∪ I2 ∪ I3) ⊆ (Ij ∪ Īj) for some clause j
diag (Y ) = e
Y � 0

where Ii∆Ij denotes the symmetric difference of Ii and Ij . The R3 terminology relates to
the fact that a rank-3 guarantee holds for this SDP relaxation (see Theorem 14).

If we had chosen P to contain all the subsets I with |I| ≤ K, where K denotes the length
of the longest clause in the SAT instance, and had added all the redundant constraints of the
form YI1,I2 = YI3,I4 , where {I1, I2, I3, I4} ⊆ {∅}∪P and I1∆I2 = I3∆I4, then we would have
obtained the Lasserre relaxation QK−1 for this problem. However, as mentioned earlier,
the resulting SDP has a matrix variable of dimension |P| + 1 = O(nK), which is too large
for practical computational purposes, even when K = 2. In contrast, the partial higher
liftings approach yields an SDP relaxation with a much smaller matrix variable as well as
fewer linear constraints corresponding to symmetric differences. The matrix variable of R3

has dimension O(m ∗ 2K) = O(m), since for practical SAT instances K is a very small
constant. The number of constraints is also O(m), and although the SDP can have as many
as (1

2(2K − 2)(2K − 1) + 1)m linear constraints, the presence of common variables between
different clauses means that it will typically have many fewer constraints.

The computational performance of R3 was studied in [5] and it was observed that when
used in a branching algorithm, the SDP relaxation is still impractical for solving SAT
problems with more than about 100 clauses, unless the solution can be obtained without
resorting to branching (see Sections 5.3 and 6.2 for more details on the computational
performance of R3). Therefore, a more compact semidefinite relaxation, denoted R2, was
proposed in [3]. This relaxation is also a strengthening of the Gap relaxation, and is
computationally superior to R3 because of significant reductions in the dimension of the
matrix variable and in the number of linear constraints. The matrix variable of the compact
SDP relaxation is a principal submatrix of the matrix variable in R3, and it was shown in
[3] that although the SDP relaxation R2 does not retain the rank-3 guarantee, it has a
rank-2 guarantee. Hence, it is a compromise relaxation between the Gap and R3, and it
completes a trio of linearly sized semidefinite relaxations with correspondingly stronger rank
guarantees.

To obtain R2, we replace P by a smaller set of column indices, namely

O := {I | I ⊆ (Ij ∪ Īj) for some j, |I| mod 2 = 1}.

The set O consists of the sets of odd cardinality in P. It is clear that the sets in P of even
cardinality corresponding to terms appearing in the above formulation are all generated
as symmetric differences of the sets in O. Having chosen our set of column indices, we
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introduce new variables
xI :=

∏

k∈I

xk,

for each I ∈ O, and define the rank-1 matrix

Y :=











1
xI1
...

xI|O|





















1
xI1
...

xI|O|











T

,

whose |O| + 1 rows and columns are indexed by ∅ ∪ O. By construction, we have Y∅,I = xI

for all I ∈ O and Y{min(I)},I∆{min(I)} = xI for all I ∈ P\O. (Note that T∆{min(T )} is an
element of P\O when |T | is even.) This means that the new variables corresponding to
subsets of logical variables of odd cardinality appear exactly once in the first row of Y , and
the new variables corresponding to subsets of even cardinality have the “representative”
matrix entries Y{min(T )},T∆{min(T )}. By the same approach as for R3 above, we obtain the
R2 relaxation:

(R2)

find Y ∈ S
|O|+1

s.t.
l(Cj)
∑

t=1
(−1)t−1

[

∑

T⊆Ij∪Īj ,|T |=t

(

∏

k∈T

sj,k

)

Y (T )

]

= 1, j = 1, . . . , m

Y (I1) = YI2∩I3,I2∪I3 , ∀{I1, I2, I3} ⊆ P\O such that I1 = I2∆I3

and (I1 ∪ I2 ∪ I3) ⊆ (Ij ∪ Īj) for some clause j
diag (Y ) = e
Y � 0

where

Y (T ) =

{

Y∅,T , |T | odd;
Y{min(T )},T∆{min(T )}, |T | even.

Note that for 2-SAT, R2 is precisely the Gap relaxation.

5.2 Theoretical Properties of the Strengthened SDP Relaxations

It is clear that if the propositional formula Φ is satisfiable, then using any model it is
straightforward to construct a rank-one matrix Y feasible for every SDP relaxation. The
contrapositive of this statement gives a sufficient condition for proving unsatisfiability using
the SDP relaxations.

Lemma 2. Given a propositional formula in CNF, if any one of the SDP relaxations is
infeasible, then the CNF formula is unsatisfiable.

Several results are known for conditions on the rank of a feasible matrix Y which guar-
antee that a model can be obtained from Y . Such rank conditions for an SDP relaxation
are significant for two reasons. Firstly, from a theoretical point of view, the rank value can
be viewed as a measure of the strength of the relaxation. For general instances of SAT,
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the Gap relaxation will prove satisfiability only if a feasible matrix of rank 1 is obtained,
whereas for our relaxation any matrix with rank 1, 2, or 3 immediately proves satisfiability.
Furthermore, the higher rank value also reflects the relaxation’s greater ability to detect
unsatisfiability, compared to the Gap relaxation. Secondly, from a practical point of view,
the rank conditions are helpful because of the inevitable occurrence of SDP solutions with
high rank when there are multiple optimal solutions to the original binary problem. This
happens because interior-point algorithms typically converge to a matrix in the interior of
the optimal face of Sn

+, and in the presence of multiple solutions this face contains matrices
of rank higher than one. Therefore, the ability to detect optimality for as high a rank
value as possible may allow an enumerative algorithm to avoid further branching steps and
potentially yield a significant reduction in computational time.

The results on the SDP relaxations are summarized in the following theorem:

Theorem 14. Given any propositional formula in CNF, consider the SDP relaxations
presented. Then

• If at least one of the Gap, R2, or R3 relaxations is infeasible, then the formula is
unsatisfiable.

• If Y is feasible for the Gap and rank Y = 1, then a truth assignment satisfying the
formula can be obtained from Y .

• If Y is feasible for R2 and rank Y ≤ 2, then a truth assignment satisfying the formula
can be obtained from Y .

• If Y is feasible for R3 and rank Y ≤ 3, then a truth assignment satisfying the formula
can be obtained from Y .

For any instance of SAT, the SDP relaxations Gap, R2, and R3 form a trio of linearly
sized SDP relaxations for SAT with correspondingly stronger rank guarantees. If we use
R1 to refer to the Gap relaxation, then the names of the relaxations reflect their increasing
strength in the following sense: For k = 1, 2, 3, any feasible solution to the relaxation Rk

with rank at most k proves satisfiability of the corresponding 3-SAT instance. Furthermore,
the increasing values of k also reflect an improving ability to detect unsatisfiability, and an
increasing computational time for solving the relaxation. Nonetheless, the dimensions of
the relaxations grow only linearly with n and m. If we consider the Lasserre relaxations
QK−1 for K ≥ 3, results such as Theorem 14 (and stronger ones) would follow from [44,
Theorem 21]. The important point here is that Theorem 14 holds for the significantly
smaller relaxations obtained as partial liftings.

To conclude this Section, we sketch the proof that if Y is feasible for the R2 relax-
ation and rank Y ≤ 2, then Y yields a truth assignment proving that the SAT instance is
satisfiable. The result follows from the following lemmata.

Lemma 3. [7, Lemma 3.11] Suppose that the matrix








1 a b c
a 1 c b
b c 1 a
c b a 1








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is positive semidefinite and has rank at most two. Then at least one of a, b, c equals ±1.

Lemma 4. If Y is feasible for the R2 relaxation and rank Y ≤ 2, then each column indexed
by a subset γ ∈ O of cardinality |γ| ≥ 3 is a ±1 multiple of a column corresponding to a
singleton in O.

Proof: For every subset γ with |γ| ≥ 3, let i1, i2, and i3 denote any three variables in
γ, and let γ̄ = γ\{i1, i2, i3}} be the set of all the other variables in γ. (Note that γ̄ may
be empty.) Let Yγ denote the principal submatrix of the matrix variable Y corresponding
to the rows and columns of Y indexed by {∅, {i1} ∪ γ̄, {i2} ∪ γ̄, {i3} ∪ γ̄, γ}. The principal
submatrix Yγ has the form













1 Y∅,{i1}∪γ̄ Y∅,{i2}∪γ̄ Y∅,{i3}∪γ̄ Y∅,γ

Y∅,{i1}∪γ̄ 1 Y{i1},{i2} Y{i1},{i3} Y{i2},{i3}

Y∅,{i2}∪γ̄ Y{i1},{i2} 1 Y{i2},{i3} Y{i1},{i3}

Y∅,{i3}∪γ̄ Y{i1},{i3} Y{i2},{i3} 1 Y{i1},{i2}

Y∅,γ Y{i2},{i3} Y{i1},{i3} Y{i1},{i2} 1













Since rank Y ≤ 2 ⇒ rank Yγ ≤ 2, it follows by Lemma 3 that at least one of Y{i1},{i2},
Y{i1},{i3}, and Y{i2},{i3} equals ±1.

Suppose (without loss of generality) that Y{i1},{i2} = δ, where δ2 = 1. Then for every
row index I ′ in O the principal submatrix indexed by {I ′, γ\{i1, i2}}, γ} has the form





1 YI′,γ\{i1,i2} YI′,γ

YI′,γ\{i1,i2} 1 δ

YI′,γ δ 1





and by Lemma 1, it follows that YI′,γ\{i1,i2} = δ YI′,γ . Hence, the entire column γ equals δ
times the column γ\{i1, i2}.

If γ\{i1, i2} is a singleton, we are done. Otherwise, repeat the argument using γ\{i1, i2}
in place of γ. Eventually a singleton will be reached, and then the column corresponding
to the singleton will be a ±1 multiple of the column γ.

Let us now consider the implications of Lemma 4 for the constraints enforcing satisfia-
bility. For each term of the form Y (T ) such that |T | ≥ 3, Lemma 4 implies that

• it is equal to ±1, or

• if |T | is odd, then it is equal to ±Y ({i}) for some i ∈ T , or

• if |T | is even, then it is equal to ±Y ({i, j}) for some {i, j} ⊆ T .

Therefore, in the constraints enforcing satisfiability, all the terms corresponding to subsets
of cardinality greater than 2 can be replaced either by ±1 or by a term corresponding to a
subset of cardinality at most 2. (The case of 3-SAT is discussed in detail in [3].)

Now, consider a reduced SDP obtained as follows: For every constraint, make all the
substitutions for terms corresponding to subsets of cardinality greater than 2 using the
observation above. Simplifying the result, each constraint becomes either a tautology or a
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constraint of the form corresponding to a clause of length 2. Take every constraint arising
from the latter case, and let the matrix Ỹ be indexed by the set of singletons {ik} such that
Y ({ik}) appears in at least one of these constraints. The SDP defined by the matrix Ỹ and
the constraints arising from the second case above, plus the constraint Ỹ � 0, is precisely of
the form of the Gap relaxation for an instance of 2-SAT. This means that Lemma 4 allows
us to reduce the problem to an instance of 2-SAT. Finally, recall that we have a matrix Y
feasible for the original R2 relaxation, and observe that its principal submatrix indexed by
the set of singletons used to define Ỹ is feasible for this reduced SDP. By Theorem 12, this
implies that the instance of 2-SAT is satisfiable. Consider a model for the 2-SAT instance
obtained using the algorithm following Theorem 12. For each of the variables in the original
instance of SAT that are not present in this truth assignment, either they should be set
equal to (or to the negative of) one of the variables in this assignment (according to the
analysis above), or they are “free” and can be assigned the value +1, say. We thus obtain
a model for the original SAT instance, and have proved the claim.

5.3 Computational Proofs of Infeasibility for a Class of Hard Instances

As mentioned at the beginning of this section, an important objective in the study of partial
higher liftings for SAT is the construction of SDP relaxations which are more amenable to
practical computation than the entire higher liftings. The potential of this computational
approach has been shown in the results obtained by the author in [4, 5]. The results in
those papers show that the R3 relaxation yielded proofs of unsatisfiability for some hard
instances with up to 260 variables and over 400 clauses. In particular, R3 is able to prove
the unsatisfiability of the smallest unsatisfiable instance that remained unsolved during the
SAT Competitions in 2003 and 2004.

Researchers in SDP have developed a variety of excellent solvers, most of which are
freely available. An extensive listing of solvers is available at [32]. For application to SAT,
it is important to use a solver which, when given an infeasible SDP, provides us with a
certificate of infeasibility, because that certificate is for us a proof of unsatisfiability for the
SAT instance.

The results we present are for randomly generated SAT instances obtained using the
generator hgen8. A set of 12 instances generated using hgen8 was submitted for the SAT
Competition 2003 (see [1]) The source code to generate these instances, which includes an
explanation of their structure, is available at [35]. The results in Table 1 were obtained using
the solver SDPT3 (version 3.0) [57, 56] with its default settings, and running on a 2.4GHz
Pentium IV with 1.5Gb of RAM. (The SDP relaxations for the remaining instances in the set
were too large for the computing resources available.) In particular, the R3 relaxation was
able to prove the unsatisfiability of the instance n260-01 in Table 1, which was the smallest
unsatisfiable instance that remained unsolved during the 2003 Competition. (An instance
remained unsolved if none of the top five solvers was able to solve it in two hours, running
on an Athlon 1800+ with 1Gb of RAM.) Indeed, the SDP relaxation appears to be quite
effective on the type of instances generated by hgen8, as we randomly generated several
more instances of varying size and all the corresponding SDP relaxations were infeasible.
The additional results are presented in Table 2.
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Table 1. Results for the Nine hgen8 Instances from SAT Competition 2003

Problem # of # of Size of # of SDP SDP is Total CPU Solved at

variables clauses Y constraints infeasible seconds SAT 2003

n120-01 120 197 542 3862 Yes 704 Yes

n120-02 120 193 537 3838 Yes 611 Yes

n120-03 120 193 539 3846 Yes 583 Yes

n180-01 180 279 793 5668 Yes 2194 Yes

n180-02 180 279 793 5668 Yes 2142 Yes

n180-03 180 280 791 5661 Yes 2188 Yes

n260-01 260 391 1132 8096 Yes 6938 No

n260-02 260 404 1143 8153 Yes 7455 No

n260-03 260 399 1134 8112 Yes 7678 No

n120-01 denotes problem hgen8-n120-01-S563767109.shuffled-as.sat03-875

n120-02 denotes problem hgen8-n120-02-S1654058060.shuffled-as.sat03-876

n120-03 denotes problem hgen8-n120-03-S1962183220.shuffled-as.sat03-877

n180-01 denotes problem hgen8-n180-01-S1524349002.shuffled-as.sat03-880

n180-02 denotes problem hgen8-n180-02-S1125510326.shuffled-as.sat03-881

n180-03 denotes problem hgen8-n180-03-S1436192352.shuffled-as.sat03-882

n260-01 denotes problem hgen8-n260-01-S1597732451.shuffled-as.sat03-885

n260-02 denotes problem hgen8-n260-02-S1396509323.shuffled-as.sat03-886

n260-03 denotes problem hgen8-n260-03-S722413478.shuffled-as.sat03-887

Table 2. Results for the Randomly Generated hgen8 Instances

Problem # of # of Size of # of SDP SDP is Total CPU

variables clauses Y constraints infeasible seconds

200-01 200 309 881 6290 Yes 2821

200-02 200 314 882 6299 Yes 3243

200-03 200 306 877 6271 Yes 2530

220-01 220 339 966 6900 Yes 3843

220-02 220 344 969 6917 Yes 4279

220-03 220 341 967 6906 Yes 4757

240-01 240 362 1044 7475 Yes 5455

240-02 240 365 1047 7490 Yes 5563

240-03 240 366 1046 7487 Yes 5376
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It is important to point out that the effectiveness of the SDP approach for these in-
stances is due to the fact that no branching is needed to obtain a certificate of infeasibility
for the SDP relaxation. Computational results on instances of 3-SAT from the Uniform
Random-3-SAT benchmarks available at [36] are reported in Section 6, and it is observed
there that if branching is required, then the computational effort required by the SDP-
based approach is still too large in comparison to other SAT algorithms in the literature.
Nonetheless, the SDP approach already complements existing SAT solvers in the sense that
these difficult hgen8 instances can be solved in reasonable time. (Incidentally, the n260-01
instance remained unsolved in the SAT Competition 2004.) These results motivate our
current research considering this and other classes of hard instances for which the partial
higher liftings approach may be effective with little or no branching. The most recent results
in this direction are reported in Section 7.

6. Comparisons of the SDP Relaxations for 3-SAT

6.1 Theoretical Comparison

For the case of 3-SAT, we can make some specific comparisons between the feasible sets of
the Karloff-Zwick relaxation and the three SDP relaxations in Theorem 14.

It was observed in [19] that for 3-SAT, the Gap relaxation has an interesting connection
to the relaxation (12) of Karloff and Zwick. For each clause of length 3, the linear constraint
in the Gap relaxation is precisely equivalent to the sum of the three linear constraints used
in the Karloff-Zwick relaxation. Using the notation defined in (13) to account for negated
variables, the three Karloff-Zwick constraints may be rewritten as:

sj,i1 Y0,i1 + sj,i2 Y0,i2 − sj,i1 sj,i3 Yi1,i3 − sj,i2 sj,i3 Yi2,i3 ≥ 0,

sj,i1 Y0,i1 + sj,i3 Y0,i3 − sj,i1 sj,i2 Yi1,i2 − sj,i2 sj,i3 Yi2,i3 ≥ 0,

sj,i2 Y0,i2 + sj,i3 Y0,i3 − sj,i1 sj,i2 Yi1,i2 − sj,i1 sj,i3 Yi1,i3 ≥ 0.

for each 3-clause with variables {pi1 , pi2 , pi3}.
Now consider any matrix Y feasible for the R2 and R3 relaxations. The principal

submatrix of Y corresponding to the rows and columns indexed by {∅}∪{xk : k = 1, . . . , n}
is a positive semidefinite matrix with the same structure as the matrix variable in the Gap
relaxation. As for the constraints, it is clear that for clauses of length 1 or 2, the linear
constraints expressing satisfiability are equivalent to those in either the Karloff-Zwick or Gap
relaxations. For clauses of length 3, the linear constraint in R2 and R3 can be rewritten as

sj,i2 Y0,i2 + sj,i3 Y0,i3 − sj,i1 sj,i2 Y0,i1i2 − sj,i1 sj,i3 Y0,i1i3 =

1 − sj,i1 Y0,i1 + sj,i2 sj,i3 Y0,i2i3 − sj,i1 sj,i2 sj,i3 Y0,i1i2i3

and the positive semidefiniteness of Y implies that the right-hand side is always non-
negative. Relaxing the equation to an inequality, we have

sj,i2 Y0,i2 + sj,i3 Y0,i3 − sj,i1 sj,i2 Y0,i1i2 − sj,i1 sj,i3 Y0,i1i3 ≥ 0,

which is the first constraint above for the Karloff-Zwick relaxation. The other two con-
straints can be shown to hold by similar arguments. Hence, the SDP relaxation R2, and
therefore also R3, for 3-SAT are at least as tight as the Karloff-Zwick relaxation.
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In summary, we have the following theorem:

Theorem 15. For instances of 3-SAT, the feasible sets of the Gap, Karloff-Zwick (KZ),
R2, and R3 relaxations satisfy

F R3
⊆ F R2

⊆ F KZ ⊆ F Gap.

6.2 Computational Comparison

The results of a computational study of the performance of R1, R2, and R3 were reported
in [3]. A branching algorithm was implemented in Matlab running on a 2.4 GHz Pentium
IV with 1.5Gb. The test suite consisted of both satisfiable and unsatisfiable instances of 3-
SAT from the Uniform Random-3-SAT benchmarks available at [36]. Two sets of problems
were considered, with n = 50 and n = 75 variables, and m = 218 and m = 325 clauses
respectively. A total of 40 instances of 3-SAT from each set were used, half of them satisfiable
and the other half unsatisfiable. For all the relaxations, the algorithm was stopped after 2
hours on the instances with 50 variables, and after 3 hours on the instances with 75 variables.
The results are for small problems, but they clearly illustrate the tradeoffs involved in the
choice of SDP relaxation as well as the advantage of the R2 relaxation over the other two
relaxations when applied together with a branching algorithm. The main conclusions were
that:

• The Gap relaxation is solved most quickly of all three, but the branching algorithm
reaches a large depth in the search tree before it stops. As a result, its total time is
higher than that of the algorithm using R2.

• The opposite happens with the algorithm using R3: each SDP relaxation takes much
longer to solve, but the depth reached in the search tree is less than for the other two
relaxations.

Therefore, in comparison with the other two relaxations, the R2 relaxation is the most
effective, and it can be routinely used to prove both satisfiability and unsatisfiability for
instances with a few hundred clauses. However, we observe that the computational time
for the branching algorithm using R2 still increases quite rapidly. This was illustrated in
[3] by allowing the branching algorithm using R2 to run to completion on 40 instances of
3-SAT with n = 100 and m = 430 from the same set of benchmarks, evenly divided between
satisfiable and unsatisfiable instances. The results show that proofs of satisfiability require
over one hour on average, and proofs of unsatisfiability over six hours.

Although the Karloff-Zwick relaxation was not considered, it is clear that the compu-
tational time for any SDP-based algorithm is dominated by the effort required to solve the
SDPs, and that regardless of the choice of SDP relaxation, the computational effort is still
too high to be competitive with other SAT solvers whenever branching is actually used.
Therefore, even though branching is not always necessary (as observed in Section 5.3), the
competitiveness of the SDP approach depends on the development of novel algorithms for
solving SDPs by taking advantage of their structure. Important advances have been made
recently on algorithms for SDP that exploit certain types of structure (see e.g [29, 51]), and
current research is considering how to apply them for solving the SAT relaxations.
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7. Recent Research Results

The application of SDP to SAT problems continues to be an active area of research. We
close this survey with a summary of two recent working papers on the application of SDP
to MAX-SAT and SAT.

7.1 Solving MAX-SAT Using SDP Formulations of Sums of Squares

In their working paper [61], van Maaren and van Norden consider the application of Hilbert’s
Positivstellensatz to MAX-SAT. The idea is to formulate MAX-SAT as a global polynomial
optimization problem, akin to the approaches we have seen, but in such a way that it can
then be relaxed to a sum of squares (SOS) problem, and the latter can be solved using SDP
(under certain assumptions).

The starting point for this approach is the observation that for each clause Cj =
∨

k∈Ij

xk∨
∨

k∈Īj

x̄k and for each assignment of values to xk ∈ {−1, 1}, i ∈ Ij ∪ Īj , the polynomial defined

as

FCj
(x) :=

∏

k∈Ij∪Īj

1

2
(1 − sj,kxk),

where x = (x1, . . . , xn)T and the parameters sj,k are as defined in (13), satisfies

FCj
(x) =

{

0, if Cj is satisfied by the truth assignment represented by x
1, otherwise.

With a given CNF formula Φ, we thus associate two aggregate polynomials:

FΦ(x) :=
m
∑

j=1

(FCj
(x))2 and FB

Φ (x) :=
m
∑

j=1

FCj
(x).

Clearly, FΦ(x) is a non-negative polynomial on <n, FB
Φ (x) is non-negative on {−1, 1}n,

and for x ∈ {−1, 1}n, both polynomials give the number of unsatisfied clauses. Hence,
MAX-SAT is equivalent to the minimization of either of these polynomials over {−1, 1}n.

A first SDP relaxation is obtained as follows. Suppose we are given a column vector β
of monomials in the variables x1, . . . , xn and a polynomial p(x). Then p(x) can be written
as an SOS in terms of the elements of β if and only if there exists a matrix S � 0 such that
βT Sβ = p (see e.g. [52]). Note that by Theorem 5,

βT Sβ = p ⇒ ‖Wβ‖2
2 = p, where S = W T W,

and hence we have an explicit decomposition of p as an SOS. Therefore, if

g∗ = max g
s.t.

FΦ(x) − g = βT Sβ
S � 0,

(26)
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then m − g∗ is an upper bound for MAX-SAT. Note that since β is fixed, the equation
FΦ(x) − g = βT Sβ is linear is S and g, and hence problem (26) is indeed an SDP. Also,
g∗ ≥ 0 since FΦ(x) is an SOS by definition.

Another SDP relaxation is obtained by considering F B
Φ (x), but here we have to work

modulo IB, the ideal generated by the polynomials x2
k −1, k = 1, . . . , n. (The fact that each

polynomial that is non-negative on {−1, 1}n can be expressed as an SOS modulo IB follows
from the work of Putinar [53].) The resulting SDP problem is

g∗
B

= max g
s.t.

FB
Φ (x) − g ≡ βT Sβ modulo IB

S � 0

(27)

and thus m − g∗
B

is also an upper bound for MAX-SAT. For the remainder of this section,
we focus on the SDP approach using (27).

The key point in this SOS approach is the choice of β, and van Maaren and van Norden
consider the following possibilities:

• βGW is the basis containing 1, x1, . . . , xn;

• βp is the basis containing 1, x1, . . . , xn, plus the monomial xk1
xk2

for each pair of
variables that appear together in a clause;

• βap is the basis containing 1, x1, . . . , xn, plus the monomials xk1
xk2

for all pairs of
variables;

• βt is the basis containing 1, x1, . . . , xn, plus the monomial xk1
xk2

xk3
for each triple of

variables that appear together in a clause;

• βpt is the basis containing 1, x1, . . . , xn, plus the monomial xk1
xk2

for each pair of
variables that appear together in a clause, plus xk1

xk2
xk3

for each triple of variables
that appear together in a clause.

The SDP relaxations are referred to as SOSGW, SOSp, SOSap, SOSt, and SOSpt respectively.
Starting with MAX-2-SAT, van Maaren and van Norden prove that SOSGW is precisely

the dual of the SDP (10). Furthermore, they show that for each triple xk1
xk2

xk3
, adding

the monomials xk1
xk2

, xk1
xk3

, and xk2
xk3

gives an SDP relaxation at least as tight as that
obtained by adding the corresponding triangle inequality to (10). A comparison of the
relaxations SOSpt and (12) for MAX-3-SAT is also provided. The results are summarized
in the following theorem:

Theorem 16. [61]

For every instance of MAX-2-SAT,

• The SDP relaxation SOSGW gives the same upper bound as the relaxation (10)
of Goemans and Williamson.

• The SDP relaxation SOSap is at least as tight as the Feige-Goemans relaxation
consisting of (10) plus all the triangle inequalities (9).
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For every instance of MAX-3-SAT, the SDP relaxation SOSpt provides a bound at least as
tight as the Karloff-Zwick relaxation (12).

From the computational point of view, van Maaren and van Norden provide computa-
tional results comparing several of these relaxations on instances of varying sizes and varying
ratios of number of clauses to number of variables. They also propose rounding schemes for
MAX-2-SAT and MAX-3-SAT based on SOSp and SOSt respectively, and present prelimi-
nary results comparing their performance with the rounding schemes presented in Section
3 above.

The SOS approach can also be applied to obtain proofs of unsatisfiability. It is straight-
forward to prove that:

Proposition 2. Given a formula Φ in CNF, if there exists a monomial basis β and an
ε > 0 such that F B

Φ (x) − ε is a SOS modulo IB, then Φ is unsatisfiable.

van Maaren and van Norden compare the performance of the R3 relaxation with the SOS
approach using either SOSt or SOSpt. Their preliminary results suggest that SOSpt offers
the best performance.

7.2 An Explicit Semidefinite Characterization of SAT for Tseitin Instances

The results in this section apply to a specific class of SAT instances that has been stud-
ied for over 30 years, and is known to be hard for many proof systems. They are the
Tseitin propositional formulas, first introduced in [58]. These instances are constructed
using graphs whose vertices are points on the plane with integer coordinates, and whose
edges are segments of unit length along the coordinate axes.

Consider a p×q toroidal grid graph, and label the rows {0, 1, . . . , p−1} and the columns
{0, 1, . . . , q − 1}. Identify each vertex by a pair (i, j) with i ∈ {0, 1, . . . , p − 1} and j ∈
{0, 1, . . . , q − 1}. Each vertex (i, j) has degree four, and its four incident edges are denoted
by:

{(i − 1, j), (i, j)}, {(i + 1, j), (i, j)}, {(i, j − 1), (i, j)}, {(i, j), (i, j + 1)},
where (here and in the sequel) the subtractions and sums are taken mod p for the first index,
and mod q for the second index. For each vertex (i, j), fix the parameter t(i, j) ∈ {0, 1},
and associate with each edge a boolean variable:

vr(i, j) is the variable corresponding to the edge {(i + 1, j), (i, j)}
vd(i, j) is the variable corresponding to the edge {(i, j), (i, j + 1)}

Thus, there are 2pq boolean variables in the SAT instance. For notation purposes, since
vertex (i, j) has two other edges incident to it, we further define vu(i, j) := vd(i− 1, j) and
vl(i, j) := vr(i, j − 1). Furthermore, each vertex (i, j) contributes eight clauses to the SAT
instance, and the structure of the clauses is determined by the value of t(i, j):

1. if t(i, j) = 0 then all clauses of length four on vl(i, j), vr(i, j), vu(i, j), vd(i, j) with an
odd number of negated variables are added; and

2. if t(i, j) = 1 then all clauses of length four on vl(i, j), vr(i, j), vu(i, j), vd(i, j) with an
even number of negated variables are added.
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We denote the eight clauses thus obtained by Cτ (i, j), τ = 1, . . . , 8. Hence there are 8pq
clauses in the SAT instance. It is well known that the SAT instance is unsatisfiable if and
only if the sum of the t(i, j) is odd (see e.g. [15, Lemma 10]).

In the recent working paper [6], the author proposes an SDP problem which characterizes
the satisfiability of these instances, and is of dimension linear in the size of the instance.
This is a result in the same vein as Theorems 12 and 13 for the Gap relaxation. These are not
the first proofs that Tseitin or pigeonhole instances can be solved in polynomial-time (see
e.g. [26]), but again we stress that the SDP approach not only establishes satisfiability or
unsatisfiability in polynomial-time, but also computes an explicit proof of it in polynomial-
time.

To construct the SDP problem, let Jτ (i, j) denote the set of variables negated in clause
τ corresponding to vertex (i, j). For each boolean variable vσ(i, j), we introduce a corre-
sponding binary variable xσ(i, j) ∈ {−1, 1}, and as usual let TRUE be denoted by 1 and
FALSE by −1. For clause Cτ (i, j) and variable vσ(i, j), define

sσ
τ (i, j) :=

{

1, if vσ(i, j) 6∈ Jτ (i, j)
−1, if vσ(i, j) ∈ Jτ (i, j)

(28)

Introducing new variables

y(i, j, S) :=
∏

σ∈S

xσ(i, j)

for all S 6= ∅, S ⊆ {l, r, u, d}, i ∈ {0, 1, . . . , p − 1}, j ∈ {0, 1, . . . , q − 1}, and

π(i1 → i2, j1 → j2) :=

(

i2
∏

i=i1

xl(i, j1)x
r(i, j2)

)





j2
∏

j=j1

xu(i1, j)x
d(i2, j)



 ,

we define a rank-one matrix of dimension 14pq:

Ȳ :=









































































1
y(0, 0, {l})

...
y(p − 1, q − 1, {l, r, u, d})

π(0 → 1, 0)
...

π(0 → 1, q − 1)
π(0 → 2, 0)

...
π(0 → 2, q − 1)

...
π(0 → p − 1, 0)

...
π(0 → p − 1, q − 1)
π(0 → p − 1, 0 → 1)

...
π(0 → p − 1, 0 → q − 1)

















































































































































1
y(0, 0, {l})

...
y(p − 1, q − 1, {l, r, u, d})

π(0 → 1, 0)
...

π(0 → 1, q − 1)
π(0 → 2, 0)

...
π(0 → 2, q − 1)

...
π(0 → p − 1, 0)

...
π(0 → p − 1, q − 1)
π(0 → p − 1, 0 → 1)

...
π(0 → p − 1, 0 → q − 1)









































































T

.
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Using this matrix, the resulting SDP relaxation is:

find Ȳ ∈ S
14pq

s.t.
∑

σ∈{l,r,u,d}

sσ
τ (i, j)Ȳ∅,y(i,j,{σ}) −

∑

S⊂{l,r,u,d},|S|=2

(

∏

σ∈S

sσ
τ (i, j)

)

Ȳ∅,y(i,j,S)

+
∑

S⊂{l,r,u,d},|S|=3

(

∏

σ∈S

sσ
τ (i, j)

)

Ȳ∅,y(i,j,S) −
(

∏

σ∈{l,r,u,d}

sσ
τ (i, j)

)

Ȳ∅,y(i,j,S) = 1,

τ = 1, . . . , 8, and i ∈ {0, 1, . . . , p − 1}, j ∈ {0, 1, . . . , q − 1}
Ȳy(0,j,{l,r,u,d}),y(1,j,{l,r,u,d}) = Ȳ∅,π(0→1,j), j = 0, . . . , q − 1

Ȳπ(0→i,j),y(i+1,j,{l,r,u,d}) = Ȳ∅,π(0→i+1,j), for i = 1, . . . , p − 2, j = 0, . . . , q − 1

Ȳπ(0→p−1,0),π(0→p−1,1) = Ȳ∅,π(0→p−1,0→1)

Ȳπ(0→p−1,0→j),π(0→p−1,j+1) = Ȳ∅,π(0→p−1,0→j+1), j = 1, . . . , q − 3.

Ȳ∅,π(0→p−1,0→q−2) = Ȳ∅,π(0→p−1,q−1)

diag (Ȳ ) = e
Ȳ � 0.

(29)
The construction of the SDP relaxation (29) follows the paradigm of partial higher

liftings introduced in Section 5. Since the matrix variable has dimension 14pq, and since
there are 23pq−1 linear equality constraints, the SDP problem is linearly-sized with respect
to 2pq, the number of boolean variables in the SAT instance. Furthermore, the structure of
the SDP relaxation is directly related to the structure of the SAT instance. Note also that
there are many more valid linear constraints that could be added to the SDP problem. Such
constraints equate elements of the matrix variable that would be equal if the matrix were
restricted to have rank equal to one. The motivation for our particular choice of additional
constraints in (29) is that although they are relatively few, they are sufficient for proving
the following characterization of unsatisfiability:

Theorem 17. [6] The Tseitin instance is unsatisfiable if and only if the corresponding SDP
problem (29) is infeasible.

Finally, we point out that even though Theorem 17 as stated is specific to the instances
defined here, the SDP formulation and the proof of exactness can in principle be extended
to other graph-based instances whose satisfiability is determined using quantities akin to
the t(i, j) parameters. We refer the reader to [6] for more details.
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