
Journal of X-Ray Science and Technology 31 (2023) 483–509
DOI 10.3233/XST-221360
IOS Press

483

MCSC-Net: COVID-19 detection using
deep-Q-neural network classification with
RFNN-based hybrid whale optimization

Gerard Deepaka,∗, M. Madiajaganb, Sanjeev Kulkarnic, Ahmed Najat Ahmedd,
Anandbabu Gopatotie and Veeraswamy Ammisettyf

aDepartment of Computer Science and Engineering, Manipal Institute of Technology Bengaluru,
Manipal Academy of Higher Education, Manipal, India
bSchool of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu,
India
cDepartment of Information Science and Engineering, Yenepoya Institute of Technology, Mangalore,
Karnataka, India
dDepartment of Computer Engineering, Lebanese French University, Erbil, Iraq
eDepartment of Electronics and Communication Engineering, Hindusthan College of Engineering and
Technology, Coimbatore, Tamil Nadu, India
fDepartment of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, Guntur, Andhra Pradesh, India

Received 12 December 2022
Revised 25 January 2023
Accepted 11 February 2023

Abstract.
BACKGROUND: COVID-19 is the most dangerous virus, and its accurate diagnosis saves lives and slows its spread.
However, COVID-19 diagnosis takes time and requires trained professionals. Therefore, developing a deep learning (DL)
model on low-radiated imaging modalities like chest X-rays (CXRs) is needed.
OBJECTIVE: The existing DL models failed to diagnose COVID-19 and other lung diseases accurately. This study
implements a multi-class CXR segmentation and classification network (MCSC-Net) to detect COVID-19 using CXR images.
METHODS: Initially, a hybrid median bilateral filter (HMBF) is applied to CXR images to reduce image noise and enhance
the COVID-19 infected regions. Then, a skip connection-based residual network-50 (SC-ResNet50) is used to segment
(localize) COVID-19 regions. The features from CXRs are further extracted using a robust feature neural network (RFNN).
Since the initial features contain joint COVID-19, normal, pneumonia bacterial, and viral properties, the conventional methods
fail to separate the class of each disease-based feature. To extract the distinct features of each class, RFNN includes a disease-
specific feature separate attention mechanism (DSFSAM). Furthermore, the hunting nature of the Hybrid whale optimization
algorithm (HWOA) is used to select the best features in each class. Finally, the deep-Q-neural network (DQNN) classifies
CXRs into multiple disease classes.
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RESULTS: The proposed MCSC-Net shows the enhanced accuracy of 99.09% for 2-class, 99.16% for 3-class, and 99.25%
for 4-class classification of CXR images compared to other state-of-art approaches.

CONCLUSION: The proposed MCSC-Net enables to conduct multi-class segmentation and classification tasks applying to

CXR images with high accuracy. Thus, together with gold-standard clinical and laboratory tests, this new method is promising

to be used in future clinical practice to evaluate patients.

Keywords: COVID-19, chest X-Ray, hybrid median bilateral filter, robust feature neural network, deep-Q-neural networks

1. Introduction

According to reports, the COVID-19 virus causes lung damage and rapidly mutates before the
patient receives any diagnosis-specific medicine. The situation gets more dangerous when the symp-
toms resemble the ordinary flu, as they did in Southeast Asia and Central Asia. The World Health
Organization (WHO) declared COVID-19, a contagious illness brought back by the SARS virus, a
global pandemic in March 2020. As of December 2, 2022, the massive COVID-19 epidemic has
spread to 640.39 million individuals and caused more than 6.61 million death incidents globally [49].
As indicated in Fig. 1, the infected cases and fatality rate are growing significantly. Early diagnosis of
COVID-19 is critical to restrict the wide spread of the virus and offer treatment to avoid consequences
[30]. It is challenging to recognize and control the pandemic due to the increase in COVID-19 incidents
globally and the limits of the currently used diagnostic tools.

Globally engaged researchers [20] are expediting the development of vaccines and treatments and
searching for new diagnostic methods. Blood testing, virus tests, and medical imaging [13] are standard
diagnostic procedures in the United States. Blood tests can identify antibodies against the coronavirus-2
(SARS-CoV-2) that causes severe acute respiratory syndrome (SARS). The antigens of SARS-CoV-2
are detected utilizing viral assays on samples taken from the respiratory tract by a rapid antigens diag-
nostic test kits (RDT) [35]. It is a quick test that may provide results in as little as 30 minutes. The
efficiency of this RDT test kits depends on the sample’s quality and the period at which the sickness
first manifests itself. Furthermore, since the test does not discriminate COVID-19 from viral infec-
tions, it can potentially provide false-positive findings. The reverse transcription-polymerase chain
reaction (RT-PCR) is the gold-standard technology for first-line screening [12]. However, a thorough
investigation has shown that the test results’ sensitivity varies between 50 and 62 percent. Conse-
quently, repeated RT-PCR tests are done during a 14-day observation period to guarantee that the test
result is accurate for diagnosis [1] as described above. Patients could become frustrated because there
aren’t many RT-PCR test kits available in different nations [26], which could be costly for healthcare
organizations. Medical imaging technique like chest computer tomography (CT) is frequently used to
diagnose pneumonia due to COVID-19 [2, 16, 51]. Computer tomography (CT) is more sensitive for
early pneumonic change, illness development, and alternative diagnoses; in this situation, intravenous
contrast material injection is necessary for diagnosing pulmonary embolism. Imaging technologies
alone are insufficient to diagnose COVID-19 pneumonia, despite recent advancements in diagnostic
techniques [36].

Chest Computer Tomography (Chest CT), and Magnetic Resonance Imaging (MRI) are more radi-
ation diagnostic tools not recommended as per the current guidelines. The most distinctive feature of
the COVID-19 sickness was the bilateral ground-glass opacities (GGO) [4], which may or may not
be accompanied by consolidations in lungs. Pulmonary embolism and a block in an artery caused by
blood clots may be more common in COVID-19 individuals. The situation becomes more problematic
when it comes to CT scan examination due to the use of contrast [3, 5, 37]. Chest radiography scans
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Fig. 1. (a) Worldwide COVID-19 incidence map (b). Total COVID-19 deaths reported in various nations. (Source: Center
for Systems Science and Engineering at Johns Hopkins University, Baltimore, MD, USA).

are essential for detecting and treating COVID-19 as early as feasible because the virus affects the
respiratory system.

The chest radiographs of a senior citizen from Wuhan, China, who traveled to Hong Kong, China,
for medical care are shown in Fig. 2. Fresh consolidative alterations are now seen in the right mid-
zone perimeter and perihilar area of the right lower zone, where the consolidation that started on day
0 has persisted into day 4 of the zone. The day 7 footage’s midzone adjustment, which features a
high GGO area, is an improvement over the day before. Consequently, CXRs has been employed as
a primary imaging diagnosis tool in many nations in on-going pandemic. With the use of radiology
scans, it is possible to determine the status of the lungs and phases of disease that are taking place. The
CXRs of COVID-19 individuals were subjected to various anomalies, which radiologists noted. CXR
is a commonly accessible scan for chest with no patient preparation required to diagnose disease with
instantaneous result. A CT scan may be used to perform tasks such as patient triage, determining which
therapies are most critical for patients, and determining how best to utilize available medical resources.
CT is more sensitive to disease progression, early pneumonic alteration, and other diagnoses. An intra-
venous contrast medium is needed to identify pulmonary embolism. Imaging technologies alone are
insufficient to diagnose COVID-19 pneumonia, despite recent advancements in diagnostic techniques.
Imaging should be used with lab and clinical testing. COVID-19 chest CTs show bilateral, peripheral,
and basal GGOs with or without consolidation. CT screening could not reveal GGO characteristics.
Due to this, CXR screening is recommended.

CXRs were employed in several studies [31, 39, 48] for COVID-19 diagnosis and classification, and
the results were favorable compared to CT-based COVID-19 diagnosis [6, 14], which uses radiological
images such as CXR images. The CXR has several advantages over CT, including rapid data acquisition,
reduced ionizing radiation, portability, and more availability in intensive care units (ICU). These
benefits make CXR a useful tool for radiologists. The most significant contributions made by this
work are listed below:

• This work proposed multi-class CXR segmentation and classification network (MCSC-Net) for
detecting diseases presented in the CXR images along with COVID-19.

• The MCSC-Net contains multiple stages of operation, such as HMBF for preprocessing, SC-
ResNet50 for segmentation, RFNN with DSFSAM for feature extraction, optimal feature selection
by HWOA, and DQNN classification.
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Fig. 2. Samples of COVID-19 affected CXR images with GGO consolidation.

• The MCSC-Net model is also implemented as the 2-class, 3-class, and 4-class model for both
segmentation and classification operations, which helps to check the reliability of the overall
system.

• The MCSC-Net perfectly separated the disease-specific and disease-dependent features of
COVID-19, bacterial and viral pneumonia, and normal classes, which resulted in superior perfor-
mance.

• The outcome demonstrates that, compared to traditional methods, the suggested MCSC-Net
produced higher preprocessing, segmentation, and classification performance.

The article sections continues with the following structure: Section 2 discusses the literature survey
and their limitations; Section 3 provides working of the proposed MCSC-Net with multiple stages,
Section 4 analyzing the results with performance comparison using various existing works, and the
conclusions along with possible future challenges are presented in Section 5.

2. Literature survey

This section thoroughly analyzes machine, deep, and transfer learning-based strategies for diag-
nosing COVID-19. This literature survey focuses exclusively on feature extraction, segmentation,
and classification techniques. Additionally, this literature concentrated on feature selection methods
utilizing bio-optimization algorithms.

2.1. Survey on CXR segmentation

The COVID-19 region can be localized using the CXR image segmentation techniques described
in this section, which also aids in classifying COVID-19. L. O. Teixeira et al. [27] developed CNN
architectures for segmentation and classification. The UNet is utilized to perform segmentation, and
the VGG16, ResNet50V2, and InceptionV3 are used as classifiers. However, there are computational
challenges with this approach. L. Zhang et al. [28] implemented a modified U-Net model with dual
encoder fusion, namely DEFU-Net, for CXR image segmentation with accuracy of 98.04%. The com-
putational complexity increases as the network’s depth increase due to the densely connected recurrent
CNN blocks. The FractalCovNet, the combination of fractal blocks and the U-Net, is developed by
H. Munusamy et al. [23] for the localization of the lesion regions in the CXR and CT images. Fur-
ther, the FractalCovNet with transfer learning approach is presented to classify the CXR images and
suffers from the complexities. The pneumothorax boundary segmentation is perceived effectively by
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the Deep Signed Distance Map (DeepSDM) proposed by Y. Wang et al. [50]. The classification of
CXRs using DeepSDM resulted in missed diagnosis and lower accuracy. S.Tabik et al. [40] presented
a COVID-SDNet to improve detection accuracy by combining segmentation, data transformation, and
augmentation. Class inherent-based methods are used to differentiate the classification capability of
the classifiers. However, these inherence approaches yield lower classification accuracy. S. Motamed
et al. [41] implemented a transfer learning (TL) approach for segmenting the lungs in the CXRs and
presented randomized GAN (RANDGAN) to identify the images of the unknown class in CXRs. But
these methods exhibit low accuracy with high computational complexity.

A variational auto-encoder (VAE) is introduced in the encoder-decoder of UNet to perform the lung
lobes segmentation in CXR images by F. Cao et al. [21]. The extracted features are recognized highly
due to the attention mechanism. The opacities are affecting the accuracy of segmenting in the majority
of the lung regions. M. Kim et al. [32] developed a deep-learning neural network with a self-attention
(SADNN) concept to perform automatic lung segmentation in CXR images by modifying the U-Net
architecture. However, the segmentation performance depends on the dataset, and this method fails in
achieving the segmentation if the dataset contains deformed shapes or lesions in the lungs. The fast and
efficient multi-task DL (MTDL) approaches with COVID MTNet is developed to diagnose COVID-19
in CT and CXRs by M. Z. Alom et al. [33]. These approaches utilize the NABLA-N model to perform the
segmentation of both images. But the classification accuracy of the CXR dataset is as low as 84.67%.
A Structure Correcting (SA) Network based on the GAN is presented to perform segmentation of
lungs in CXR images [22]. This SA network has a similar function to the general adversarial network
(GAN). Attention-based-UNet is the backbone network for SAGAN. Three classes are employed to
categorize the CXR images using a fully connected network. But the classification accuracy and the
dice scores could be higher. The detection of COVID-19 in CXRs using deep TL networks such as
ResNet, InceptionV, and the combination of these networks are developed by A. Narin et al. [7]. Three
different datasets were analyzed to know the capacity of the five pre-trained models: transfer-learned
CNNs (TL-CNNs). Still, the detection accuracy is 96.1% on two class classification datasets. A novel
DenseCapsNet is developed by fusing the Dense and CapsNet to classify the CXR images [24]. Before
classification, the CXR images are segmented for the lung lobes by the ultimately selected TernausNet.
The 4-class classification accuracy is low in the fused network.

2.2. Survey on optimization with classification methods

The many feature selection techniques that use evolutionary and natural selection-based features are
described in detail in this section. Compared to deep learning feature selections, these strategies pro-
duced better features. The classification of different classes in CXR images is proposed in two stages
by the advanced squirrel search optimization (ASSOA). The ResNet-50 in the first stage extracts the
features, and the CNN learns the features. In the multi-layer perceptron (MLP) neural network, the
ASSOA chooses the features and optimizes the weights. The presented algorithm is computationally
complex [17]. The ability of imbalanced exploitation and poor diversity with local optima is the sig-
nificant problems associated with a meta-heuristic slime mold algorithm (SMA). The quasi-reflection
with SMA (QRSMA) is developed to improve the performance of the SMA [42]. This combina-
tion increases the segmentation problems in CXR images. However, this method fails at the multiple
objective optimization problems. The QRSMA performs the classification of CXR images with CNN.
The projected algorithm is developed by introducing the concept of population reduction in modified
whale optimization (mWOAPR), which performs CXR image segmentation to detect COVID-19 [43].
In classifying CXRs, the population reduction method with a support vector machine (SVM) pro-
duces higher accuracy. P. Bhowal et al. [38] presented VGG-16, Xception-Net, and InceptionV3-Net
to detect COVID-19 by feature extractions in the CXR images. A two-tier process selects the features
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in CXRs. With a lower accuracy of 93.33%, the InceptionV3-Net extracts features. A. T. Sahlol et al.
[8] used fractional-order, and marine predators swarm optimization techniques (FO-MPA) to identify
COVID-19 CXR image features. The CNN classifies the selected features. The Aquila is a swarm
optimization algorithm that selects the best features from the features extracted by the MobileNet-V3
in CXRs [34]. This method effectively reduces the dimensionality of the image representation while
improving classification accuracy.

To find COVID-19 present in the CXR images, an optimized CNN is developed by optimizing the
CNN with the grey wolf optimization (GWO) technique. The OptCoNet is the network designed to
identify the CXRs for COVID-19 [46]. The GWO and the hyperparameters select the optimized features
to train the CNN are optimized by the same GWO. However, the classification accuracy could be higher
on the dataset used by this study. The XGBoost utilizes particle swarm optimization (PSO) to extract
the deep features in the X-ray images to predict COVID-19 in CXRs. Deep feature extraction uses
VGG-19, InceptionV3, and ResNet-50 DL networks [15]. The PSO-optimized XGBoost selects the
best deep-optimized features. However, these methods of deep feature extraction are computationally
complex. To detect COVID-19, the computer tomographic image (CT) features are retrieved and used
with the CNN. The retrieved features are selected by the genetic algorithm (GA), and four different
classifiers are presented to classify the best features [18]. E.-S. M. El-Kenawy et al. [19] presented a
feature selection and classification algorithm to classify CT images for COVID-19. The AlexNet-CNN
model extracts the features, and the guided GWO algorithm selects optimal features. Furthermore, a
voting classifier is developed to classify the selected features and diagnose COVID-19. A. Al-zubidi et
al. [9] proposed fuzzy c-mean (FCM) and back propagation-CNN (BP-CNN) to classify COVID-19.
The features extracted affect the classification performance of the FCM and BPA. The information gain
(IG) mechanism is introduced to improve the FCM and BP-CNN classification accuracy. T. Goel et al.
[47] implemented a GAN network to generate sufficient images in the dataset. WOA is used to tune the
hyperparameters of GAN to enhance classification performance. A CNN model optimized to detect
COVID-19 from CXR images was given by S. Pathan et al. [44]. The GWO, whale, and BAT algorithms
carry out the optimization of the CNN model. To optimize the classification results, the hyperparameters
are modified automatically. In [10], SegNet, U-Net, Hybrid CCN, and their optimization using grey
wolf optimization (GWO) are provided for semantic segmentation of CXR images. However, because
of a lack of ground truth images, networks may need to be able to localize COVID-19 infection.
In [11], a CXGNet is present to detect the COVID-19, but the classification accuracy is low. One
major drawback of earlier research utilizing COVID-19 detection from CXR and CT images is their
low detection accuracy. However, prior studies did not differentiate the distinct characteristics of the
several classes of CXRs. This study aims to localize the specific features in the CXR classes and
make the DL network suitable for the multi-class classification of diseases in the CXR images. The
classification accuracy can be improved with the proposed network of this work due to the Disease-
Specific Feature Separate Attention Mechanism (DSFSAM) to extract the separate features of each
class.

3. Proposed method

Methods including Transfer learning, Deep learning, Q-learning, and Bio-optimization are used to
generate the proposed model described in this section. The block diagram of the proposed MCSC-Net
for multi-class classification of CXR images is shown in Fig. 3.

The Hybrid Median Bilateral Filter (HMBF) is first applied to CXR images to remove various types
of noise, including random, Gaussian, salt, and pepper noise. Further, it is used to improve the COVID-
19 area by enhancing the CXR images. Once this has been accomplished, the segmentation process is
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Fig. 3. Block diagram of proposed MCSC-Net.

carried out using transfer learning-based SC-ResNet50 (Skip Connection-Residual Network), which
localizes the COVID-19 region in CXR images. In addition, a deep learning-based Robust Feature
Neural Network (RFNN) is used to enhance the extraction of features from segmented CXR images.
However, the early characteristics include joint COVID-19, pneumonia bacterial, viral, and normal
properties. As a result, traditional approaches have failed to distinguish between different classes
of disease-based features. The unique features of each class are extracted using the disease-specific
feature separate attention mechanism (DSFSAM) in the RFNN. In addition, hybrid whale optimization
algorithm (HWOA) based meta-heuristic is utilized to choose the best features in each class by using
the hunting behavior of the whales. Finally, Q-learning-based Deep-Q-Neural Network (DQNN) is
utilized to classify the various diseases, including COVID-19, pneumonia bacterial, viral, and normal,
from CXR images. The procedural steps involved in the proposed MCSC-Net are given in Table 1.

3.1. Preprocessing

Noise removal is a significant process in CXR recognition to improve classification accuracy. MCSC-
Net employs the Hybrid Median Bilateral Filter (HMBF) algorithm to remove noise in the given image.
The input image dimension is 256 × 256. The proposed HMBF algorithm removes noise and sharp-
ens the image effectually. In addition, it also maintains the fine details of the image. The proposed
HMBF algorithm removes the universal noises from the given image, such as impulse and Gaus-
sian. In the HMBF approach, the noisy pixel is identified using the Sorted Quadrant Median Vector
(SQMV) algorithm. It preserves the important features of the CXR image, which are edges and texture
information.

The functional blocks of the HMBF-based noise removal are depicted in Fig. 4. The four sequential
blocks in HMBF are Adaptive Median Filter (AMF), Edge detector, Noise detector, and Switch-
ing Bilinear Filter (SBF). The operation of each sequential block present in the proposed HMBF is
demonstrated in the following subsections.

3.1.1. Adaptive Median Filter (AMF)
Apply input noisy CXR image to the AMF filter, which is used to detect the contaminated pixels in

the image. Most existing noise filtering algorithms employ constant window sizes such as 3*3 creates
difficulties in differentiating the noisy and noise-free pixel that, results in blurriness in the output image.
The proposed AMF algorithm adaptively modifies the window size to distinguish between noisy and
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Table 1
Procedural steps involved in the proposed MCSC-Net algorithm

Proposed MCSC − Net algorithm

• Input : Training dataset, test CXR image
• Output : Preprocessed output, Segmented output, and Classified outcome,
• Performance metrics set − 1 : PSNR, SSIM, MSE, Entropy, MAE, PCC
• Performance metrics set − 2 : SACC, SSEN, SSPE, SRE, SF1, SPR
• Performance metrics set − 3 : CACC, CSEN, CSPE, CRE, CF1, CPR

Step 1 : Apply the CXR input image to the HMBF preprocessing to remove the noises and enhances the COVID-19
region.

Step 2 : Segment the lung region using the deep learning-based SC-ResNet50 model, highlighting the
disease-affected regions.

Step 3 : Extract the disease-specific features using RFNN with the DSFSAM model, which correlates the classes
such as COVID-19, normal, Pneumonia bacterial and viral and forms the robust features.

Step 4 : Apply HWOA to extract individual optimal features of the disease.
Step 5 : Perform the multi-class classification using the DQNN model, which classifies the classes such as

COVID-19, normal, bacterial, and viral pneumonia.
Step 6 : Estimate the performance metrics set-1 such as PSNR, SSIM, MSE, and VQIM using preprocessed output.
Step 7 : Estimate the performance metrics set-2 such as SACC, SSEN, SSPE, SRE, SF1, and SPR using segmented

output.
Step 8 : Estimate the performance metrics set-3 such as CACC, CSEN, CSPE, CRE, CF1, and CPR for 4, 3, and

2-class models.

Fig. 4. Proposed HMBF approach.

noise-free pixels in the input image. Changing the image’s window size avoids blurriness and is more
accessible to the process of noisy pixel detection. The AMF separates the noisy pixels and noise-less
pixels based median switching condition of the switch by Equation (1).

f (m, n) =
{

N (m, n) , S1 = 0

H (m, n) , S1 = 1
(1)

where N (m, n) is the noisy outcome of AMF, H (m, n) is the noise-less outcome of AMF, and f (m, n)
is the final outcome of AMF.
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3.1.2. Edge detector
The edge detector is exploited to predict the edges of the current window accurately since it plays a

vital role in CXR recognition. The edges are used to localize the noisy region.

3.1.3. Noise detector
The noise detector is executed to select whether the current pixel is processed into the SBF Gaussian

filter or SBF impulse filter. Assume that S1 and S2 are binary control signals, where AMF and noise
detector creates S1 and S2. The image is filtered based on Equation (2).

fnd (m, n) =

⎧⎪⎪⎨
⎪⎪⎩

SBFgaussian (fe (m, n)) , S1 = 0 ∧ S2 = 1

SBFimpulse (fe (m, n)) , S1 = 0 ∧ S2 = 0

fe (m, n) , else

(2)

where fnd (m, n) is the noise detector output, fe (m, n) is the edge detector outcome. By utilizing the
above condition, the given image is processed into the respective filters. The output from the noise
detector is given to the SBF with the SQMV component.

3.1.4. Switching Bilinear Filter with SQMV
The Switching Bilinear Filter (SBF) adaptively shifts its mode based on the results obtained from

the noise detector, and the Sorted Quadrant Median Vector (SQMV) scheme is utilized to estimate
the optimum median since the window size is adaptively changed. The SMQV finds the noisy pixel
by finding the difference between the current pixel and the reference median pixel. If the difference
between the current and reference median filter is large, then it is deliberated as the noisy pixel. Let
assume fnd (i, j) indicates the current pixel and fnd (i + s, j + t) indicates the pixels in a (2N + 1) ×
(2N + 1) window adjacent to the fnd (i, j). The output (O (i, j)) from the SBF filter is obtained with
Equation (3).

Oi,j = SBFgaussian ∗ fnd (i, j) + SBFimpulse ∗ fnd (i + s, j + t)

SBFimpulse ∗ fnd (i, j) + SBFgaussian ∗ fnd (i + s, j + t)
(3)

where I exemplifies the reference median for impulse noise (S1 = 1 and S2 = 1) and I = P (i, j)
for Gaussian noise (S1 = 1 and S2 = 0). The SBF algorithm utilizes a ranging filter that shifts the
modes between impulse and Gaussian based on the noise detector result. Finally, the denoised output
image is generated by adaptive switching operation. The key benefit of using this algorithm for noise
removal is that it maintains the fine details of the given image while removing the noise. Furthermore,
it also sharpens the image effectually. This way of enhancing the image in the preprocessing step
increases the recognition rate and COVID-19 detection accuracy with CXR images. The proposed
method MCSC-Net reduces the computation time by restricting the preprocessing step for all the
images.

3.2. Segmentation

The segmentation is the process of localizing the COVID-19 region from CXR images, and it also
identifies the spatial coordinates of COVID-19. Here, the segmentation operation is accomplished to
increase the image quality and reduce the CXR image’s adverse effects. The segmentation operation
is performed by enhancing the COVID-19 region illumination, which is normalized using the SC-
ResNet50-based transfer learning model. Figure 5 represents the proposed SC-ResNet50 model’s
block diagram. With the help of the residual convolution module (RCM) and identity mapping module
(IMM), the SC-ResNet50 effectively addresses the issue of fading gradients. Each layer of the IMM
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Fig. 5. Proposed SC-ResNet50 (a) segmentation process, (b) IMM, (c) RCM.

and RCM contributes to mapping the residual model, which is used in this module to connect the input
and output.

3.2.1. Identity Mapping Module (IMM)
The proposed IMM layers improve the luminance and contrast of the image adaptively. The IMM

layers establish dual gamma correction to improve the dark areas of the CXR image. In dual gamma
correction, the first gamma correction is performed using convolution layers (CONV2D) to boost the
image block’s entire luminance. Second, gamma correction is employed using a batch normalization
(BN) layer to adjust the contrast of the dark regions in the image. It is performed to avoid the over-
contrast enhancement result of the first gamma correction. The IMM model adaptively changes the
clip points for the CXR image, which is set on the dynamic range of each block in the image to identify
the COVID-19 region. The output (β) of the IMM is given in Equation (4).

β = IMM

(
p

dr

+ τ
gmax

R
+ α

100

(
σ

Av + c

))
(4)

In the above equation, in each block p indicates the number of the pixels, and dr means the dynamic
range of the same block. τ and α weight regulating parameters for dr and entropies; further, σ is referred
to as the standard deviation of the block, Av points out the mean, and c is the small value to avoid
division by 0. Here, R is defined as the entire dynamic range of the image. Here, gmax signifies the
maximum pixel value of the image.

3.2.2. Residual convolution module
The dual gamma correction is achieved by introducing the Residual Convolution Module (RCM),

which is performed after the completion of the clip point settings. The RCM model’s first gamma
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correction defines the weight (We) for global gray levels of the image blocks using Equation (5).

We = RCM

(
Grmax

Grref

)1−γ1

+ RCM

(
Grmax

Grref

)γ2

(5)

The Grmax designates the maximum gray value of the image, and Grref is referred to as the gray
reference value of the image. The first (γ1) and second gamma (γ2) corrections are defined in Equations
(6) and (7) respectively.

γ1 = ln (oc + cdfw (Grl))

8
(6)

γ2 = 1 + cdfw (Grl)

2
(7)

where oc is the constant value, cdfω points to the weight of the cumulative distribution function, and Grl

characterizes the image’s gray level. Grl enlarges the value of γ1 and γ2 to evade lower enrichment in
the darker region of COVID-19. The way of normalizing the image offers a better result in images with
non-uniform illumination, which localizes the segmented region. As a result, the SC-ResNet50 model
enhances the image’s segmentation quality, increasing the classification rate of CXR recognition.

3.3. Feature extraction

Multiple features are extracted from the segmented region using the Robust Feature Neural Network
(RFNN) approach, and these particular disease-specific features are then extracted. The COVID-19,
pneumonia bacterial, viral, and normal types play a vital role in classification operation because features
of each disease type are dissimilar to others. Thus, the proposed deep learning-based RFNN model
can extract the disease-specific and dependent features from segmented CXR images. The RFNN is
capable of texture, shape, and spatial features. The RFNN descriptor is one of the feature descriptors
in computer vision technology, which is partially inspired by the CNN descriptor. The deep learning
models are popular for their computational speed and robustness to the illumination, scale, and rotation
variations. Figure 6 shows the layer-wise structure of the RFNN model, which contains the nine series
bocks for extracting the deep features. Further, RFNN encompasses four sequential layers in each
block, such as feature extraction using CONV2D, DSFSAM, MaxPooling of features, and feature
generation. Features can occasionally be single values that store the information in a pixel and are
statical attributes in a vector format.

3.3.1. Feature extraction using CONV2D
The RFNN utilizes square-shaped filters as an approximation of Gaussian smoothing, whereas CNN

uses cascaded filters to estimate the scale-invariant features. The summation of all the pixels that exist
in the segmented CXR image at location l = (m, n) in a rectangular region is known as integral images
given by the Equation (8).

Inim (m, n) =
m∑

i=0

n∑
j=0

Ipim (i, j) ∗ Wconv (8)

where Iim (m, n) represents the features from the CONV2D layer, and Ipim (i, j) represents segmented
CXR image, Wconv represents the convolutional weight matrix with diverse sizes.
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Fig. 6. RFNN feature extraction.

3.3.2. Disease-specific feature separate attention mechanism
To find the disease-specific reference points, the RFNN algorithm uses the disease-specific feature

separate attention mechanism (DSFSAM) detector based on the determinants of the Hessian matrix.
The determinant of the Hessian matrix is used to measure the local variations around the point, and the
points are selected where this determinant is high. The Hessian matrix is determined by using Equation
(9).

Hm (m, σ) =
(

Pmm (s, σ)

Pmn (s, σ)

Pnm (s, σ)

Pnn (s, σ)

)
(9)

where P (s, σ) indicates the convolution of the Gaussian 2nd order derivative of the given input image
in point s. The RFNN method replaces the Gaussian filter with a box-type filter approximation to
increase calculation speed. The Hessian matrix associated with the Gaussian kernel in the box type
filter is given by the Equation (10).

Hm =
[

DSFSAMmm

DSFSAMmn

DSFSAMmn

DSFSAMnn

]
(10)

The Hessian matrix determinant at different scales is indicated by Equation (11)

Det (Hm)approx = DSFSAMmm ∗ DSFSAMnn − (ω ∗ DSFSAMmn)2 (11)

where ω indicates the weight function that is used to sustain energy within the Gaussian kernel. The
value of Det (Hm)approx is constant when the minimum or maximum value is reached. In accord to
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obtain the extreme point, the Equation (12) is obligatory:

Hm (k) = Hm + ∂ (Hm)T

∂k
k + 1

2
kT ∂2 (Hm)T

∂k2
k (12)

where k = x, y, σ, and the location of the extreme point is denoted in Equation (13),

k̂ = ∂2 (Hm)−1

∂k2

∂HM

∂k
(13)

To determine the gradient of the disease-specific characteristics in either a horizontal or vertical
direction, the DSFSAM filters are used. The following three points are used to assign the interest
points in a dominating direction to produce candidate key points that are rotational invariant.

• The gradient of each disease-specific feature in the scale space is measured using the DSFSAM
response.

• The window is rotated at a 60-degree angle around the circle’s center to produce the six vectors.
• The candidate for the critical point has the direction with the highest summation.

MaxPooling of features is used to eliminate the repeated disease-specific features and efficiently
generate the output feature matrix.

3.3.3. Feature generation
The square or box filter is rotated toward the key direction after selecting the neighborhood’s points

for the feature generation. There are several smaller regions within the square region. For frequently
spaced key points in each sub-region, DSFSAM is employed, and Equation (14) generates a four-
dimensional vector.

v = Hm (k) ∗
(∑

dho,
∑

dve,
∑

|dho|,
∑

|dve|
)

(14)

where v represents the output disease-specific feature vector, dho and dve are horizontal and vertical
directions in Disease Specific Feature Separate Attention Mechanism (DSFSAM) responses. Finally,
rather than characterizing the areas around the interest points, the output of the RFNN model in scale
space generates a set of interest point locations. The main advantages of RFNN feature extractions
are independent of the input image’s scale and rotation. The RFNN enhances feature point extraction
from the CXR image to improve disease detection accuracy.

3.4. Feature selection using HWOA

The Whale Optimization technique developed by S. Mirjalili and A. Lewis [45], it is an efficient
evolutionary optimization approach that may be used to find the best solution. Whales are highly
intelligent creatures that prefer to live in groups rather than alone. This is the most interesting section
of the whales’ bodies. The seeking properties of whales allow for the most optimum solutions to be
found using the WOA approach. Walruses have a unique hunting technique in that they like to catch
little fish that are near to the surface of the water. The hybrid whale optimization algorithm (HWOA) is
constructed by combining the WOA with opposition-based learning (OBL) [25]. The proposed HWOA
flowchart is shown in Fig. 7, which is a new and efficient optimization technique. The steps involved
in the proposed HWOA are presented in Table 2. It helps to increase the convergence speed and the
accuracy of solutions. The OBL approach selects an opposite number and places it at the candidate
solution’s mirror location. Because the opposite number is extremely close to the random number that
leads to a solution, algorithms utilize less space while converging the answer to the problem. The
opposite population is more likely to come up with a global solution when compared to a random
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Fig. 7. Proposed HWOA flowchart.

population. In the following mathematical explanations, the HWOA may be expressed in various
phases such as encircling, hunting, targeting prey, and exploration.

3.4.1. Encircling prey
The whales search for their prey by determining where it is most likely to be found and looking for

its optimal position among the surrounding prey. All the other search agents closely track the position
of the leading search agent, continually changing their own positions and searching around it. This
potential option comes very close to being the best possible answer. The prey is encircled by encircling
Equations (15–18) of the HWOA.

�X (T + 1) = �X∗ (T ) − �A.�B (15)

�B =
∣∣∣�C. �X∗ (T ) − �X (T )

∣∣∣ (16)



G. Deepak et al. / MCSC-Net: COVID-19 detection using deep-Q-neural network classification 497

Table 2
Steps involved in the proposed HWOA

Steps involved in the proposed HWOA

• Input : RFNN extracted features.

• Output : HWOA − based disease − specific features.

Step 1 : Initialize the solutions according to population size.
Step 2 : Create an opposite population; the independent variables of every solution are updated.
Step 3 : The power generation of the Nth thermal unit (dependent variable) is calculated
Step 4 : Find the population’s fitness value and the opposite population’s results.
Step 5 : Choose Np numbers of fittest value from population and oppositional population sets.
Step 6 : Fittest values are shorted in the form of finest to worst.
Step 7 : Some solutions are kept as elite solutions
Step 8 : Updates are being made to the independent variables of non-elite solutions.
Step 9 : Again, calculate the power generation of the Nth thermal unit and fittest population set.
Step 10 : Using jumping rate, the opposite population is generated from the new population
Step 11 : Calculate opposition population fitness values.
Step 12 : Np numbers of fittest values are taken from the current and the opposite population
Step 13 : Repeat from Step8 for the next iteration

Where the whale position vector is �X (T ), prey position vector is �X∗ (T ), coefficient vectors are
denoted by �A, �B, �C, which are formed as follows:

�A = 2.�a.�r − �a (17)

�C = 2.�r (18)

In this case, �A is varies randomly within the range [–a, a]; establishing a random value for A varies
randomly within the range [–1, 1]; and decreasing it from 2 to 0 throughout the period of repetitions
in order to give the greatest performance.

3.4.2. Bubble net hunting technique
A strategy for hunting humpback whales that uses bubble nets is based on the fact that these whales

graze on the surface of the water. Whales attempt to communicate with one another via vocalization
in order to create an efficient bubble net that allows them all to feed at the same time. Whales follow
their prey by surrounding them with bubbles. They do this in a number of ways, including decreasing
encircling and spiral position update. The condition for the mathematical formulation of the shrinking
encircling agent is given by the Equation (19)

�a = 2 − t
2

Maxiter

(19)

where t, and Maxiter are total and maximum number of iterations. The prey and whales updated location
is estimated by the use of a spiral device that updates their positions. The whales’ helix form movement
is represented by the relationships shown in the Equation (20).

�X (T + 1) = �X × ebn cos (2πn) + �X (T ) (20)

By creating and testing a mathematical model of humpback whales swimming around their prey,
it is possible to characterize the mechanisms of the decreasing encircling and the spiral encircling
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methods. The Equation (21) gives two ways by which whales updated their position, with a 50 percent
chance of selecting one of the two techniques being used in any given situation.

�X (T + 1) =
{

Shrinking encircling, P < 0.5

Spiral encircling, P > 0.5
(21)

The shrinking and spiral encircling are hunting mechanisms in which a random number P is in [0,
1] range.

3.4.3. Exploration phase (Search for prey)
To acquire the optimal solution, the prey, the search agent randomly adjusts its position in relation

to the positions of other whales. The hunt for prey process may be expressed mathematically by the
Equations (22, 23).

⇀

B =
∣∣∣∣⇀

C.
⇀

Xrand − ⇀

X

∣∣∣∣ (22)

⇀

X (T + 1) = ⇀

Xrand − �AB (23)

3.4.4. Opposite number
The mirror positions of the proposed solution, which is the most crucial when considering the

opposing variable into account. The opposing number (Xo) of candidate solution (X) with the interval
[a, b] is a randomly generated in one-dimensional search space considering the following Equation
(24).

Xo = α + b—X (24)

The lowest and highest limits of the chosen search space are represented by α, and the symbols is
b, respectively. Similar to the above, the Equation (25) may be used to describe the aforementioned
statement in an n-dimensional search space:

Xok = ak + bk − Xk (25)

where k = 1, 2, . . . , n and Xk = X1, X2, . . . , Xn. Mathematically, [a, b] be a real number.
The OBL is a novel approach to improving search ability and improving the solution accuracy

of various optimization problems. To get the best solution, the HWOA searches for the solution in
the opposite direction of specified values which is most likely to be nearer to a random number.
The best features are formed by OBL, which is based on opposition-based generation jumping and
opposition-based initialization.

3.5. Classification

The HWOA-based optimal features are applied to the Deep-Q-Neural Network (DQNN) for classifi-
cation. The proposed DQNN classifies texture features by implementing the Q-descriptor. The reason
for selecting DQNN for texture feature extraction is that it performs better in extracting features from
each image using different layers. The DQNN descriptor comprises three significant layers: DNN,
Environment, and state layer, as depicted in Fig. 8. The Deep Neural Network (DNN) layer collects
input from the input layer to derive the input image features. The convolution layer utilizes a number
of filters to extract high-level features from the given image. The convolutional layer uses a collection
of trainable filters to create the feature map. A total of six filters are used to create six feature maps
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Fig. 8. DQNN descriptor.

from the input image. The feature map acquired from the individual filter is convolved through the
whole image. Each feature map obtained from the filter signifies the precise features of the image.
The DQNN operation is performed, which combines the two different functions to generate a third
function. The DQNN operation is illustrated with Equation (26).

xl
j = Ml ∗ af

(∑
xi−1

j ∗ fij + bj

)
(26)

where af designates the activation function, j signifies the specific convolution feature map, l exem-
plifies the layer in the CNN, fij represents the filter, bj is referred to as the feature map bias, and Ml

is defined as the selection of feature map.
The environment layer is utilized to accomplish down sampling operation in the DQNN algorithm.

The pooling operation is accomplished to diminish the spatial size representation and the volume of
parameters and computations in the network. It functions on each feature map individually. The pooling
environment operation is expressed with Equation (27).

pl
j = af ∗

(
Cl

j ∗ poolenvironment

(
pl−1

j

)
+ bj

)
(27)

where pl
j denotes the pooling region result applied on the jth region in the input image, pl−1

j refers
to the jth region of interest taken by the pooling mask in the preceding layer, and Cl

j represents the
trainable co-efficient. The fully connected layer is used to derive features that are extracted from the
previous layer. It provides the extracted features as output to the upcoming processes, and it is the final
layer in the DQNN-based feature extraction that obtains results from the preceding layers in order
to give extracted features. Finally, this layer contains the softmax classifier that classifies the 4-class,
3-class, and 2-class classes. The proposed MCSC-Net for multi-class classification of CXR images
utilizes stacked ensemble learning to stack each layer.

4. Results and discussions

This section discusses the results of the subjective and objective analyses in detail. The performance
of the proposed method is compared with that of the currently utilized conventional approaches using
three separate sets of performance metrics. All the methods considered the same dataset for evaluating
the performance of the system. The segmentation and classification of proposed methods are estimated
for 2-class, 3-class, and 4-class from CXR images. Here, 2-class models contain the COVID-19 and
non-COVID-19 classification. Then, a 3-class model contains normal, COVID-19, and Pneumonia
classification. Finally, the 4-class model contains normal, COVID-19, Pneumonia viral, and Pneumonia
bacterial classification.
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Table 3
Organization of dataset

Model COVID-19 CXRs Normal CXRs Pneumonia
viral
CXRs

Pneumonia
bacterial
CXRs

4-Class 1500 1500 1271 1100
3-Class 1500 1500 2371
2-Class 1500 3871

4.1. Dataset

The dataset used in this work is collected from COVIDx CRX-2 [29], which is a publicly available
kaggle repository. A total of 5371 posterior-to-anterior CXR scans from the thorax to the abdomen are
taken from the repository. All of these CXR scans are a composite of an upgraded version of multiple
previous datasets combined into a single final image. COVID-19 is a relatively new illness; as a result,
the number of images belonging to this class is limited, which may lead to overfitting in prediction
models. The collected dataset in this work contains 1500 images from the COVID-19 affected, 1500
of normal lungs and 1100 of pneumonia bacterial, and 1271 of pneumonia viral. In order to minimize
overfitting, data augmentation was avoided. Data augmentation to produce more CXRs from 1500
existing CXR images of the COVID19 class could lead to a loss of generalization because of the large
difference in data. As a result, class weights have been developed to address the class imbalance. The
dataset is divided into 80% for training set and 20% for testing set. The dataset is split into two sets
randomly by the Monte Carlo cross-validation. It was decided to use an intuitive strategy to determine
the class weights to strongly penalize the loss that comes with the inaccurate categorization of the
COVID-19 image. The detailed organization of the dataset used in this work for multiple segmentation
and classification models is given in Table 3.

4.2. Subjective evaluation

The subjective evaluation gives the visual performance of the proposed method concerning prepro-
cessing and segmentation methods used in this work. The preprocessing outputs of various methods
such as Gabor filter, Wiener filter, histogram equalization, and proposed HMBF are shown in Fig. 9.

The input image in the first row is the COVID-19, the input image in the second row is pneumo-
nia bacterial, and the input image in the third row is pneumonia viral. The proposed HMBF method
perfectly enhances the input image with effective localization of disease-affected region visibility com-
pared to the conventional approaches. The performance of SC-ResNet50 Segmentation with HMBF
in preprocessing is shown in Fig. 10. Initially, the disease-affected CXR input images are applied to
HMBF preprocessing, which enhances the disease-affected region. The SC-ResNet50 is developed to
use the binary mask multiplied with the input image to generate the segmented region.

4.3. Objective evaluation

Utilizing three separate sets of objective metrics, the objective evaluation compares the proposed
method’s preprocessing, segmentation, and classification performance with that of existing conven-
tional approaches.
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(a) (b) (c) (d) (e)

Fig. 9. Preprocessing performance evaluation (a) Input (b) Gabor filter (c) Wiener filter (d) Histogram Equalization (e)
Proposed HMBF.

4.3.1. Preprocessing performance evaluation
The performance of the proposed preprocessing is compared with the existing preprocessing tech-

niques with respect to Peak signal to noise ratio (PSNR), Structural similarity index metric (SSIM),
Mean square error (MSE), Entropy, Pearson correlation coefficient (PCC), and Mean absolute error
(MAE).

The performance comparison of the proposed HMBF preprocessing method with conventional
approaches such as the Gabor filter, Wiener filter, and Histogram Equalization is given in Table 4. The
proposed preprocessing method outperformed all performance criteria because it effectively visualizes
the area impacted by the disease.

4.3.2. Segmentation performance evaluation
The performance of the proposed SC-ResNet50 segmentation for CXR image segmentation is given

in Table 5. The performance is provided with respect to the metrics such as segmentation accu-
racy (SACC), segmentation sensitivity (SSEN), segmentation specificity (SSPE), segmentation recall
(SRE), segmentation F1-score (SF1), and segmentation precision (SPR). According to Table 5, the
4-class model outperformed the 3 and 2-class models in terms of segmentation performance.

The proposed 2-class SC-ResNet50 segmentation performance is compared with the conventional
approaches such as DEFU-Net [28], FractalCovNet [23], and SegNet [10], as given in Table 6. The
traditional models failed to localize the disease-affected region, so the performance of conventional
models is lower than the proposed segmentation model.

The performance of the proposed 3-class SC-ResNet50 segmentation model is given in Table 7 and
is compared with the existing conventional approaches such as DeepSDM [50], COVID-SDNet [40],
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Fig. 10. SC-ResNet50 segmented outputs.

Table 4
Performance evaluation of proposed HMBF preprocessing method

Method PSNR (dB) SSIM MSE Entropy PCC MAE

Gabor filter 24.51 0.59 0.0825 34.11 0.5805 0.1462
Wiener filter 31.72 0.79 0.0601 43.75 0.7384 0.1083
Histogram Equalization 35.12 0.84 0.0244 48.14 0.8777 0.0990

Proposed HMBF 42.75 9.99 0.0180 53.02 0.9934 0.0451

and RANDGAN [41]. The proposed method accurately identified the lung region compared to existing
models.

The performance of the proposed 4-class SC-ResNet50 segmentation model is given in Table 8 and
is compared with the conventional approaches such as VAE-TTAM [21], SADNN [32], and MTDL
[33]. The segmented outcome of the proposed approach accurately matched the ground truth, which
caused improvement in the proposed method.



G. Deepak et al. / MCSC-Net: COVID-19 detection using deep-Q-neural network classification 503

Table 5
Performance evaluation of proposed SC-ResNet50 segmentation model

Models SACC SSEN SSPE SRE SF1 SPR

2-Class 98.11 98.40 99.86 99.00 97.48 98.53
3-Class 98.58 98.50 98.71 98.31 99.59 99.46
4-Class 99.26 99.49 99.03 98.07 98.13 99.93

Average 98.65 98.79 99.20 98.46 98.4 99.30

Table 6
Performance comparison of 2-class segmentation models

Models SACC SSEN SSPE SRE SF1 SPR

DEFU-Net [28] 94.34 94.02 96.13 94.46 95.99 94.50
FractalCovNet [23] 96.65 96.22 97.70 96.32 96.22 96.87
SegNet [10] 93.85 98.02 88.84 98.02 94.56 91.33

2-class SC-ResNet50 98.11 98.40 99.86 99.00 97.48 98.53

Table 7
Performance comparison of 3-class segmentation models

Models SACC SSEN SSPE SRE SF1 SPR

DeepSDM [50] 93.89 90.06 95.69 91.41 90.41 93.44
SDNet [40] 94.32 93.87 94.35 93.83 93.83 95.97
RANDGAN [41] 96.76 94.71 90.00 94.71 94.71 96.32

3-class SC-ResNet50 98.58 98.50 98.71 98.31 99.59 99.46

Table 8
Performance comparison of 4-class segmentation models

Models SACC SSEN SSPE SRE SF1 SPR

VAE-TTAM [21] 93.41 93.51 95.45 93.59 93.22 94.31
SADNN [32] 93.61 96.13 95.63 96.11 94.38 95.68
MTDL [33] 97.85 97.19 97.20 97.06 96.43 96.71

4-class SC-ResNet50 99.26 99.49 99.03 98.07 98.13 99.93

The performance of the individual segmentation models is compared and listed in Tables 6 to 8.
But there are few models which are developed to perform multi-class segmentation. Therefore, the
performance of the proposed SC-ResNet50 segmentation model is compared with the conventional
existing multi-class segmentation models such as U-Net [22], TL-CNN [7], and DenseCapsNet [24]
in Table 9. The effectiveness of the suggested segmentation method is examined here with respect
to the individual 4-class, 3-class, and 2-class models of the existing methodologies. As a result of
its successful localization of the disease-affected boundary, the suggested SC-ResNet50 segmentation
model of this work outperformed the multi-class segmentation models presented in Table 9 in terms
of performance.
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Table 9
Performance comparison of multi-class segmentation models

Class Models SACC SSEN SSPE SRE SF1 SPR

4-Class U-Net [22] 94.32 94.34 94.81 93.33 93.48 92.13
TL-CNN [7] 96.85 95.24 96.40 95.82 94.34 94.64
DenseCapsNet [24] 97.79 97.95 97.47 97.97 96.80 95.98
SC-ResNet50 99.26 99.49 99.03 98.07 98.13 99.93

3-Class U-Net [22] 93.12 93.53 94.37 93.30 93.75 94.02
TL-CNN [7] 95.43 94.30 95.35 95.67 94.65 95.23
DenseCapsNet [24] 97.51 95.98 96.57 96.77 96.14 96.09
SC-ResNet50 98.58 98.50 98.71 98.31 99.59 99.46

2-Class U-Net [22] 93.36 94.41 95.29 93.79 93.08 95.37
TL-CNN [7] 95.89 95.91 96.00 96.16 95.77 96.41
DenseCapsNet [24] 97.64 97.96 97.37 97.94 97.77 97.66
SC-ResNet50 98.11 98.40 99.86 99.00 97.48 98.53

Table 10
Performance evaluation of proposed MCSC-Net classification models

Models CACC CSEN CSPE CRE CF1 CPR

2-Class 99.0911 99.384 99.8586 99.9900 98.4548 99.5153
3-Class 99.1658 99.485 99.6971 99.2931 99.5859 99.4546
4-Class 99.2526 99.487 99.0203 99.0507 99.1113 99.9293

Average 99.1698 99.452 99.5253 99.4446 99.0506 99.6330

4.3.3. Classification performance evaluation
The performance of various classification models is compared with the proposed MCSC-Net with

respect to the metrics such as classification accuracy (CACC), classification sensitivity (CSEN), classi-
fication specificity (CSPE), classification recall (CRE), classification F1-Score (CF1), and classification
precision (CPR). The proposed MCSC-Net performance with respect to each class, such as 4-class,
3-class, and 2-class classification, is compared in Table 10. The performance evaluation metrics listed
in Table 9 show that the proposed MCSC-Net shows superiority with an average classification of
99.16% over all classes. Also, it shows that the proposed MCSC-Net classification resulted in more
classification accuracy in 4-class classification compared to 3-class and 2-class classification.

The performance of the proposed 2-class MCSC-Net classification models with state-of-the-art other
existing 2-class classification conventional models such as ASSOA-ResNet [17], QRSMA-CNN [42],
and mWOAPR-SVM [43] are compared in Table 11. The conventional models failed to extract the
detailed features, and due to obscene segmentation methods, they achieved low classification accuracy
than the proposed MCSC-Net model.

The performance of the proposed 3-class MCSC-Net classification model is compared with state-of-
the-art other existing conventional 3-Class classification models such as InceptionV3 [38], FOMPA-
CNN [8], and MobileNetV3 [34] in Table 12. These conventional methods failed to select the disease-
specific features and did not utilize the preprocessing operations, which caused the reduction of overall
classification performance as compared to the proposed MCSC-Net model.
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Table 11
Performance comparison of 2-class classification models

Models CACC CSEN CSPE CRE CF1 CPR

ASSOA-ResNet [17] 92.169 92.4561 92.9115 92.4066 94.9509 92.9016
QRSMA-CNN [42] 93.3966 93.0798 95.1687 93.5154 95.0301 93.555
mWOAPR-SVM [43] 95.6835 95.2578 96.723 95.3568 95.2578 95.9013

2-class MCSC-Net 99.0911 99.384 99.8586 99.9900 98.4548 99.5153

Table 12
Performance comparison of 3-class classification models

Models CACC CSEN CSPE CRE CF1 CPR

InceptionV3 [38] 92.169 92.4561 92.9115 92.4066 94.9509 92.9016
FOMPA-CNN [8] 93.3966 93.0798 95.1687 93.5154 95.0301 93.555
MobileNetV3 [34] 95.6835 95.2578 96.723 95.3568 95.2578 95.9013

3-class MCSC-Net 99.1658 99.485 99.6971 99.2931 99.5859 99.4546

Table 13
Performance comparison of 4-class classification models

Models CACC CSEN CSPE CRE CF1 CPR

OptCoNet [46] 92.4759 92.5749 94.4955 92.6541 92.2878 93.3669
PSO-VGG19 [15] 93.6739 95.1687 94.6737 95.1489 93.4362 94.7232
GWOA-CNN [19] 96.8715 96.2181 96.228 96.0894 95.4657 95.7429

4-class MCSC-Net 99.2526 99.484 99.0203 99.0507 99.1113 99.9293

The performance of the proposed 4-class MCSC-Net classification model is compared in Table 13
with existing 4-class classification models such as OptCoNet [46], PSO-VGG19 [15], and GWOA-
CNN [19]. The proposed MCSC-Net was implemented with preprocessing, segmentation, feature
extraction, and classification stages, which causes improved classification performance in convention
with existing approaches.

The comparisons provided in Tables 11 to 13 of the proposed MCSC-Net classification are based
on the individual class. There are few conventional existing multi-class classification models on CXR
images. The performance of the proposed multi-class MCSC-Net is compared with the existing multi-
class state of art classification models such as IG-CNN [9], WOA-GAN [47], and BAT-MLP [44] in
Table 14. The proposed multi-class MCSC-Net is capable of extracting the disease-dependent features
and also selecting the disease-specific features, which causes improvement in performance for all
classes.

5. Conclusion

The proposed MCSC-Net model is developed by combining the Deep learning, Transfer learn-
ing, Bio-optimization algorithm, and Q-learning models, which resulted in a hybrid approach and
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Table 14
Performance comparison of multi-class MCSC-Net classification models

Class Models CACC CSEN CSPE CRE CF1 CPR

4-Class IG-CNN [9] 93.376 93.3966 93.8619 92.3967 92.5452 91.2087
WOA-GAN [47] 95.8815 94.2876 95.436 94.8618 93.3966 93.6936
BAT-MLP [44] 96.8121 96.9705 96.4953 96.9903 95.832 95.0202
MCSC-Net 99.2526 99.484 99.0203 99.0507 99.1113 99.9293

3-Class IG-CNN [9] 92.1888 92.5947 93.4263 92.367 92.8125 93.0798
WOA-GAN [47] 94.4757 93.357 94.3965 94.7133 93.7035 94.2777
BAT-MLP [44] 96.5349 95.0202 95.6043 95.8023 95.1786 95.1291
MCSC-Net 99.1658 99.485 99.6971 99.2931 99.5859 99.4546

2-Class IG-CNN [9] 92.4264 93.4659 94.3371 92.8521 92.1492 94.4163
WOA-GAN [47] 94.9311 94.9509 95.04 95.1984 94.8123 95.4459
BAT-MLP [44] 96.6636 96.9804 96.3963 96.9606 96.7923 96.6834
MCSC-Net 99.0911 99.384 99.8586 99.9900 98.4548 99.5153

held the advantages of all individual models in CXR image classification. To enhance the CXR
images and disease-affected regions in CXR images by noise removal, a preprocessing HMBF was
developed. Then, the preprocessed CXR images were segmented by the transfer learning-based SC-
ResNet50 model, which effectively localizes the lung-based disease-affected region. Further, a deep
learning-based RFNN model is developed to extract the disease-specific features related to the normal,
COVID-19, Bacterial and Viral Pneumonia classes separately. The developed RFNN unutilized the
DSFSAM model for non-overlapping separation of class-specific features. The optimal and best fea-
tures are selected from RFNN using HWOA based Bio-optimization method. Finally, Q-learning-based
DQNN was used to perform the multi-class classification operations. In this SC-ResNet50-based seg-
mentation and DQNN-based classification, operations are carried out for 2-claas, 3-class, and 4-class
classifications separately. The implemented result demonstrates that, when compared to the traditional
current multi-class models in CXR image classification, the proposed MCSC-Net model with the pro-
posed preprocessing, segmentation and classification resulted in improved performance. Additionally,
the COVID-19 in CXR images is effectively classified by the MCSC-Net. This study may be expanded
to incorporate other optimization techniques for reducing system losses.
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